1
|
Bipasha M, Deepali V, Prabal D, Supriya K, Megha B. Ferroptosis: A Mechanism of Cell Death With Potential Scope in Cancer Therapy. Asia Pac J Clin Oncol 2025. [PMID: 40235436 DOI: 10.1111/ajco.14172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/30/2024] [Accepted: 04/02/2025] [Indexed: 04/17/2025]
Abstract
Ferroptosis is a type of regulated cell death caused by oxidative imbalance of the intracellular microenvironment. This causes the accumulation of toxic lipid peroxides, depicted by iron overload and lipid peroxidation, which results in disease development. The affected cell population displays unique morphological and biochemical features, which are distinct from other modes of cell death, like apoptosis, pyroptosis, and necroptosis. The individual pathways of each of these modes are interrelated and tend to counterbalance each other in the mechanism of cell death. The process of ferroptosis is associated with disturbances in iron metabolism, in conjunction with glutathione peroxidase and lipid peroxidation, culminating in a reduction of antioxidant capacity and accumulation of lipid peroxides in the dying cell. It has been observed that even excess cellular levels of iron can cause cell death, where ferroptosis is initiated by diminishing the levels of glutathione and glutathione peroxidase 4, and thus leading to excess build-up of lipid reactive oxygen species (ROS). In the case of a neoplastic cell, ferroptosis along with its regulators tends to orchestrate cell death and also affects cancer progression by modulation of proliferation activity, apoptosis suppression, metastasis, and drug resistance. Comprehending the complex network of molecular processes implicated in ferroptosis regulation is vital for developing targeted therapies for diseases where ferroptosis plays a significant role.
Collapse
Affiliation(s)
- Mukherjee Bipasha
- Department of Biochemistry, Dr DY Patil Medical College, Navi Mumbai, India
| | - Vidhate Deepali
- Department of Biochemistry, Dr DY Patil Medical College, Navi Mumbai, India
| | - Deb Prabal
- Sultan Qaboos Comprehensive Cancer Care & Research Centre, University Medical City, Muscat, Sultanate of Oman
| | - Khillare Supriya
- Department of Biochemistry, Dr DY Patil Medical College, Navi Mumbai, India
| | - Bangar Megha
- Department of Biochemistry, Dr DY Patil Medical College, Navi Mumbai, India
| |
Collapse
|
2
|
Zhang X, Ren B, Liu B, Wang R, Li S, Zhao Y, Zhou W. Single-cell RNA sequencing and spatial transcriptomics reveal the heterogeneity and intercellular communication of cancer-associated fibroblasts in gastric cancer. J Transl Med 2025; 23:344. [PMID: 40102930 PMCID: PMC11917039 DOI: 10.1186/s12967-025-06376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/12/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Gastric cancer is a highly aggressive malignancy characterized by a complex tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs), which are a key component of the TME, exhibit significant heterogeneity and play crucial roles in tumor progression. Therefore, a comprehensive understanding of CAFs is essential for developing novel therapeutic strategies for gastric cancer. METHODS This study investigates the characteristics and functional information of CAF subtypes and explores the intercellular communication between CAFs and malignant epithelial cells (ECs) in gastric cancer by analyzing single-cell sequencing data from 24 gastric cancer samples. CellChat was employed to map intercellular communication, and Seurat was used to integrate single-cell sequencing data with spatial transcriptome data to reconstruct a comprehensive single-cell spatial map. The spatial relationship between apCAFs and cancer cells was analyzed using multicolor immunohistochemistry. RESULTS Cells were categorized into nine distinct categories, revealing a positive correlation between the proportions of epithelial cells (ECs) and fibroblasts. Furthermore, six fibroblast subpopulations were identified: inflammatory (iCAFs), pericytes, matrix (mCAFs), antigen-presenting (apCAFs), smooth muscle cells (SMCs), and proliferative CAFs (pCAFs). Each of these subpopulations was linked to various biological processes and immune responses. Malignant ECs exhibited heightened intercellular communication, particularly with CAF subpopulations, through specific ligand-receptor interactions. High-density regions of CAF subpopulations displayed spatial exclusivity, with pericytes serving as a source for iCAFs, mCAFs, and apCAFs. Notably, malignant ECs and apCAFs showed increased interactions, with certain ligand-receptor pairs potentially impacting the prognosis of gastric cancer. Multiplex immunohistochemistry (mIHC) confirmed the close spatial proximity of apCAFs to cancer cells in gastric cancer. CONCLUSION Our study provided a comprehensive characterization of CAF heterogeneity in gastric cancer and revealed the intricate intercellular networks within the TME. The identified CAF subpopulations and their interactions with malignant cells could serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Xijie Zhang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Bo Ren
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Bo Liu
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Rui Wang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Sen Li
- Department of General Surgery, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yuzhou Zhao
- Department of General Surgery, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.
| | - Wence Zhou
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China.
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China.
- Key Laboratory of Environmental Oncology of Gansu Province, Lanzhou, China.
| |
Collapse
|
3
|
Wang Z, Zhang Z, Yue Y, Hou Y, Cao Y, Guo C, Nie X, Hou J. Cross-talk between WNT Signaling and Ferroptosis in Cancer. Mol Cancer Res 2025; 23:175-189. [PMID: 39786453 DOI: 10.1158/1541-7786.mcr-24-0880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/19/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
Cancer remains one of the most formidable challenges in the medical field in this century, largely because of its poorly understood pathogenesis. Fortunately, recent advancements in the understanding of cancer pathogenesis have helped identify more therapeutic targets for improved treatment outcomes. The WNT signaling pathways are highly conserved cascades that participate in diverse physiologic processes, such as embryonic development, tissue homeostasis, and tissue regeneration. Ferroptosis, a unique iron-dependent form of cell death that is distinct from apoptosis, is driven by lipid peroxidation and excessive reactive oxygen species production. Emerging evidence shows that the dysregulation of WNT signaling pathways and ferroptosis, as well as their intricate cross-talk, plays crucial roles in cancer progression and therapeutic resistance, indicating their potential as targets for cancer therapies. This review provides a comprehensive overview of the current understanding of the cross-talk between WNT signaling pathways and ferroptosis in the pathogenesis and progression of cancer, with a specific focus on the regulatory role of the canonical WNT cascade in cancer-related ferroptosis. In addition, we discuss the pharmacologic mechanisms of current strategies that inhibit canonical WNT signaling and/or induce ferroptosis in cancer treatment. We propose that combining canonical WNT pathway inhibitors and ferroptosis inducers with current therapies represents a promising therapeutic strategy for personalized cancer treatment.
Collapse
Affiliation(s)
- Zheng Wang
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Zhixiang Zhang
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yunhui Yue
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yifan Hou
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yujia Cao
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Changsheng Guo
- Kaifeng 155 Hospital, China RongTong Medical Healthcare Group Co. Ltd., Kaifeng, China
| | - Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Junqing Hou
- Kaifeng 155 Hospital, China RongTong Medical Healthcare Group Co. Ltd., Kaifeng, China
| |
Collapse
|
4
|
Song Q, Liu S, Wu D, Cai A. Multiple programmed cell death patterns predict the prognosis and drug sensitivity in gastric cancer. Front Immunol 2025; 16:1511453. [PMID: 39967665 PMCID: PMC11832517 DOI: 10.3389/fimmu.2025.1511453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Background Gastric cancer (GC) is a malignant tumor with poor prognosis. The diverse patterns of programmed cell death (PCD) are significantly associated with the pathogenesis and progression of GC, and it has the potential to serve as prognostic and drug sensitivity indicators for GC. Method The sequencing data and clinical characteristics of GC patients were downloaded from The Cancer Genome Atlas and GEO databases. LASSO cox regression method was used to screen feature genes and develop the PCD score (PCDS). Immune cell infiltration, immune checkpoint expression, Tumor Immune Dysfunction and Exclusion (TIDE) algorithm and drug sensitivity analysis were used to explore immunotherapy response. By integrating PCDS with clinical characteristics, we constructed and validated a nomogram that demonstrated robust predictive performance. Results We screened nine PCD-related genes (SERPINE1, PLPPR4, CDO1, MID2, NOX4, DYNC1I1, PDK4, MYB, TUBB2A) to create the PCDS. We found that GC patients with high PCDS experienced significantly poorer prognoses, and PCDS was identified as an independent prognostic factor. Furthermore, there was a significant difference in immune profile between high PCDS and low PCDS groups. Additionally, drug sensitivity analysis indicated that patients with a high PCDS may exhibit resistance to immunotherapy and standard adjuvant chemotherapy regimens; however, they may benefit from the FDA-approved drug Dasatinib. Conclusion Overall, we confirmed that the PCDS is a prognostic risk factor and a valuable predictor of immunotherapy response in GC patients, which provides new evidence for the potential application of GC.
