1
|
Naeem F, Aqeel M, Zahid MA, Babar MM, Shah FA, Agouni A, Malik SZ. The effects of ondansetron on diabetes and high-fat diet-induced liver disease: a critical role for protein tyrosine phosphatase 1B. Front Pharmacol 2025; 16:1565628. [PMID: 40356976 PMCID: PMC12066537 DOI: 10.3389/fphar.2025.1565628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/18/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction The escalating prevalence of diabetes and non-alcoholic fatty liver disease (NAFLD) has intensified the search for effective therapeutic interventions. The current study investigates the potential of ondansetron, a Food and Drug Administration (FDA)-approved drug for conditions like nausea and vomiting, as a novel treatment option for these metabolic disorders. Methods A multifaceted approach, encompassing computational analyses, in vitro enzyme inhibition assays, and in vivo experiments in a high-fat diet (HFD)-induced disease model in rats were employed. Results Computational studies, including pharmacophore modeling, molecular docking, and molecular dynamics (MD) simulations, revealed the strong binding affinity of ondansetron to the allosteric site of protein tyrosine phosphatase 1B (PTP1B), a key regulator of insulin and lipid homeostasis. The in vitro enzyme inhibition assay further confirmed ondansetron's ability to directly inhibit PTP1B activity. Animal experiments demonstrated ondansetron's antihyperglycemic effects, reducing blood glucose levels and improving insulin sensitivity in HFD-fed rats. The drug also exhibited hepatoprotective properties, mitigating liver damage and improving tissue architecture. Additionally, ondansetron's anti-inflammatory and antioxidant activities were evident in its ability to reduce pro-inflammatory markers and oxidative stress in the liver. Discussion These therapeutic effects position ondansetron as a promising candidate for further investigation in clinical settings for the treatment of diabetes and NAFLD and, hence, support the use of the drug repurposing approach for addressing the growing burden of metabolic diseases.
Collapse
Affiliation(s)
- Fawad Naeem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Maryam Aqeel
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Muhammad Ammar Zahid
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Mustafeez Mujtaba Babar
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Fawad Ali Shah
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Sohaib Zafar Malik
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
2
|
Villegas-Vazquez EY, Gómez-Cansino R, Marcelino-Pérez G, Jiménez-López D, Quintas-Granados LI. Unveiling the Miracle Tree: Therapeutic Potential of Moringa oleifera in Chronic Disease Management and Beyond. Biomedicines 2025; 13:634. [PMID: 40149610 PMCID: PMC11939887 DOI: 10.3390/biomedicines13030634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/22/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
Moringa oleifera (MO) has gained recognition as a potent natural intervention for preventing and managing chronic diseases (CDs) due to its diverse phytochemical composition and pharmacological properties. Rich in antioxidants, polyphenols, flavonoids, and glucosinolates, MO exerts anti-inflammatory, anti-hyperglycemic, cardioprotective, and anti-obesity effects. These properties make it a valuable therapeutic agent for CDs, including diabetes, cardiovascular diseases, obesity, neurodegenerative disorders, and cancer. MO's ability to modulate oxidative stress and inflammation-key drivers of CDs-highlights its significant role in disease prevention and treatment. MO enhances insulin sensitivity, regulates lipid profiles and blood pressure, reduces inflammation, and protects against oxidative damage. MO also modulates key signaling pathways involved in cancer and liver disease prevention. Studies suggest that MO extracts possess anticancer activity by modulating apoptosis, inhibiting tumor cell proliferation, and interacting with key signaling pathways, including YAP/TAZ, Nrf2-Keap1, TLR4/NF-κB, and Wnt/β-catenin. However, challenges such as variability in bioactive compounds, taste acceptability, and inconsistent clinical outcomes limit their widespread application. While preclinical studies support its efficacy, large-scale clinical trials, standardized formulations, and advanced delivery methods are needed to optimize its therapeutic potential. MO's multifunctional applications make it a promising and sustainable solution for combating chronic diseases, especially in resource-limited settings.