Collapse
Affiliation(s)
| | | | | | - Aizhen Cai
- Department of General Surgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
5
|
Xin L, Xu HS, Fan LJ, Liu C, Zou YH, Zhou Q, Yue ZQ, Gan JH, Liu J. Methionine Restriction Exerts Anti-Tumor Immunity via Joint Intervention of T-Bet Palmitoylation in Gastric Cancer. Biotechnol J 2025; 20:e202400574. [PMID: 39989253 DOI: 10.1002/biot.202400574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/01/2024] [Accepted: 02/04/2025] [Indexed: 02/25/2025]
Abstract
BACKGROUND Methionine restriction (MR) exerts an anti-tumor immunomodulatory role. Th1 cells facilitate CD8+ cytotoxic T cell activation and targeted tumor cell killing. Our previous work shows that MR enhances the immunotherapy effect of PD-L1/PD-1 blockade on gastric cancer, MR can simultaneously inhibit Th1 cell differentiation, which may affect their synergistic therapeutic outcome. We aim to elucidate the molecular mechanism of MR regulating Th1 cell activation in gastric cancer. METHODS Murine Foregastric Carcinoma (MFC) cells were injected into 615 mice to establish transplanted tumor models, which were then treated with an MR diet or combined with 2-bromopalmitate (2-BP). CD4+T cells were cultured with deficient methionine. The acyl-biotinyl exchange (ABE) method was to detect T-bet palmitoylation and cycloheximide experiments to detect protein stability. GPS-Palm tool was employed to screen palmitoyltransferases. The impact of T-bet palmitoylation on the pro-tumor-killing effect of Th1 cells was examined. RESULTS MR enhanced anti-PD-1's inhibition of tumor growth, while concurrently suppressing the increased Th1 cells. Combined with 2-BP further inhibited tumor and increased Th1 cells. Suppressing Th1 activity attenuated 2-BP's synergistic therapeutic effect and reduced CD8+ GZMB+ T cells. MR inhibited Th1 differentiation by reducing T-bet expression, 2-BP treatment restored, while T-bet interference reversed 2-BP's effect. MR increased palmitoylation and T-bet underwent palmitoylation modification. ZDHHC23 mediated T-bet palmitoylation and promoted T-bet degradation. MR promoted T-bet degradation, thereby decreasing T-bet content, inhibiting Th1 cell polarization and CD8+ T cell killing effect. CONCLUSIONS MR combined with T-bet palmitoylation intervention promotes Th1 polarization and CD8+ T cell toxicity, thereby enhancing anti-tumor immunity in gastric cancer.
Collapse
Affiliation(s)
- Lin Xin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - He-Song Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Luo-Jun Fan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Chuan Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yong-Hui Zou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Qi Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhen-Qi Yue
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Jin-Heng Gan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Jiang Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
6
|
Wu Z, Zhang Y, Zhong W, Wu K, Zhong T, Jiang T. Targeting ferroptosis: a promising approach for treating lung carcinoma. Cell Death Discov 2025; 11:33. [PMID: 39875356 PMCID: PMC11775225 DOI: 10.1038/s41420-025-02308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
Lung carcinoma incidence and fatality rates remain among the highest on a global scale. The efficacy of targeted therapies and immunotherapies is commonly compromised by the emergence of drug resistance and other factors, resulting in a lack of durable therapeutic benefits. Ferroptosis, a distinct pattern of cell death marked by the buildup of iron-dependent lipid peroxides, has been shown to be a novel and potentially more effective treatment for lung carcinoma. However, the mechanism and regulatory network of ferroptosis are exceptionally complex, and many unanswered questions remain. In addition, research on ferroptosis in the diagnosis and treatment of lung cancer has been growing exponentially. Therefore, it is necessary to provide a thorough summary of the latest advancements in the field of ferroptosis. Here, we comprehensively analyze the mechanisms underlying the preconditions of ferroptosis, the defense system, and the associated molecular networks. The potential strategies of ferroptosis in the treatment of lung carcinoma are also highlighted. Targeting ferroptosis improves tumor cell drug resistance and enhances the effectiveness of targeted drugs and immunotherapies. These findings may shed fresh light on the diagnosis and management of lung carcinoma, as well as the development of drugs related to ferroptosis.
Collapse
Affiliation(s)
- Ziyang Wu
- School of Life Sciences, Zhuhai College of Science and Technology, Zhuhai, Guangdong, China
| | - Yan Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wendi Zhong
- School of Life Sciences, Zhuhai College of Science and Technology, Zhuhai, Guangdong, China
| | - Kunjian Wu
- School of Life Sciences, Zhuhai College of Science and Technology, Zhuhai, Guangdong, China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao
| | - Tao Jiang
- School of Life Sciences, Zhuhai College of Science and Technology, Zhuhai, Guangdong, China.
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao.
| |
Collapse
|
7
|
Zhuang M, Guo X, Lin D, Lin N, Wang X, Chen F. LncRNA C2orf27A Promotes Gastric Cancer by Sponging MiR-610 and Elevating NOX4 Expression. J Cancer 2025; 16:1504-1518. [PMID: 39991587 PMCID: PMC11843226 DOI: 10.7150/jca.100621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 12/20/2024] [Indexed: 02/25/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) are crucial for gastric cancer (GC) progression. In this study, we aimed to investigate the function and molecular pathways of lncRNA C2orf27A in GC development. Bioinformatics databases, tissue cDNA microarrays, and cell lines were used to assess the expression of C2orf27A in GC. Cell proliferation was assessed using Cell Counting Kit-8, colony formation, cell cycle assays, whereas cell death using the Annexin V-APC/7-AAD assay. Subcutaneous xenograft mouse models were used to assess the effects of the C2orf27A knockdown on GC growth in vivo. The subcellular localization of C2orf27A in GC cells was verified using nucleocytoplasmic separation. Bioinformatics analysis predicted the binding of C2orf27A, miR-610, and NADPH oxidase 4 (NOX4), which was validated using dual luciferase reporter gene assay. We found that C2orf27A expression increased in GC tissues and cells. Furthermore, GC patients with increased C2orf27A expression levels had worse survival rates. Silencing of C2orf27A suppressed GC cell growth and induced GC cell death in vitro and in vivo. Further investigations into underlying mechanisms showed that C2orf27A functions as a competitive endogenous RNA against miR-610, leading to increased NOX4 expression levels in GC cells. Notably, blocking miR-610 and increasing NOX4 expression levels reversed the anticancer effects of reduced C2orf27A levels in GC cells. In summary, C2orf27A promotes cell proliferation and reduces cell death through the miR-610/NOX4 pathway in GC, which may provide a new perspective for further elucidation of the molecular mechanism underlying GC progression.
Collapse
Affiliation(s)
- Mingkai Zhuang
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fujian 350001, China
- Fujian Clinical Research Center for Digestive System Tumors and Upper Gastrointestinal Diseases, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Xiaoxiong Guo
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fujian 350001, China
- Fujian Clinical Research Center for Digestive System Tumors and Upper Gastrointestinal Diseases, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Dan Lin
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Na Lin
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fujian 350001, China
- Fujian Clinical Research Center for Digestive System Tumors and Upper Gastrointestinal Diseases, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Xiaozhong Wang
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fujian 350001, China
- Fujian Clinical Research Center for Digestive System Tumors and Upper Gastrointestinal Diseases, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Fenglin Chen
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
- Fujian Medical University Cancer Center, Fujian Medical University, Fujian 350001, China
- Fujian Clinical Research Center for Digestive System Tumors and Upper Gastrointestinal Diseases, Fujian Medical University, Fuzhou, Fujian 350001, China
| |
Collapse
|
8
|
Lai Y, Huang C, Wu J, Yang K, Yang L. Ferroptosis in Cancer: A new perspective on T cells. Int Immunopharmacol 2024; 143:113539. [PMID: 39488034 DOI: 10.1016/j.intimp.2024.113539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
T cells occupy a pivotal position in the immune response against cancer by recognizing and eliminating cancer cells. However, the tumor microenvironment often suppresses the function of T cells, leading to immune evasion and cancer progression. Recent research has unveiled novel connections among T cells, ferroptosis, and cancer. Ferroptosis is a type of regulated cell death that relies iron and reactive oxygen species and is distinguished by the proliferation of lipid peroxides. Emerging scientific findings underscore the potential of ferroptosis to modulate the function and survival of T cells in the tumor microenvironment. Moreover, T cells or immunotherapy can also affect cancer by modulating ferroptosis in cancer cells. This review delved into the intricate crosstalk between T cells and ferroptosis in the context of cancer, highlighting the molecular mechanisms involved. We also explored the therapeutic potential of targeting ferroptosis to enhance the anticancer immune response mediated by T cells. Understanding the interplay among T cells, ferroptosis, and cancer may provide new insights into developing innovative cancer immunotherapies.