Collapse
Affiliation(s)
- Edgar Yebran Villegas-Vazquez
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla 5 de Mayo s/n Esquina Fuerte de Loreto, Ciudad de México 09230, Mexico;
| | - Rocio Gómez-Cansino
- Colegio de Ciencias y Humanidades, Plantel Casa Libertad, Universidad Autónoma de la Ciudad de México, Calzada Ermita Iztapalapa 4163, Colonia Lomas de Zaragoza, Ciudad de México 09620, Mexico;
| | - Gabriel Marcelino-Pérez
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Domingo Jiménez-López
- Departamento de Nutrición, Universidad Global Latinoamericana, Av. Vía Adolfo López Mateos 73, Misiones, Naucalpan de Juárez, Méx., Mexico 53250, Mexico
- Departamento de Investigación y Desarrollo, Soluciones Orgánicas, Fertilizantes y Servicios para el Agro (SOFESA), Av. Revolución, No. 1267, Ciudad de México 01040, Mexico
| | - Laura Itzel Quintas-Granados
- Colegio de Ciencias y Humanidades, Plantel Cuautepec, Universidad Autónoma de la Ciudad de México, Av. La Corona 320, Colonia La Palma, Ciudad de México 00000, Mexico
| |
Collapse
|
3
|
Liu Y, Chen J, Li X, Fan Y, Peng C, Ye X, Wang Y, Xie X. Natural products targeting RAS by multiple mechanisms and its therapeutic potential in cancer: An update since 2020. Pharmacol Res 2025; 212:107577. [PMID: 39756556 DOI: 10.1016/j.phrs.2025.107577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/07/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025]
Abstract
RAS proteins, as pivotal signal transduction molecules, are frequently mutated and hyperactivated in various human cancers, closely associated with tumor cell proliferation, survival, and metastasis. Despite extensive research on RAS targeted therapies, developing effective RAS inhibitors remains a significant challenge. Natural products, endowed with unique chemical structures and diverse biological activities through long-term natural selection, have emerged as a vital resource for discovering novel RAS-targeted therapeutic drugs. This review focuses on the latest advancements in targeting RAS with natural products and categorizes these natural products based on their mechanisms of action. Additionally, we discuss the challenges faced by these natural products during clinical translation, including issues related to pharmacokinetics. Strategies such as combination therapy, structural optimization, and drug delivery systems are anticipated to enhance efficacy and overcome these challenges.
Collapse
Affiliation(s)
- Yanqing Liu
- Department of Pharmacy, the Thirteenth People's Hospital of Chongqing, Chongqing Geriatrics Hospital, Chongqing 400053, China.
| | - Jie Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing 400021, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaochun Ye
- Department of Pharmacy, the Thirteenth People's Hospital of Chongqing, Chongqing Geriatrics Hospital, Chongqing 400053, China
| | - Yingshuang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing 400021, China
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing 400021, China.
| |
Collapse
|
4
|
Hua Z, Deng J, Wang G. Moringa isothiocyanate-1 mitigates the damage of oxidative stress and apoptosis in diabetic nephropathy mice. Histol Histopathol 2024; 39:1621-1629. [PMID: 38623789 DOI: 10.14670/hh-18-741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
OBJECTIVE Diabetic nephropathy (DN) is a prevalent cause of end-stage kidney disease worldwide. Moringa isothiocyanate-1 (MIC-1) has shown potential for DN management, however, the exact mechanisms remain unclear. This research intended to evaluate the impact and mechanism of MIC-1 on DN. METHODS Six C57BLKS/J-db/m mice served as controls. Eighteen C57BLKS/J-db/db mice were randomly separated into three groups: db/db, db/db + irbesartan (IBS), and db/db + MIC-1. Three weeks post-drug administration, the body weight and kidney weight of mice in each group were measured. Concurrently, serum creatinine (Scr), urine albumin, insulin, glycosylated hemoglobin (GHb), oxidative stress-, and inflammatory-related factors were determined. Additionally, the pathological injury, apoptosis, apoptosis-related markers, NLRP3, and ASC levels in the kidney tissues were examined utilizing H&E, Masson, PAS, TUNEL staining, and Western blot. RESULTS MIC-1 decreased the body weight, kidney weight, the levels of Glu, Scr, and urine albumin in db/db mice. Moreover, MIC-1 significantly suppressed the levels of MDA, insulin, GHb, TNF-α, IL-1β, and IL-6, while increased the activities of SOD, CAT, and GPX in the serum of db/db mice. MIC-1 also mitigated the kidney tissue injury in db/db mice. Western blot assay showed that MIC-1 enhanced the Bcl-2 level and suppressed the Bax, cleaved caspase-3, cleaved caspase-9, NLRP3, ASC, and caspase-1 levels of the kidney tissues in db/db mice. CONCLUSIONS MIC-1 ameliorated the kidney injury in DN mice, and its mechanism may be associated with the suppression of renal cell apoptosis, oxidative stress, and inflammatory responses.