Collapse
Affiliation(s)
- Yuping Lai
- Department of Gastroenterological Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China; The Huankui academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Chunxia Huang
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jiaqiang Wu
- Department of Gastroenterological Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Kangping Yang
- Department of Gastroenterological Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Liang Yang
- Department of Gastroenterological Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
9
|
Fan Y, Ma K, Lin Y, Ren J, Peng H, Yuan L, Nasser MI, Jiang X, Wang K. Immune imbalance in Lupus Nephritis: The intersection of T-Cell and ferroptosis. Front Immunol 2024; 15:1520570. [PMID: 39726588 PMCID: PMC11669548 DOI: 10.3389/fimmu.2024.1520570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Ferroptosis is a novel form of cell death characterized by unlimited accumulation of iron-dependent lipid peroxides. It is often accompanied by disease, and the relationship between ferroptosis of immune cells and immune regulation has been attracting increasing attention. Initially, it was found in cancer research that the inhibition of regulatory T cell (Treg) ferroptosis and the promotion of CD8+ T cell ferroptosis jointly promoted the formation of an immune-tolerant environment in tumors. T-cell ferroptosis has subsequently been found to have immunoregulatory effects in other diseases. As an autoimmune disease characterized by immune imbalance, T-cell ferroptosis has attracted attention for its potential in regulating immune balance in lupus nephritis. This article reviews the metabolic processes within different T-cell subsets in lupus nephritis (LN), including T follicular helper (TFH) cells, T helper (Th)17 cells, Th1 cells, Th2 cells, and Treg cells, and reveals that these cellular metabolisms not only facilitate the formation of a T-cell immune imbalance but are also closely associated with the occurrence of ferroptosis. Consequently, we hypothesize that targeting the metabolic pathways of ferroptosis could become a novel research direction for effectively treating the immune imbalance in lupus nephritis by altering T-cell differentiation and the incidence of ferroptosis.
Collapse
Affiliation(s)
- Yunhe Fan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Junyi Ren
- University of Electronic Science and Technology of China, School of Medicine, Chengdu, China
| | - Haoyu Peng
- University of Electronic Science and Technology of China, School of Medicine, Chengdu, China
| | - Lan Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Moussa Ide Nasser
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Xuan Jiang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Ke Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| |
Collapse
|
10
|
Li Y, Liu J, Wu S, Xiao J, Zhang Z. Ferroptosis: opening up potential targets for gastric cancer treatment. Mol Cell Biochem 2024; 479:2863-2874. [PMID: 38082184 DOI: 10.1007/s11010-023-04886-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/24/2023] [Indexed: 10/15/2024]
Abstract
The fifth most frequent cancer in the world is gastric cancer. It ranks as the fourth most common reason for cancer-related deaths. Even though surgery is the only curative treatment for stomach cancer, adding adjuvant radiotherapy and chemotherapy is preferable than only surgery. The majority of patients, however, are discovered to be extremely tardy the first time and have a terrible prognosis. Therefore, it is necessary to create more viable therapy modalities. A growing number of studies in recent years have shown that ferroptosis and many cancer types are related. This gives our treatment a fresh viewpoint. We investigated the relationship between different signal pathways and non-coding RNA on ferroptosis in gastric cancer cells. Also discussed the targets cause ferroptosis resistance increased or reduced to the influence of the chemoresistance,proliferation and metastasis.
Collapse
Affiliation(s)
- Yuwei Li
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Hengyang Medical College, University of South China, 28 Changsheng Road, Hengyang, 421001, Hunan, China
| | - Jiangrong Liu
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Hengyang Medical College, University of South China, 28 Changsheng Road, Hengyang, 421001, Hunan, China
| | - Shihua Wu
- Department of Pathology, The Second Affiliated Hospital, Shaoyang University, Shaoyang, 422000, Hunan, China
| | - Juan Xiao
- Department of Head and Neck Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Zhiwei Zhang
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Hengyang Medical College, University of South China, 28 Changsheng Road, Hengyang, 421001, Hunan, China.
| |
Collapse
|
11
|
Mohammadi S, Sadeghiyan T, Rezaei M, Azadeh M. Initial Evaluation of lncRNA A2M-AS1 Gene Expression in Multiple Sclerosis Patients. Adv Biomed Res 2024; 13:80. [PMID: 39512414 PMCID: PMC11542686 DOI: 10.4103/abr.abr_422_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 11/15/2024] Open
Abstract
Background Multiple sclerosis (MS) is one of the three leading neurodegenerative diseases worldwide. Gene expression profile studies play an important role in recognizing and preventing disease. Considering the inherent ability of biomarkers to diagnose and prognose the occurrence of a disease, with the aim of gene therapy and changing gene expression, it can be helped to treat it. In this study, by examining the gene interaction and expression of non-coding genes in patients with MS, using bioinformatics analyses, laboratory research and potential non-coding diagnostic biomarkers of MS were selected for further investigations. Materials and Methods First, by using micro-array data analysis of the GEO database, the expression status of the long non-coding ribonucleic acid (RNA) (lncRNA) A2M-AS1 gene was investigated in patients with MS. lncRNA-mRNA interaction analysis was performed in the lncRRisearch database. After sample collection, the total RNA extracted using the RNA extraction kit from 20 patient samples and 20 healthy samples was synthesized into cDNA with the synthesis kit. The quantitative reverse transcriptase polymerase chain reaction experiment was performed for the final validation of expression change. Results Based on bioinformatic and laboratory analysis, the expression of the A2M-AS1 gene in MS samples showed a significant decrease in expression compared to healthy samples. Also, based on the receiver operating characteristic analysis, lncRNA A2M-AS1 can be introduced as an acceptable diagnostic biomarker to distinguish MS samples from healthy samples. Conclusion lncRNA A2M-AS1, by reducing its expression as an acceptable diagnostic biomarker, can increase the risk of developing MS.
Collapse
Affiliation(s)
- Shaghayegh Mohammadi
- Department of Genetics, Faculty of Biology Sciences and Technology, Shahid Ashrafi Esfahani, Isfahan, Iran
| | - Tahereh Sadeghiyan
- Department of Genetics, Faculty of Biology Sciences and Technology, Shahid Ashrafi Esfahani, Isfahan, Iran
| | - Mohammad Rezaei
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | |
Collapse
|
12
|
Liu R, Wang J, Liu Y, Gao Y, Yang R. Regulation of gut microbiota on immune cell ferroptosis: A novel insight for immunotherapy against tumor. Cancer Lett 2024; 598:217115. [PMID: 39025428 DOI: 10.1016/j.canlet.2024.217115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Gut microbiota contributes to the homeostasis of immune system and is related to various diseases such as tumorigenesis. Ferroptosis, a new type of cell death, is also involved in the disease pathogenesis. Recent studies have found the correlations of gut microbiota mediated ferroptosis and immune cell death. Gut microbiota derived immunosuppressive metabolites, which can promote differentiation and function of immune cells, tend to inhibit ferroptosis through their receptors, whereas inflammatory metabolites from gut microbiota also affect the differentiation and function of immune cells and their ferroptosis. Thus, it is possible for gut microbiota to regulate immune cell ferroptosis. Indeed, gut microbiota metabolite receptor aryl hydrocarbon receptor (AhR) can affect ferroptosis of intestinal intraepithelial lymphocytes, leading to disease pathogenesis. Since immune cell ferroptosis in tumor microenvironment (TME) affects the occurrence and development of tumor, the modulation of gut microbiota in these cell ferroptosis might influence on the tumorigenesis, and also immunotherapy against tumors. Here we will summarize the recent advance of ferroptosis mediated by gut microbiota metabolites, which potentially acts as regulator(s) on immune cells in TME for therapy against tumor.
Collapse
Affiliation(s)
- Ruobing Liu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Juanjuan Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuqing Liu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yunhuan Gao
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China.
| |
Collapse
|
13
|
Gromadzka G, Czerwińska J, Krzemińska E, Przybyłkowski A, Litwin T. Wilson's Disease-Crossroads of Genetics, Inflammation and Immunity/Autoimmunity: Clinical and Molecular Issues. Int J Mol Sci 2024; 25:9034. [PMID: 39201720 PMCID: PMC11354778 DOI: 10.3390/ijms25169034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Wilson's disease (WD) is a rare, autosomal recessive disorder of copper metabolism caused by pathogenic mutations in the ATP7B gene. Cellular copper overload is associated with impaired iron metabolism. Oxidative stress, cuproptosis, and ferroptosis are involved in cell death in WD. The clinical picture of WD is variable. Hepatic/neuropsychiatric/other symptoms may manifest in childhood/adulthood and even old age. It has been shown that phenotypic variability may be determined by the type of ATP7B genetic variants as well as the influence of various genetic/epigenetic, environmental, and lifestyle modifiers. In 1976, immunological abnormalities were first described in patients with WD. These included an increase in IgG and IgM levels and a decrease in the percentage of T lymphocytes, as well as a weakening of their bactericidal effect. Over the following years, it was shown that there is a bidirectional relationship between copper and inflammation. Changes in serum cytokine concentrations and the relationship between cytokine gene variants and the clinical course of the disease have been described in WD patients, as well as in animal models of this disease. Data have also been published on the occurrence of antinuclear antibodies (ANAs), antineutrophil cytoplasmic antibodies (ANCAs), anti-muscle-specific tyrosine kinase antibodies, and anti-acetylcholine receptor antibodies, as well as various autoimmune diseases, including systemic lupus erythematosus (SLE), myasthenic syndrome, ulcerative colitis, multiple sclerosis (MS), polyarthritis, and psoriasis after treatment with d-penicillamine (DPA). The occurrence of autoantibodies was also described, the presence of which was not related to the type of treatment or the form of the disease (hepatic vs. neuropsychiatric). The mechanisms responsible for the occurrence of autoantibodies in patients with WD are not known. It has also not been clarified whether they have clinical significance. In some patients, WD was differentiated or coexisted with an autoimmune disease, including autoimmune hepatitis or multiple sclerosis. Various molecular mechanisms may be responsible for immunological abnormalities and/or the inflammatory processes in WD. Their better understanding may be important for explaining the reasons for the diversity of symptoms and the varied course and response to therapy, as well as for the development of new treatment regimens for WD.
Collapse
Affiliation(s)
- Grażyna Gromadzka
- Department of Biomedical Sciences, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University, Wóycickiego Street 1/3, 01-938 Warsaw, Poland
| | - Julia Czerwińska
- Students Scientific Association “Immunis”, Cardinal Stefan Wyszynski University, Dewajtis Street 5, 01-815 Warsaw, Poland
| | - Elżbieta Krzemińska
- Students Scientific Association “Immunis”, Cardinal Stefan Wyszynski University, Dewajtis Street 5, 01-815 Warsaw, Poland
| | - Adam Przybyłkowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland;
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland;
| |
Collapse
|
14
|
Chen A, Zhang W, Jiang C, Jiang Z, Tang D. The engineered exosomes targeting ferroptosis: A novel approach to reverse immune checkpoint inhibitors resistance. Int J Cancer 2024; 155:7-18. [PMID: 38533694 DOI: 10.1002/ijc.34934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have been extensively used in immunological therapy primarily due to their ability to prolong patient survival. Although ICIs have achieved success in cancer treatment, the resistance of ICIs should not be overlooked. Ferroptosis is a newly found cell death mode characterized by the accumulation of reactive oxygen species (ROS), glutathione (GSH) depletion, and glutathione peroxidase 4 (GPX4) inactivation, which has been demonstrated to be beneficial to immunotherapy and combining ferroptosis and ICIs to exploit new immunotherapies may reverse ICIs resistance. Exosomes act as mediators in cell-to-cell communication that may regulate ferroptosis to influence immunotherapy through the secretion of biological molecules. Thus, utilizing exosomes to target ferroptosis has opened up exciting possibilities for reversing ICIs resistance. In this review, we summarize the mechanisms of ferroptosis improving ICIs therapy and how exosomes regulate ferroptosis through adjusting iron metabolism, blocking the ROS accumulation, controlling ferroptosis defense systems, and influencing classic signaling pathways and how engineered exosomes target ferroptosis and improve ICIs efficiency.
Collapse
Affiliation(s)
- Anqi Chen
- Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Wenjie Zhang
- School of Medicine, Chongqing University, Chongqing, China
| | - Chuwen Jiang
- Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Zhengting Jiang
- Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, China
| |
Collapse
|
15
|
Din MAU, Lin Y, Wang N, Wang B, Mao F. Ferroptosis and the ubiquitin-proteasome system: exploring treatment targets in cancer. Front Pharmacol 2024; 15:1383203. [PMID: 38666028 PMCID: PMC11043542 DOI: 10.3389/fphar.2024.1383203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Ferroptosis is an emerging mode of programmed cell death fueled by iron buildup and lipid peroxidation. Recent evidence points to the function of ferroptosis in the aetiology and development of cancer and other disorders. Consequently, harnessing iron death for disease treatment has diverted the interest of the researchers in the field of basic and clinical research. The ubiquitin-proteasome system (UPS) represents a primary protein degradation pathway in eukaryotes. It involves labelling proteins to be degraded by ubiquitin (Ub), followed by recognition and degradation by the proteasome. Dysfunction of the UPS can contribute to diverse pathological processes, emphasizing the importance of maintaining organismal homeostasis. The regulation of protein stability is a critical component of the intricate molecular mechanism underlying iron death. Moreover, the intricate involvement of the UPS in regulating iron death-related molecules and signaling pathways, providing valuable insights for targeted treatment strategies. Besides, it highlights the potential of ferroptosis as a promising target for cancer therapy, emphasizing the combination between ferroptosis and the UPS. The molecular mechanisms underlying ferroptosis, including key regulators such as glutathione peroxidase 4 (GPX4), cysteine/glutamate transporter (system XC-), and iron metabolism, are thoroughly examined, alongside the role of the UPS in modulating the abundance and activity of crucial proteins for ferroptotic cell death, such as GPX4, and nuclear factor erythroid 2-related factor 2 (NRF2). As a pivotal regulatory system for macromolecular homeostasis, the UPS substantially impacts ferroptosis by directly or indirectly modulating iron death-related molecules or associated signaling pathways. This review explores the involvement of the UPS in regulating iron death-related molecules and signaling pathways, providing valuable insights for the targeted treatment of diseases associated with ferroptosis.
Collapse
Affiliation(s)
- Muhammad Azhar Ud Din
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu, China
| | - Yan Lin
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, Jiangsu, China
| | - Naijian Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bo Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu, China
| |
Collapse
|
16
|
Xiao P, Li C, Liu Y, Gao Y, Liang X, Liu C, Yang W. The role of metal ions in the occurrence, progression, drug resistance, and biological characteristics of gastric cancer. Front Pharmacol 2024; 15:1333543. [PMID: 38370477 PMCID: PMC10869614 DOI: 10.3389/fphar.2024.1333543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Metal ions exert pivotal functions within the human body, encompassing essential roles in upholding cell structure, gene expression regulation, and catalytic enzyme activity. Additionally, they significantly influence various pathways implicated in divergent mechanisms of cell death. Among the prevailing malignant tumors of the digestive tract worldwide, gastric cancer stands prominent, exhibiting persistent high mortality rates. A compelling body of evidence reveals conspicuous ion irregularities in tumor tissues, encompassing gastric cancer. Notably, metal ions have been observed to elicit distinct contributions to the progression, drug resistance, and biological attributes of gastric cancer. This review consolidates pertinent literature on the involvement of metal ions in the etiology and advancement of gastric cancer. Particular attention is directed towards metal ions, namely, Na, K, Mg, Ca, Fe, Cu, Zn, and Mn, elucidating their roles in the initiation and progression of gastric cancer, cellular demise processes, drug resistance phenomena, and therapeutic approaches.