Collapse
Affiliation(s)
- Zhou Hua
- Department of Nephrology, The People's Hospital of Suichang County, Lishui City, Zhejiang Province, China
| | - Jiuhong Deng
- Department of Endocrinology, Second People's Hospital of Pingyang County, Wenzhou City, Zhejiang Province, China
| | - Guiying Wang
- Department of Nephrology, Shangyu People's Hospital of Shaoxing, Shaoxing City, Zhejiang Province, China.
| |
Collapse
|
5
|
Zhang Y, Saha K, Nandani R, Yuan J, Dey M, Gu Z. Isothiocyanates attenuate heparin-induced proliferation of colon cancer cells in vitro. Food Sci Nutr 2024; 12:7842-7853. [PMID: 39479720 PMCID: PMC11521738 DOI: 10.1002/fsn3.4296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 11/02/2024] Open
Abstract
Isothiocyanates (ITCs), prevalent in cruciferous vegetables, are known for their anticarcinogenic properties. Prior research has indicated that heparin can stimulate the growth of colon cancer cells. However, the implications of ITCs in the diet of cancer patients receiving heparin-based therapies have yet to be fully understood. This exploratory in vitro study examines the proliferative effects of low-molecular-weight heparin (LMWH) on human colon cancer cells and assesses the antiproliferative potential of four ITC compounds, exploring possible epidermal growth factor family of receptor tyrosine kinases (Erb-B) related mechanisms. We evaluated cell viability in HCT-116 and HT-29 cell lines following treatment with ITCs alone or combined with LMWH (20 μg/mL) at various concentrations (1-100 μM). Clonogenic and wound-healing assays were performed after 24 h of treatment with 5 μM ITCs. Additionally, messenger RNA (mRNA) and protein expression of Erb-B family genes was measured using quantitative polymerase chain reaction (qPCR) and Western blotting. Statistical analysis was conducted using analysis of variance (ANOVA) with Dunnett's post hoc test. Results indicated that the half-maximal inhibitory concentration (IC50) values for Phenylethyl isothiocyanate (PEITC), Benzyl isothiocyanate (BITC), and Sulforaphane (SFN) were lower than those of Allyl isothiocyanate (AITC) in LMWH-stimulated HCT-116 (20.77, 19.10, and 44.05 μM, respectively) and HT-29 (74.94, 26.77, and 43.49 μM, respectively). PEITC and SFN significantly reduced ErbB1 (epidermal growth factor receptor (EGFR)) and ErbB4 (receptor tyrosine-protein kinase erbB-4) expression, while BITC decreased ErbB2 (receptor tyrosine-protein kinase erbB-2) and transforming growth factor beta (TGF-β) expression in HCT-116 cells (all, p < .05). PEITC, BITC, and SFN also increased proapoptotic Bax expression and decreased the antiapoptotic B-cell lymphoma 2 (Bcl-2) expression (all, p < .05). These findings suggest that specific ITCs may mitigate cancer cell proliferation induced by LMWH in cancer therapies, highlighting their potential therapeutic efficacy.