Collapse
Affiliation(s)
- Pengtuo Xiao
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuanda Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yan Gao
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaojing Liang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chang Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
17
|
Liu N, Chen M. Crosstalk between ferroptosis and cuproptosis: From mechanism to potential clinical application. Biomed Pharmacother 2024; 171:116115. [PMID: 38181713 DOI: 10.1016/j.biopha.2023.116115] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
Ferroptosis and cuproptosis, regulated forms of cell death resulting from metal ion accumulation, are closely related in terms of occurrence, cell metabolism, signaling pathways, and drug resistance. Notably, it is now understood that these processes play crucial roles in regulating physiological and pathological processes, especially in tumor development. Consequently, ferroptosis and cuproptosis have gained increasing significance as potential targets for anti-cancer drug development. This article systematically outlines the molecular mechanisms and cross-talk components of both ferroptosis and cuproptosis, elucidating their impacts on cancer. Furthermore, it investigates the clinical perspective of targeted ferroptosis and cuproptosis in cancer chemotherapy, immunotherapy, and radiotherapy. Our discussion extends to a comparative analysis of nanoparticles developed based on the mechanisms of ferroptosis and cuproptosis in cancer, contrasting them with current conventional therapies. Opportunities and challenges in cancer treatment are explored, emphasizing the potential therapeutic direction of co-targeting ferroptosis and cuproptosis. The article also attempts to analyze the clinical applications of this co-targeting approach for cancer treatment while summarizing the existing barriers that require overcoming.
Collapse
Affiliation(s)
- Na Liu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Minbin Chen
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| |
Collapse
|
18
|
Han H, Ding G, Wang S, Meng J, Lv Y, Yang W, Zhang H, Wen X, Zhao W. Long Non-Coding RNA LOC339059 Attenuates IL-6/STAT3-Signaling-Mediated PDL1 Expression and Macrophage M2 Polarization by Interacting with c-Myc in Gastric Cancer. Cancers (Basel) 2023; 15:5313. [PMID: 38001573 PMCID: PMC10670112 DOI: 10.3390/cancers15225313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Background: Long non-coding RNA (lncRNA) was identified as a novel diagnostic biomarker in gastric cancer (GC). However, the functions of lncRNAs in immuno-microenvironments have not been comprehensively explored. In this study, we explored a critical lncRNA, LOC339059, that can predict the clinical prognosis in GC related to the modulation of PD-L1 and determined its influence upon macrophage polarization via the IL-6/STAT3 pathway. Methods: To date, accumulating evidence has demonstrated that the dysregulation of LOC339059 plays an important role in the pathological processes of GC. It acts as a tumor suppressor, regulating GC cell proliferation, migration, invasion, tumorigenesis, and metastasis. A flow cytometry assay showed that the loss of LOC339059 enhanced PDL1 expression and M2 macrophage polarization. RNA sequencing, RNA pull-down, RNA immunoprecipitation, Chip-PCR, and a luciferase reporter assay revealed the pivotal role of signaling alternation between LOC339059 and c-Myc. Results: A lower level of LOC339059 RNA was found in primary GC tissues compared to adjacent tissues, and such a lower level is associated with a poorer survival period (2.5 years) after surgery in patient cohorts. Moreover, we determined important immunological molecular biomarkers. We found that LOC339059 expression was correlated with PD-L1, CTLA4, CD206, and CD204, but not with TIM3, FOXP3, CD3, C33, CD64, or CD80, in a total of 146 GC RNA samples. The gain of LOC339059 in SGC7901 and AGS inhibited biological characteristics of malignancy, such as proliferation, migration, invasion, tumorigenesis, and metastasis. Furthermore, our data gathered following the co-culture of THP-1 and U937 with genomic GC cells indicate that LOC339059 led to a reduction in the macrophage cell ratio, in terms of CD68+/CD206+, to 1/6, whereas the selective knockdown of LOC339059 promoted the abovementioned malignant cell phenotypes, suggesting that it has a tumor-suppressing role in GC. RNA-Seq analyses showed that the gain of LOC339059 repressed the expression of the interleukin family, especially IL-6/STAT3 signaling. The rescue of IL-6 in LOC339059-overexpressing cells reverted the inhibitory effects of the gain of LOC339059 on malignant cell phenotypes. Our experiments verified that the interaction between LOC339059 and c-Myc resulted in less c-Myc binding to the IL-6 promoter, leading to the inactivation of IL-6 transcription. Conclusions: Our results establish that LOC339059 acts as a tumor suppressor in GC by competitively inhibiting c-Myc, resulting in diminished IL-6/STAT3-signaling-mediated PDL1 expression and macrophage M2 polarization.
Collapse
Affiliation(s)
- Haibo Han
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China; (H.H.); (S.W.)
| | - Guangyu Ding
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China;
| | - Shanshan Wang
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China; (H.H.); (S.W.)
| | - Junling Meng
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China; (H.H.); (S.W.)
| | - Yunwei Lv
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China; (H.H.); (S.W.)
| | - Wei Yang
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China; (H.H.); (S.W.)
| | - Hong Zhang
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China; (H.H.); (S.W.)
| | - Xianzi Wen
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China; (H.H.); (S.W.)
| | - Wei Zhao
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China; (H.H.); (S.W.)
| |
Collapse
|
19
|
Li Q, Yin LK. Comprehensive analysis of disulfidptosis related genes and prognosis of gastric cancer. World J Clin Oncol 2023; 14:373-399. [PMID: 37970110 PMCID: PMC10631345 DOI: 10.5306/wjco.v14.i10.373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is a common malignant tumor of the digestive system. Disulfidptosis is a new programmed cell death mechanism, although its specific mechanism in GC is incompletely understood. AIM In this study, we used bioinformatics analysis to explore a disulfidptosis-based predictive model related to GC prognosis and to identify potential therapeutic targets and sensitive drugs for GC. METHODS We extracted GC-related data from The Cancer Genome Atlas and Gene Expression Omnibus databases. R software (version 4.2.1) was used for correlation analysis. RESULTS Through the above analysis, we found that the disulfidptosis related gene may be related to the prognosis of GC. Six genes, namely, PLS3, GRP, APOD, SGCE, COL8A1, and VAMP7, were found to constitute a predictive model for GC prognosis. APOD is a potential therapeutic target for treating GC. Bosutinib and other drugs are sensitive for the treatment of GC. CONCLUSION The results of this study indicate that disulfidptosis is related to the prognosis and treatment of GC, while APOD represents a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Qian Li
- Department of Oncology, Fushun Hospital of Traditional Chinese Medicine, Zigong 643200, Sichuan Province, China
| | - Long-Kuan Yin
- Department of Gastrointestinal Surgery, Fushun People’s Hospital, Zigong 643200, Sichuan Province, China
| |
Collapse
|
20
|
Wang L, Li Z, Li Z, Ren Y, Qian L, Yu Y, Shi W, Xiong Y. Identification of A Novel Gene Signature Combining Ferroptosis- and Immunity-Related Genes for Prognostic Prediction, Immunotherapy and Potential Therapeutic Targets in Gastric Cancer. J Cancer 2023; 14:3457-3476. [PMID: 38021154 PMCID: PMC10647194 DOI: 10.7150/jca.87223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/17/2023] [Indexed: 12/01/2023] Open
Abstract
Gastric cancer (GC) is one of the most prevalent cancers worldwide. Ferroptosis and the immune status of tumor tissue play vital roles in the initiation and progression of GC. However, the role and functional mechanisms of ferroptosis- and immunity-related genes (FIRGs) in GC pathogenesis and their correlations with GC prognosis have not been elucidated. We aim to establish a prognostic prediction model based on the FIRGs signature for GC patients. Differentially expressed genes were screened from the Cancer Genome Atlas (TCGA) GC cohorts. The least absolute shrinkage and selection operator (LASSO) regression was performed to establish a FIRGs-based risk model. This gene signature with 7 FIRGs was identified as an independent prognostic factor. A nomogram incorporating clinical parameters and the FIRG signature was constructed to individualize outcome predictions. Finally, we provided in vivo and in vitro evidence to verify the reliability of FIRG signature for GC prognosis, and validate the expression and function of FIRGs contributing to the development and progression of GC. Herein, our work represents great therapeutic and prognostic potentials for GC.
Collapse
Affiliation(s)
- Liwei Wang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, P.R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, P.R. China
| | - Zhuozhuo Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, P.R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, P.R. China
| | - Zi Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, P.R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, P.R. China
| | - Yuanyuan Ren
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, P.R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, P.R. China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, P.R. China
- Department of Endocrinology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, P.R. China
| | - Yi Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, P.R. China
| | - Wenzhen Shi
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, P.R. China
- Medical Research Center, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, P.R. China
| | - Yuyan Xiong
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, P.R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
21
|
Yan J, Gong H, Han S, Liu J, Wu Z, Wang Z, Wang T. GALNT5 functions as a suppressor of ferroptosis and a predictor of poor prognosis in pancreatic adenocarcinoma. Am J Cancer Res 2023; 13:4579-4596. [PMID: 37970359 PMCID: PMC10636670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/22/2023] [Indexed: 11/17/2023] Open
Abstract
Mucin-type O-glycosylation, a posttranslational modification of membrane and secretory proteins, facilitates metastasis and immune escape in tumor cells. N-acetylgalactosaminyl-transferase 5 (GALNT5), the enzyme initiating mucin-type O-glycosylation, is known to advance the progression of various tumors. Yet, the comprehensive role of GALNT5 in pan-cancer scenarios remains to be elucidated. In this research, we conducted a database-centric pan-cancer expression analysis of GALNT5. We examined its aberrant expression, assessed its prognostic implications, and explored the correlations between GALNT5 expression and factors such as ferroptosis, immune cell infiltration levels, and immune checkpoint gene expression across multiple tumor types. To substantiate GALNT5's role, we analyzed cell proliferation, migration, invasion, and ferroptosis in PAAD cells after GALNT5 knockdown. Additionally, RNA-seq was employed to discern potential downstream pathways influenced by GALNT5. Our findings indicate that GALNT5 expression is heightened in the majority of tumors, correlating with the prognosis of multiple cancers. There's a notable association between GALNT5 levels and ferroptosis-related genes, immune cell infiltration, and immune checkpoint genes. In PAAD specifically, the role of GALNT5 was further probed. Knockdown of GALNT5 curtailed the proliferation, migration, and invasion capacities of PAAD cells, concurrently promoting ferroptosis. Moreover, in vivo studies demonstrated that GALNT5 inhibition stunted PAAD tumor growth. The RNA-seq analysis unveiled inflammation and immune-centric pathways, such as the TNF signaling pathway, as potential downstream conduits of GALNT5. In conclusion, our pan-cancer study underscores GALNT5 as a potential therapeutic target for enhancing PAAD prognosis, given its strong ties with ferroptosis and immune cell infiltration. Our experiments further define GALNT5 as a novel suppressor of ferroptosis.
Collapse
Affiliation(s)
- Jiayi Yan
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Haiyi Gong
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical UniversityShanghai, China
| | - Shuai Han
- Department of Orthopedics, Shanghai Pudong New Area People’s HospitalShanghai, China
| | - Jialiang Liu
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical UniversityShanghai, China
| | - Zhipeng Wu
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical UniversityShanghai, China
| | - Zhenhua Wang
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical UniversityShanghai, China
| | - Ting Wang
- Department of Orthopedic Oncology, Shanghai Changzheng Hospital, Naval Medical UniversityShanghai, China
| |
Collapse
|
22
|
Xu J, Hu S, Chen Q, Shu L, Wang P, Wang J. Integrated bioinformatics analysis of noncoding RNAs with tumor immune microenvironment in gastric cancer. Sci Rep 2023; 13:15006. [PMID: 37696973 PMCID: PMC10495442 DOI: 10.1038/s41598-023-41444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/26/2023] [Indexed: 09/13/2023] Open
Abstract
In recent years, molecular and genetic research hotspots of gastric cancer have been investigated, including microRNAs, long noncoding RNAs (lncRNAs) and messenger RNA (mRNAs). The study on the role of lncRNAs may help to develop personalized treatment and identify potential prognostic biomarkers in gastric cancer. The RNA-seq and miRNA-seq data of gastric cancer were downloaded from the TCGA database. Differential analysis of RNA expression between gastric cancer samples and normal samples was performed using the edgeR package. The ceRNA regulatory network was visualized using Cytoscape. KEGG pathway analysis of mRNAs in the ceRNA network was performed using the clusterProfiler package. CIBERSORT was used to distinguish 22 immune cell types and the prognosis-related genes and immune cells were determined using Kaplan-Meier and Cox proportional hazard analyses. To estimate these nomograms, we used receiver operating characteristic and calibration curve studies. The ceRNA regulation network of gastric cancer was built in this study, and the genes in the network were analyzed for prognosis. A total of 980 lncRNAs were differentially expressed, of which 774 were upregulated and 206 were downregulated. A survival study identified 15 genes associated with gastric cancer prognosis, including VCAN-AS1, SERPINE1, AL139002.1, LINC00326, AC018781.1, C15orf54, hsa-miR-145. Monocytes and Neutrophils were associated with the survival rate of gastric cancer. Our research uncovers new ceRNA network for the detection, treatment, and monitoring of gastric cancer.
Collapse
Affiliation(s)
- Jun Xu
- First People's Hospital of Hangzhou Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Shengnan Hu
- First People's Hospital of Hangzhou Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qiuli Chen
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, 310018, Zhejiang, China
| | - Lilu Shu
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, 310018, Zhejiang, China
| | - Peter Wang
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, 310018, Zhejiang, China.
| | - Jianjiang Wang
- First People's Hospital of Hangzhou Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
23
|
Jiang Q, Chen Z, Meng F, Zhang H, Chen H, Xue J, Shen X, Liu T, Dong L, Zhang S, Xue R. CD36-BATF2\MYB Axis Predicts Anti-PD-1 Immunotherapy Response in Gastric Cancer. Int J Biol Sci 2023; 19:4476-4492. [PMID: 37781029 PMCID: PMC10535701 DOI: 10.7150/ijbs.87635] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/11/2023] [Indexed: 10/03/2023] Open
Abstract
Despite the utilization of anti-PD-1 therapy in gastric cancer (GC), the absence of a reliable predictive biomarker continues to pose a challenge. In this study, we utilized bioinformatic analysis and immunohistochemistry to develop a prediction model for activated CD4+ memory T cells, considering both mRNA and protein levels. An elevation of activated CD4+ memory T cells in GC was noted, which exhibited a strong association with the patients' overall survival. By utilizing WGCNA and DEG analysis, we discovered that BATF2, MYB, and CD36 are genes that exhibit differential expression and are linked to activated CD4+ memory T cells. Afterwards, a forecast model was built utilizing Stepwise regression and immunohistochemistry relying on the three genes. The model's high-risk score showed significant associations with a suppressive immune microenvironment. Moreover, our model exhibited encouraging prognostic value and superior performance in predicting response to immune checkpoint blockade therapy compared with the conventional CD8+PD-L1 model. In terms of mechanism, CD36 could function as a receptor upstream that identifies Helicobacter pylori and fatty acids. This recognition then results in the reduction of the BATF2-MYB protein complex and subsequent alterations in the transcription of genes associated with classical T cell activation. As a result, the activation state of CD4+ memory T cells is ultimately suppressed. The CD36-BATF2/MYB signature serves as a robust predictor of anti-PD-1 immunotherapy response in GC.
Collapse
Affiliation(s)
- Qiuyu Jiang
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhixue Chen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fansheng Meng
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hao Zhang
- Department of Oncology, Minhang Hospital, Fudan University, China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, China
| | - He Chen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jindan Xue
- School of Medicine, Anhui University of Science and Technology, Anhui, 232000, China
| | - Xizhong Shen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ruyi Xue
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Baoshan District Wusong Central Hospital (Zhongshan Hospital Wusong Branch, Fudan University), Shanghai 200940, China
| |
Collapse
|
24
|
Sun W, Liu R, Gao X, Lin Z, Tang H, Cui H, Zhao E. Targeting serine-glycine-one-carbon metabolism as a vulnerability in cancers. Biomark Res 2023; 11:48. [PMID: 37147729 PMCID: PMC10161514 DOI: 10.1186/s40364-023-00487-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/15/2023] [Indexed: 05/07/2023] Open
Abstract
The serine-glycine-one-carbon (SGOC) metabolic pathway is critical for DNA methylation, histone methylation, and redox homeostasis, in addition to protein, lipid, and nucleotide biosynthesis. The SGOC pathway is a crucial metabolic network in tumorigenesis, wherein the outputs are required for cell survival and proliferation and are particularly likely to be co-opted by aggressive cancers. SGOC metabolism provides an integration point in cell metabolism and is of crucial clinical significance. The mechanism of how this network is regulated is the key to understanding tumor heterogeneity and overcoming the potential mechanism of tumor recurrence. Herein, we review the role of SGOC metabolism in cancer by focusing on key enzymes with tumor-promoting functions and important products with physiological significance in tumorigenesis. In addition, we introduce the ways in which cancer cells acquire and use one-carbon unit, and discuss the recently clarified role of SGOC metabolic enzymes in tumorigenesis and development, as well as their relationship with cancer immunotherapy and ferroptosis. The targeting of SGOC metabolism may be a potential therapeutic strategy to improve clinical outcomes in cancers.