Collapse
Affiliation(s)
- Yizi Zhang
- Department of Agricultural and Biosystems EngineeringSouth Dakota State UniversityBrookingsSouth DakotaUSA
| | - Karabi Saha
- Department of Pharmaceutical SciencesSouth Dakota State UniversityBrookingsSouth DakotaUSA
| | - Raj Nandani
- Department of Pharmaceutical SciencesSouth Dakota State UniversityBrookingsSouth DakotaUSA
| | - Jiahui Yuan
- Department of Agricultural and Biosystems EngineeringSouth Dakota State UniversityBrookingsSouth DakotaUSA
| | - Moul Dey
- School of Health and Consumer SciencesSouth Dakota State UniversityBrookingsSouth DakotaUSA
| | - Zhengrong Gu
- Department of Agricultural and Biosystems EngineeringSouth Dakota State UniversityBrookingsSouth DakotaUSA
| |
Collapse
|
6
|
Shahbaz M, Naeem H, Batool M, Imran M, Hussain M, Mujtaba A, Alsagaby SA, Al Abdulmonem W, El‐Ghorab AH, Ghoneim MM, Shaker ME, Abdelgawad MA, Al Jbawi E. Antioxidant, anticancer, and anti-inflammatory potential of Moringa seed and Moringa seed oil: A comprehensive approach. Food Sci Nutr 2024; 12:6157-6173. [PMID: 39554357 PMCID: PMC11561834 DOI: 10.1002/fsn3.4312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/05/2024] [Accepted: 06/21/2024] [Indexed: 11/19/2024] Open
Abstract
Moringa oleifera, a widely recognized plant more commonly known as moringa, has obtained significant research interest in recent years due to its prospective physiological advantages, including its claimed ability to counteract carcinogenesis. The moringa plant has been found to possess bioactive components that exhibit promising anticancer activities against different human cancers, such as breast cancer, prostate cancer, pancreatic cancer, etc. The cytotoxic properties of moringa seed extracts on cancerous cells have also been provided in this paper along with other notable health benefits. The extracts derived from moringa seeds inhibit cancer proliferation and promote cancer cell apoptosis through multiple signaling pathways. They also stimulated intracellular reactive oxygen species (ROS) production and subsequently induced caspase-3 activity. The impact of moringin and avenanthramide 2f on the stimulation of caspases 2, 4, 8, and 9 results in reduction in the proliferation of cancer cells. The results reported by research studies hold significant implications for identifying and targeting specific molecular entities that could serve as potential therapeutic targets in search of effective cancer treatments. Furthermore, the flavonoids in moringa seed can remove mitochondrial reactive oxygen species, protecting beta cells and bringing hyperglycemia under control. M. oleifera seed oil can reduce the risk of cardiovascular diseases via reduced malondialdehyde (MDA) formation and modulation of cardiac superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity. This article provides a comprehensive summary of the noteworthy discoveries derived from a rigorous investigation that explored into the impact of moringa seeds on the prevention/reduction of various cancers and other complex diseases.
Collapse
Affiliation(s)
- Muhammad Shahbaz
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of Agriculture MultanMultanPakistan
| | - Hammad Naeem
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of Agriculture MultanMultanPakistan
- Food Technology Section, Post‐Harvest Research CentreAyub Agricultural Research InstituteFaisalabadPakistan
| | - Maryam Batool
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of Agriculture MultanMultanPakistan
| | - Muhammad Imran
- Department of Food Science and TechnologyUniversity of NarowalNarowalPakistan
| | - Muzzamal Hussain
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Ahmed Mujtaba
- Department of Food Science and Technology, Faculty of Engineering and TechnologyHamdard University Islamabad CampusIslamabadPakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesMajmaah UniversityAL‐MajmaahSaudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of MedicineQassim UniversityBuraidahSaudi Arabia
| | - Ahmed H. El‐Ghorab
- Department of Chemistry, College of ScienceJouf UniversitySakakaSaudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of PharmacyAlMaarefa UniversityAd DiriyahSaudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of PharmacyAl‐Azhar UniversityCairoEgypt
| | - Mohamed E. Shaker
- Department of Pharmacology, College of PharmacyJouf UniversitySakakaSaudi Arabia
- Department of Pharmacology & Toxicology, Faculty of PharmacyMansoura UniversityMansouraEgypt
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of PharmacyJouf UniversitySakakaSaudi Arabia
| | - Entessar Al Jbawi
- Syrian Arab Republic Ministry of Agriculture and Agrarian ReformDamascusSyria
| |
Collapse
|
7
|
Wu TK, Hung TW, Chen YS, Pan YR, Hsieh YH, Tsai JP. Corosolic acid inhibits metastatic response of human renal cell carcinoma cells by modulating ERK/MMP2 signaling. ENVIRONMENTAL TOXICOLOGY 2024; 39:857-868. [PMID: 37860891 DOI: 10.1002/tox.23999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/21/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023]
Abstract
Corosolic acid (CA), a plant-derived pentacyclic triterpenoid, has potent anti-inflammatory, anti-metabolic, and anti-neoplastic actions against a variety of human cancers. However, the specific mechanism by which CA inhibits the progression of renal cell carcinoma (RCC) is yet unclear. We found that CA (≤8 μM) had no influence on either the growth or viability of RCC cell lines (786-O, ACHN, and Caki-1) or normal HK2 cells. However, in a dose-dependent manner, CA prevented the invasion and migration of RCC cells. Human protease array analysis showed that CA reduced MMP2 expression. At increasing concentrations of CA, the expression of MMP2 was dose-dependently reduced, as shown by western blot and RT-PCR analyses as well as immunofluorescence staining. CA also stimulated ERK1/2 phosphorylation in 786-O and Caki-1 cells. Transfection of CA-treated RCC cells with siRNA-ERK restored MMP2 protein expression and the motility and invasion capabilities of RCC cells. Molecular docking study results showed that CA and MMP2 interact strongly. These findings elucidate the mechanism by which CA prevents RCC cells from migrating and invading, and these findings indicate that CA may be a potential anti-metastatic therapy for RCC.