Collapse
Affiliation(s)
- Wei Sun
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Xinyue Gao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China
| | - Zini Lin
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China
| | - Hongao Tang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| | - Erhu Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
25
|
Zheng S, Guan XY. Ferroptosis: Promising approach for cancer and cancer immunotherapy. Cancer Lett 2023; 561:216152. [PMID: 37023938 DOI: 10.1016/j.canlet.2023.216152] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023]
Abstract
Ferroptosis is the cell death induced by ferrous ions and lipid peroxidation accumulation in tumor cells. Targeting ferroptosis, which is regulated by various metabolic and immune elements, might become a novel strategy for anti-tumor therapy. In this review, we will focus on the mechanism of ferroptosis and its interaction with cancer and tumor immune microenvironment, especially for the relationship between immune cells and ferroptosis. Also, we will discuss the latest preclinical progress of the collaboration between the ferroptosis-targeted drugs and immunotherapy, and the best potential conditions for their combined use. It will present a future insight on the possible value of ferroptosis in cancer immunotherapy.
Collapse
Affiliation(s)
- Shuyue Zheng
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China; Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China; Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China; MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, Guangdong, China; Advanced Nuclear Energy and Nuclear Technology Research Center, Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, Guangdong, China.
| |
Collapse
|
26
|
Zhang R, Kang R, Tang D. Ferroptosis in gastrointestinal cancer: From mechanisms to implications. Cancer Lett 2023; 561:216147. [PMID: 36965540 DOI: 10.1016/j.canlet.2023.216147] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
Ferroptosis is a form of regulated cell death that is initiated by excessive lipid peroxidation that results in plasma membrane damage and the release of damage-associated molecular patterns. In recent years, ferroptosis has gained significant attention in cancer research due to its unique mechanism compared to other forms of regulated cell death, especially caspase-dependent apoptotic cell death. Gastrointestinal (GI) cancer encompasses malignancies that arise in the digestive tract, including the stomach, intestines, pancreas, colon, liver, rectum, anus, and biliary system. These cancers are a global health concern, with high incidence and mortality rates. Despite advances in medical treatments, drug resistance caused by defects in apoptotic pathways remains a persistent challenge in the management of GI cancer. Hence, exploring the role of ferroptosis in GI cancers may lead to more efficacious treatment strategies. In this review, we provide a comprehensive overview of the core mechanism of ferroptosis and discuss its function, regulation, and implications in the context of GI cancers.
Collapse
Affiliation(s)
- Ruoxi Zhang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
27
|
Li D, Jin S, Chen P, Zhang Y, Li Y, Zhong C, Fan X, Lin H. Comprehensive analysis of cuproptosis-related lncRNAs for prognostic significance and immune microenvironment characterization in hepatocellular carcinoma. Front Immunol 2023; 13:991604. [PMID: 36685508 PMCID: PMC9846072 DOI: 10.3389/fimmu.2022.991604] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Cuproptosis was characterized as a novel type of programmed cell death. Recently, however, the role of cuproptosis-related long noncoding RNAs (CRLs) in tumors has not yet been studied. Identifying a predictive CRL signature in hepatocellular carcinoma (HCC) and investigating its putative molecular function were the goals of this work. Initially, Pearson's test was used to assess the relationship between lncRNAs and cuproptosis-associated genes obtained from HCC data of The Cancer Genome Atlas (TCGA). By implementing differential expression and univariate Cox analysis, 61 prognostic CRLs were subsequent to the least absolute shrinkage and selection operator (LASSO) Cox regression analysis. A prognostic risk score model was then constructed to evaluate its ability to predict patients' survival when combined with clinicopathological parameters in HCC. The five-lncRNA prognostic signature categorized the HCC patients into high- and low-risk groups. The low-risk group exhibited more sensitivity to elesclomol than the high-risk one. Surprisingly, distinct mitochondrial metabolism pathways connected to cuproptosis and pivotal immune-related pathways were observed between the two groups via gene set enrichment analysis (GSEA). Meanwhile, there were substantial differences between the high-risk group and the low-risk group in terms of tumor-infiltrating immune cells (TIICs). Furthermore, a positive relationship was shown between the risk score and the expression of immune checkpoints. Additionally, differential expression of the five lncRNAs was confirmed in our own HCC samples and cell lines via RT-qPCR. Finally, in vitro assays confirmed that WARS2-AS1 and MKLN1-AS knockdown could sensitize HCC cells to elesclomol-induced cuproptosis. Overall, our predictive signature may predict the prognosis of HCC patients in an independent manner, give a better understanding of how CRLs work in HCC, and offer therapeutic reference for patients with HCC.
Collapse
Affiliation(s)
- Duguang Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shengxi Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Peng Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yiyin Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cheng Zhong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Badr EAE, El Sayed IE, Gabber MKR, Ghobashy EAE, Al-Sehemi AG, Algarni H, Elghobashy YAS. Are Antisense Long Non-Coding RNA Related to COVID-19? Biomedicines 2022; 10:2770. [PMID: 36359290 PMCID: PMC9687826 DOI: 10.3390/biomedicines10112770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/10/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Fighting external pathogens relies on the tight regulation of the gene expression of the immune system. Ferroptosis, which is a distinct form of programmed cell death driven by iron, is involved in the enhancement of follicular helper T cell function during infection. The regulation of RNA is a key step in final gene expression. The present study aimed to identify the expression level of antisense lncRNAs (A2M-AS1, DBH-AS1, FLVCR1-DT, and NCBP2AS2-1) and FLVCR1 in COVID-19 patients and its relation to the severity of the disease. COVID-19 patients as well as age and gender-matched healthy controls were enrolled in this study. The expression level of the antisense lncRNAs was measured by RT-PCR. Results revealed the decreased expression of A2M-AS1 and FLVCR1 in COVID-19 patients. Additionally, they showed the increased expression of DBH-AS1, FLVCR1-DT, and NCBP2AS2. Both FLVCR1-DT and NCBP2AS2 showed a positive correlation with interleukin-6 (IL-6). DBH-AS1 and FLVCR1-DT had a significant association with mortality, complications, and mechanical ventilation. A significant negative correlation was found between A2M-AS1 and NCBP2AS2-1 and between FLVCR1 and FLVCR1-DT. The study confirmed that the expression level of the antisense lncRNAs was deregulated in COVID-19 patients and correlated with the severity of COVID-19, and that it may have possible roles in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Eman A E Badr
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Menoufia University, Shebeen El-Kom 32511, Egypt
| | | | | | | | - Abdullah G. Al-Sehemi
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Hamed Algarni
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Yasser AS Elghobashy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Menoufia University, Shebeen El-Kom 32511, Egypt
| |
Collapse
|
29
|
Ye C, Lu Y, Yuan Z, Mi M, Qi L, Yuan Y, Weng S. Ferroptosis regulator FANCD2 is associated with immune infiltration and predicts worse prognosis in lung adenocarcinoma. Front Genet 2022; 13:922914. [PMID: 36267413 PMCID: PMC9576926 DOI: 10.3389/fgene.2022.922914] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Lung adenocarcinoma (LUAD) remains one of the leading causes of cancer-related death. Although immunotherapy has been shown to improve survival in LUAD patients, only a select group of LUAD patients could benefit from it. The correlation between ferroptosis and the tumor immune environment requires further investigation in the setting of LUAD. An analysis using The Cancer Genome Atlas (TCGA)-LUAD cohort systematically evaluated the expression levels of ferroptosis regulators between LUAD and normal tissues and demonstrated the correlation of ferroptosis regulators with the immune checkpoint B7-H3 expression. Based on consensus clustering analysis, we divided LUAD patients into two subtypes according to the expression pattern of ferroptosis regulators. Cluster 2 patients showed more favorable overall survival (OS) (p < 0.001) and disease-free survival (DFS) (p < 0.001) than Cluster 1 patients. CIBERSORT analysis indicated that Cluster 1 patients harbored higher infiltrated levels of uncharacterized cells, CD4+ T cells (nonregulatory), and myeloid dendritic cells, while Cluster 2 patients were more correlated with B cells, M1 macrophages, natural killer cells (NK cells) and regulatory T cells (Tregs). More importantly, we identified FANCD2 as a potentially unfavorable prognostic factor that was overexpressed in LUAD and positively associated with the checkpoint molecule B7-H3 expression. In addition, higher FANCD2 expression was related to a higher tumor immune dysfunction and exclusion (TIDE) score, indicating lower responder rates to cancer immunotherapeutics. In summary, our study suggested a relationship between immune infiltration and ferroptosis and that FANCD2 is a potential biomarker for clinical outcomes and a therapeutic target for LUAD therapy concerning ferroptotic regulation. Our findings may help to advance personalized treatment and improve the prognosis of LUAD.