Collapse
Affiliation(s)
- Tsai-Kun Wu
- Division of Renal Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
- College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Tung-Wei Hung
- Division of Nephrology, Department of Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yong-Syuan Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ying-Ru Pan
- Department of Medical Research, Tungs' Taichung Metroharbor Hospital, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jen-Pi Tsai
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| |
Collapse
|
8
|
Villamar-Cruz O, Loza-Mejía MA, Vivar-Sierra A, Saldivar-Cerón HI, Patiño-López G, Olguín JE, Terrazas LI, Armas-López L, Ávila-Moreno F, Saha S, Chernoff J, Camacho-Arroyo I, Arias-Romero LE. A PTP1B-Cdk3 Signaling Axis Promotes Cell Cycle Progression of Human Glioblastoma Cells through an Rb-E2F Dependent Pathway. Mol Cell Biol 2023; 43:631-649. [PMID: 38014992 PMCID: PMC10761042 DOI: 10.1080/10985549.2023.2273193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 11/29/2023] Open
Abstract
PTP1B plays a key role in developing different types of cancer. However, the molecular mechanism underlying this effect is unclear. To identify molecular targets of PTP1B that mediate its role in tumorigenesis, we undertook a SILAC-based phosphoproteomic approach, which allowed us to identify Cdk3 as a novel PTP1B substrate. Substrate trapping experiments and docking studies revealed stable interactions between the PTP1B catalytic domain and Cdk3. In addition, we observed that PTP1B dephosphorylates Cdk3 at tyrosine residue 15 in vitro and interacts with it in human glioblastoma cells. Next, we found that pharmacological inhibition of PTP1B or its depletion with siRNA leads to cell cycle arrest with diminished activity of Cdk3, hypophosphorylation of Rb, and the downregulation of E2F target genes Cdk1, Cyclin A, and Cyclin E1. Finally, we observed that the expression of a constitutively active Cdk3 mutant bypasses the requirement of PTP1B for cell cycle progression and expression of E2F target genes. These data delineate a novel signaling pathway from PTP1B to Cdk3 required for efficient cell cycle progression in an Rb-E2F dependent manner in human GB cells.
Collapse
Affiliation(s)
- Olga Villamar-Cruz
- Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores-Iztacala, UNAM Tlalnepantla, Estado de México, Mexico
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Marco Antonio Loza-Mejía
- Design, Isolation, and Synthesis of Bioactive Molecules Research Group, Chemical Sciences School, Universidad La Salle-México, Mexico City, Mexico
| | - Alonso Vivar-Sierra
- Design, Isolation, and Synthesis of Bioactive Molecules Research Group, Chemical Sciences School, Universidad La Salle-México, Mexico City, Mexico
| | | | - Genaro Patiño-López
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de Mexico Federico Gómez, Mexico City, Mexico
| | - Jonadab Efraín Olguín
- Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores-Iztacala, UNAM Tlalnepantla, Estado de México, Mexico
- Laboratorio Nacional en Salud FES-Iztacala, Facultad de Estudios Superiores-Iztacala, UNAM Tlalnepantla, Estado de México, Mexico
| | - Luis Ignacio Terrazas
- Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores-Iztacala, UNAM Tlalnepantla, Estado de México, Mexico
- Laboratorio Nacional en Salud FES-Iztacala, Facultad de Estudios Superiores-Iztacala, UNAM Tlalnepantla, Estado de México, Mexico
| | - Leonel Armas-López
- Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores-Iztacala, UNAM Tlalnepantla, Estado de México, Mexico
| | - Federico Ávila-Moreno
- Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores-Iztacala, UNAM Tlalnepantla, Estado de México, Mexico
- Unidad de Investigación, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Sayanti Saha
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Jonathan Chernoff
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Luis Enrique Arias-Romero
- Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores-Iztacala, UNAM Tlalnepantla, Estado de México, Mexico
| |
Collapse
|
9
|
Mohd Sahardi NFN, Makpol S. Suppression of Inflamm-Aging by Moringa oleifera and Zingiber officinale Roscoe in the Prevention of Degenerative Diseases: A Review of Current Evidence. Molecules 2023; 28:5867. [PMID: 37570837 PMCID: PMC10421196 DOI: 10.3390/molecules28155867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Inflammation or inflamm-aging is a chronic low-grade inflammation that contributes to numerous types of degenerative diseases among the elderly and might be impeded by introducing an anti-inflammatory agent like Moringa oleifera Lam (moringa) and Zingiber officinale Roscoe (ginger). Therefore, this paper aims to review the role of moringa and ginger in suppressing inflamm-aging to prevent degenerative diseases. Various peer-reviewed publications were searched and downloaded using the reputed search engine "Pubmed" and "Google Scholar". These materials were reviewed and tabulated. A comparison between these previous findings was made based on the mechanism of action of moringa and ginger against degenerative diseases, focusing on their anti-inflammatory properties. Many studies have reported the efficacy of moringa and ginger in type 2 diabetes mellitus, neurodegenerative disease, cardiovascular disease, cancer, and kidney disease by reducing inflammatory cytokines activities, mainly of TNF-α and IL-6. They also enhanced the activity of antioxidant enzymes, including catalase, glutathione, and superoxide dismutase. The anti-inflammatory activities can be seen by inhibiting NF-κβ activity. Thus, the anti-inflammatory potential of moringa and ginger in various types of degenerative diseases due to inflamm-aging has been shown in many recent types of research.
Collapse
Affiliation(s)
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
10
|
Zhang ZH, Zhou XM, Zhang X. Role of Protein Tyrosine Phosphatase 1B Inhibitor in Early Brain Injury of Subarachnoid Hemorrhage in Mice. Brain Sci 2023; 13:brainsci13050816. [PMID: 37239288 DOI: 10.3390/brainsci13050816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Clinically, early brain injury (EBI), which refers to the acute injuries to the whole brain in the phase of the first 72 h following subarachnoid hemorrhage (SAH), is intensely investigated to improve neurological and psychological function. Additionally, it will be meaningful to explore new therapeutic approaches for EBI treatment to improve the prognosis of patients with SAH. To investigate the underlying neuroprotection mechanism in vitro, the Protein tyrosine phosphatase 1B inhibitor (PTP1B-IN-1) was put in primary neurons induced by OxyHb to observe neuroapoptosis, neuroinflammation, and ER stress. Then, one hundred forty male mice were subjected to Experiment two and Experiment three. The mice in the SAH24h + PTP1B-IN-1 group were given an intraperitoneal injection of 5 mg/kg PTP1B-IN-1 30 min before anesthesia. SAH grade, neurological score, brain water content, Western blot, PCR, and Transmission Electron Microscopy (TEM) were performed to observe the underlying neuroprotection mechanism in vivo. Overall, this study suggests that PTP1B-IN-1 could ameliorate neuroapoptosis, neuroinflammation, and ER stress in vitro and in vivo by regulating the IRS-2/AKT signaling pathway, suggesting that PTP1B-IN-1 may be a candidate drug for the treatment of early brain injury after SAH.
Collapse
Affiliation(s)
- Zhong-Hua Zhang
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
- Department of Anesthesiology, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Xiao-Ming Zhou
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Xin Zhang
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing 210000, China
| |
Collapse
|
11
|
Sarkar A, Paul A, Banerjee T, Maji A, Saha S, Bishayee A, Maity TK. Therapeutic advancements in targeting BCL-2 family proteins by epigenetic regulators, natural, and synthetic agents in cancer. Eur J Pharmacol 2023; 944:175588. [PMID: 36791843 DOI: 10.1016/j.ejphar.2023.175588] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Cancer is amongst the deadliest and most disruptive disorders, having a much higher death rate than other diseases worldwide. Human cancer rates continue to rise, thereby posing the most significant concerns for medical health professionals. In the last two decades, researchers have gone past several milestones in tackling cancer while gaining insight into the role of apoptosis in cancer or targeting various biomarker tools for prognosis and diagnosis. Apoptosis which is still a topic full of complexities, can be controlled considerably by B-cell lymphoma 2 (BCL-2) and its family members. Therefore, targeting proteins of this family to prevent tumorigenesis, is essential to focus on the pharmacological features of the anti-apoptotic and pro-apoptotic members, which will help to develop and manage this disorder. This review deals with the advancements of various epigenetic regulators to target BCL-2 family proteins, including the mechanism of several microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Similarly, a rise in natural and synthetic molecules' research over the last two decades has allowed us to acquire insights into understanding and managing the transcriptional alterations that have led to apoptosis and treating various neoplastic diseases. Furthermore, several inhibitors targeting anti-apoptotic proteins and inducers or activators targeting pro-apoptotic proteins in preclinical and clinical stages have been summarized. Overall, agonistic and antagonistic mechanisms of BCL-2 family proteins conciliated by epigenetic regulators, natural and synthetic agents have proven to be an excellent choice in developing cancer therapeutics.