Collapse
Affiliation(s)
- Chenyang Ye
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yier Lu
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Zhijun Yuan
- Cancer Center, Zhejiang University, Hangzhou, China
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Mi Mi
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Lina Qi
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Ying Yuan
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- *Correspondence: Ying Yuan, ; Shanshan Weng,
| | - Shanshan Weng
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- *Correspondence: Ying Yuan, ; Shanshan Weng,
| |
Collapse
|
30
|
Wang N, Huang X, Long Q. Lipid Metabolic-Related Signature CYP19A1 is a Potential Biomarker for Prognosis and Immune Cell Infiltration in Gastric Cancer. J Inflamm Res 2022; 15:5075-5088. [PMID: 36091333 PMCID: PMC9462950 DOI: 10.2147/jir.s378212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/26/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Altered lipid metabolism is associated with gastric cancer (GC) progression. Comprehensive analysis to identify critical lipid metabolic drivers for predicting overall survival (OS) is not fully elucidated in GC. Our study aim to explore a novel lipid metabolism-related prognostic marker for GC. METHODS Transcriptional status and clinical features were obtained from the TCGA-STAD database. The differentially expressed lipid metabolic genes and the risk prognostic model were developed by using bioinformatics and Cox regression analyses. ROC and Kaplan-Meier analysis were established to assess the performance of the risk predictive score model. GSE84437 dataset was used for external validation. Immunochemistry (IHC) was used to examine the expression of CYP19A1 in GC patients. Gene Set Enrichment Analysis (GSEA) was conducted to elucidate the underlying enriched mechanisms. TIMER and CIBERSORT analysis were performed to explore the relationship between CYP19A1 and immune microenvironment. RESULTS A novel lipid metabolic gene signature (including MTTP, CYP19A1, MYB, SERPINE1), and specifically CYP19A1, might be a promising prognostic factor for GC. Using the validation cohort, ROC curves indicate a good showing of our risk model. Based on the signature yielded a significant difference OS time between the low- and high-risk groups. Cox regression indicates that the signature is an independent prognostic variable. ROC curves present better and reliability predictive accuracy. The IHC data validate that high expression of CYP19A1 was found in GC tissues. GSEA analysis reveals that higher expression of CYP19A1 may significantly up-regulate genes involved in fatty acid metabolism and glycerolipid metabolism. CIBERSORT analysis suggests that CYP19A1 is related to the infiltration of multiple immune cells. CONCLUSION CYP19A1 could be an independent prognostic factor and a novel metabolic-targeted treatment strategy for gastric cancer.
Collapse
Affiliation(s)
- Nan Wang
- School of Life Science, Jiaying University, Meizhou, People’s Republic of China
| | - Xuanyu Huang
- School of Life Science, Jiaying University, Meizhou, People’s Republic of China
| | - Qian Long
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| |
Collapse
|
31
|
Zeng D, Wang X, Zhang S, Zheng A, Huang Q, Cao L. Pyroptosis-related gene-based prognostic signature for predicting the overall survival of oral squamous cell carcinoma patients. Front Surg 2022; 9:903271. [PMID: 36061051 PMCID: PMC9437919 DOI: 10.3389/fsurg.2022.903271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose Oral squamous cell carcinoma (OSCC) is the most common oral cancer worldwide. Pyroptosis is a type of programmed cell death mediated by caspase, accompanied by an inflammatory response, and plays an important role in cancer progression. The purpose of this study was to explore and identify potential biomarkers and further elucidate the potential role of cell pyroptosis in OSCC. Methods We regarded the samples from The Cancer Genome Atlas database as a training dataset, screened differentially expressed genes (DEGs), and further screened out OSCC phenotypic characteristic genes by using weighted gene co-expression network analysis. The analysis of 42 known pyroptosis-related genes showed that Psuch genes were widely expressed, mutated, and methylated in OSCC samples. Results Through correlation analysis, we identified our OSCC pyroptosis-related DEGs. To further evaluate the prognostic value of pyroptosis-related regulators, we constructed a seven gene-based prognostic signature using Cox univariate analysis and least absolute shrinkage and selection operator Cox regression analysis. Meanwhile, we found that patients in the low-risk group had higher immune infiltration. Moreover, our results also indicated significant differences in sensitivity to cisplatin and gefitinib between the high-risk and low-risk groups. Conclusion Our study successfully constructed the pyroptosis-related prognostic signature, which might play a potential prediction role in OSCC prognosis. Our findings also suggested that pyroptosis-related regulators might be novel biomarkers for tumor diagnosis and treatment in OSCC.
Collapse
|
32
|
Lu L, Chen B, Xu Y, Zhang X, Jin L, Qian H, Wang Y, Liang ZF. Role of ferroptosis and ferroptosis-related non-coding RNAs in the occurrence and development of gastric cancer. Front Pharmacol 2022; 13:902302. [PMID: 36046827 PMCID: PMC9421149 DOI: 10.3389/fphar.2022.902302] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/28/2022] [Indexed: 01/17/2023] Open
Abstract
Gastric cancer (GC) is a malignant cancer of the digestive tract and is a life-threatening disease worldwide. Ferroptosis is a newly discovered form of regulated cell death, which involves the accumulation of iron-dependent lipid peroxides. It has been found that ferroptosis plays an important regulatory role in the occurrence, development, drug resistance, and prognosis of GC. Non-coding RNAs (ncRNAs) play a critical role in the occurrence and progression of a variety of diseases including GC. In recent years, the role of ferroptosis and ferroptosis-related ncRNAs (miRNA, lncRNA, and circRNA) in the occurrence, development, drug resistance, and prognosis of GC has attracted more and more attention. Herein, we briefly summarize the roles and functions of ferroptosis and ferroptosis-related ncRNAs in GC tumorigenesis, development, and prognosis. We also prospected the future research direction and challenges of ferroptosis and ferroptosis-related ncRNAs in GC.
Collapse
Affiliation(s)
- Ling Lu
- Child Healthcare Department, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, JS, China
| | - Bei Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, JS, China
- Suzhou Science and Technology Town Hospital, Suzhou, JS, China
| | - Yumeng Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, JS, China
| | - Xinyi Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, JS, China
| | - Longtao Jin
- Child Healthcare Department, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, JS, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, JS, China
| | - Yi Wang
- Department of Urology, the Second Hospital of Anhui Medical University, Hefei, China
| | - Zhao Feng Liang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, JS, China
| |
Collapse
|
33
|
Xiao X, Cheng W, Zhang G, Wang C, Sun B, Zha C, Kong F, Jia Y. Long Noncoding RNA: Shining Stars in the Immune Microenvironment of Gastric Cancer. Front Oncol 2022; 12:862337. [PMID: 35402261 PMCID: PMC8989925 DOI: 10.3389/fonc.2022.862337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/03/2022] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is a kind of malignant tumor disease that poses a serious threat to human health. The GC immune microenvironment (TIME) is a very complex tumor microenvironment, mainly composed of infiltrating immune cells, extracellular matrix, tumor-associated fibroblasts, cytokines and chemokines, all of which play a key role in inhibiting or promoting tumor development and affecting tumor prognosis. Long non-coding RNA (lncRNA) is a non-coding RNA with a transcript length is more than 200 nucleotides. LncRNAs are expressed in various infiltrating immune cells in TIME and are involved in innate and adaptive immune regulation, which is closely related to immune escape, migration and invasion of tumor cells. LncRNA-targeted therapeutic effect prediction for GC immunotherapy provides a new approach for clinical research on the disease.
Collapse
Affiliation(s)
- Xian Xiao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wen Cheng
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guixing Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chaoran Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Binxu Sun
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chunyuan Zha
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|