Collapse
Affiliation(s)
- Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Tanmoy Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Sanjukta Saha
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| |
Collapse
|
12
|
Tseng TY, Lee CH, Lee HL, Su CY, Kao CY, Tsai JP, Hsieh YH. Licochalcone A Suppresses Renal Cancer Cell Proliferation and Metastasis by Engagement of Sp1-Mediated LC3 Expression. Pharmaceutics 2023; 15:pharmaceutics15020684. [PMID: 36840005 PMCID: PMC9966374 DOI: 10.3390/pharmaceutics15020684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Licochalcone A (LicA) is a strong anti-inflammatory, antioxidant, and anticarcinogenic substance that is useful against a variety of human malignancies. However, its precise mechanism in mediating the development of renal cell carcinoma (RCC) is not entirely understood. In this work, LicA was discovered to limit cell growth and survival, induce cell cycle arrest, promote autophagy and LC3B expression, and inhibit the migration and invasion of RCC cells. In addition, the proliferation, migration, and invasion inhibited by LicA were restored by the transfection of siRNA-LC3. The effects of LC3B on the metastatic phenotype of ACHN cells was enhanced with the overexpression of Sp1 or suppressed by inhibiting the phosphorylation of FAK and Src. Finally, LicA showed antitumor properties against RCC in an in vivo xenograft model. In conclusion, our study demonstrated the chemotherapeutic potential of LicA on proliferation, migration, invasion, and autophagy through the activation of LC3B expression, ultimately modulating FAK/Src signaling pathway-mediated Sp1 expression. These findings illustrate the novel role and molecular mechanisms of LicA against RCC cells.
Collapse
Affiliation(s)
- Tsai-Yi Tseng
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Division of Pediatric Surgery, Department of Surgery, Children’s Hospital of China Medical University, Taichung 404333, Taiwan
| | - Chien-Hsing Lee
- Division of Pediatric Surgery, Department of Surgery, Children’s Hospital of China Medical University, Taichung 404333, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404333, Taiwan
| | - Hsiang-Lin Lee
- Department of Surgery, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chien-Yu Su
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Cheng-Yen Kao
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Jen-Pi Tsai
- School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
- Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
- Correspondence: (J.-P.T.); (Y.-H.H.)
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: (J.-P.T.); (Y.-H.H.)
| |
Collapse
|
13
|
Gaobotse G, Venkataraman S, Brown PD, Masisi K, Kwape TE, Nkwe DO, Rantong G, Makhzoum A. The use of African medicinal plants in cancer management. Front Pharmacol 2023; 14:1122388. [PMID: 36865913 PMCID: PMC9971233 DOI: 10.3389/fphar.2023.1122388] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Cancer is the third leading cause of premature death in sub-Saharan Africa. Cervical cancer has the highest number of incidences in sub-Saharan Africa due to high HIV prevalence (70% of global cases) in African countries which is linked to increasing the risk of developing cervical cancer, and the continuous high risk of being infected with Human papillomavirus In 2020, the risk of dying from cancer amongst women was higher in Eastern Africa (11%) than it was in Northern America (7.4%). Plants continue to provide unlimited pharmacological bioactive compounds that are used to manage various illnesses, including cancer. By reviewing the literature, we provide an inventory of African plants with reported anticancer activity and evidence supporting their use in cancer management. In this review, we report 23 plants that have been used for cancer management in Africa, where the anticancer extracts are usually prepared from barks, fruits, leaves, roots, and stems of these plants. Extensive information is reported about the bioactive compounds present in these plants as well as their potential activities against various forms of cancer. However, information on the anticancer properties of other African medicinal plants is insufficient. Therefore, there is a need to isolate and evaluate the anticancer potential of bioactive compounds from other African medicinal plants. Further studies on these plants will allow the elucidation of their anticancer mechanisms of action and allow the identification of phytochemicals that are responsible for their anticancer properties. Overall, this review provides consolidated and extensive information not only on diverse medicinal plants of Africa but on the different types of cancer that these plants are used to manage and the diverse mechanisms and pathways that are involved during cancer alleviation.
Collapse
Affiliation(s)
- Goabaone Gaobotse
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana,*Correspondence: Goabaone Gaobotse, ; Kabo Masisi, ; Abdullah Makhzoum,
| | - Srividhya Venkataraman
- Virology Laboratory, Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Phenyo D. Brown
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Kabo Masisi
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana,*Correspondence: Goabaone Gaobotse, ; Kabo Masisi, ; Abdullah Makhzoum,
| | - Tebogo E. Kwape
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - David O. Nkwe
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Gaolathe Rantong
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Abdullah Makhzoum
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana,*Correspondence: Goabaone Gaobotse, ; Kabo Masisi, ; Abdullah Makhzoum,
| |
Collapse
|
14
|
Wen Y, Li W, Su R, Yang M, Zhang N, Li X, Li L, Sheng J, Tian Y. Multi-Target Antibacterial Mechanism of Moringin From Moringa oleifera Seeds Against Listeria monocytogenes. Front Microbiol 2022; 13:925291. [PMID: 35756047 PMCID: PMC9213813 DOI: 10.3389/fmicb.2022.925291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 12/30/2022] Open
Abstract
Moringin [4-(α-L-rhamnosyloxy) benzyl isothiocyanate] is an isothiocyanate from Moringa oleifera seeds. It is the bioactivated form of the glucosinolate precursor glucomoringin with various health benefits. However, few studies have examined the antibacterial activity of moringin. This study aimed to investigate the antimicrobial activity and mechanism of moringin against Listeria monocytogenes. The minimum inhibitory concentration (MIC), and growth curves were used to evaluate the bacteriostatic effect of moringin against L. monocytogenes. Transcriptome analysis by RNA sequencing was performed to elucidate the underlying mechanism of moringin against L. monocytogenes. The transcriptome results were validated. The results showed that moringin inhibited the growth of L. monocytogenes with a MIC of 400 μM. RNA sequencing results showed that the differences in the expression of genes related to the cell wall and membrane biosynthesis, phosphotransferase system (PTS), oxidative stress, energy metabolism, and DNA binding were significantly affected. As with the transcriptome results, the results of the mechanism verification found that moringin damaged the integrity of the cell wall and cell membrane, stimulated oxidative stress, interfered with energy metabolism and DNA replication, and finally led to the death of L. monocytogenes. The present study provides evidence that moringin exhibits strong antimicrobial activity against L. monocytogenes and insight into its potential mechanism.
Collapse
Affiliation(s)
- Yanlong Wen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Wenyun Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Rongzhen Su
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Min Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Nan Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ximing Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Lingfei Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China.,Yunnan Engineering Research Center of Drug and Food Homologous Functional Food, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China.,Yunnan Engineering Research Center of Drug and Food Homologous Functional Food, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
15
|
Feng C, Lyu Y, Gong L, Wang J. Therapeutic Potential of Natural Products in the Treatment of Renal Cell Carcinoma: A Review. Nutrients 2022; 14:nu14112274. [PMID: 35684073 PMCID: PMC9182762 DOI: 10.3390/nu14112274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
Renal cell carcinoma (RCC) is a common cancer of the urinary system. The potential therapeutic effects of certain natural products against renal cell carcinoma have been reported both in vivo and in vitro, but no reviews have been published classifying and summarizing the mechanisms of action of various natural products. In this study, we used PubMed and Google Scholar to collect and screen the recent literature on natural products with anti-renal-cancer effects. The main mechanisms of action of these products include the induction of apoptosis, inhibition of angiogenesis, inhibition of metastasis and reduction of drug resistance. In total, we examined more than 30 natural products, which include kahweol acetate, honokiol, englerin A and epigallocatechin-3-gallate, among others, have demonstrated a variety of anti-renal-cancer effects. In conclusion, natural products may have a wider application in kidney cancer than previously believed and are potential candidates for treatment in RCC.
Collapse
Affiliation(s)
- Chenchen Feng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100000, China; (C.F.); (L.G.)
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China;
| | - Yinfeng Lyu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China;
| | - Lingxiao Gong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100000, China; (C.F.); (L.G.)
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100000, China; (C.F.); (L.G.)
- Correspondence:
| |
Collapse
|