1
|
Ramesh V, Tsoukala E, Kougianou I, Kozic Z, Burr K, Viswanath B, Hampton D, Story D, Reddy BK, Pal R, Dando O, Kind PC, Chattarji S, Selvaraj BT, Chandran S, Zoupi L. The Fragile X Messenger Ribonucleoprotein 1 Regulates the Morphology and Maturation of Human and Rat Oligodendrocytes. Glia 2025; 73:1203-1220. [PMID: 39928301 PMCID: PMC12012330 DOI: 10.1002/glia.24680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/11/2025]
Abstract
The Fragile X Messenger Ribonucleoprotein (FMRP) is an RNA binding protein that regulates the translation of multiple mRNAs and is expressed by neurons and glia in the mammalian brain. Loss of FMRP leads to fragile X syndrome (FXS), a common inherited form of intellectual disability and autism. While most research has been focusing on the neuronal contribution to FXS pathophysiology, the role of glia, particularly oligodendrocytes, is largely unknown. FXS individuals are characterized by white matter changes, which imply impairments in oligodendrocyte differentiation and myelination. We hypothesized that FMRP regulates oligodendrocyte maturation and myelination during postnatal development. Using a combination of human pluripotent stem cell-derived oligodendrocytes and an Fmr1 knockout rat model, we studied the role of FMRP on mammalian oligodendrocyte development. We found that the loss of FMRP leads to shared defects in oligodendrocyte morphology in both rat and human systems in vitro, which persist in the presence of FMRP-expressing axons in chimeric engraftment models. Our findings point to species-conserved, cell-autonomous defects during oligodendrocyte maturation in FXS.
Collapse
|
2
|
Festa LK, Jordan-Sciutto KL, Grinspan JB. Neuroinflammation: An Oligodendrocentric View. Glia 2025; 73:1113-1129. [PMID: 40059542 PMCID: PMC12014387 DOI: 10.1002/glia.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/16/2025]
Abstract
Chronic neuroinflammation, driven by central nervous system (CNS)-resident astrocytes and microglia, as well as infiltration of the peripheral immune system, is an important pathologic mechanism across a range of neurologic diseases. For decades, research focused almost exclusively on how neuroinflammation impacted neuronal function; however, there is accumulating evidence that injury to the oligodendrocyte lineage is an important component for both pathologic and clinical outcomes. While oligodendrocytes are able to undergo an endogenous repair process known as remyelination, this process becomes inefficient and usually fails in the presence of sustained inflammation. The present review focuses on our current knowledge regarding activation of the innate and adaptive immune systems in the chronic demyelinating disease, multiple sclerosis, and provides evidence that sustained neuroinflammation in other neurologic conditions, such as perinatal white matter injury, traumatic brain injury, and viral infections, converges on oligodendrocyte injury. Lastly, the therapeutic potential of targeting the impact of inflammation on the oligodendrocyte lineage in these diseases is discussed.
Collapse
Affiliation(s)
- Lindsay K Festa
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kelly L Jordan-Sciutto
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Judith B Grinspan
- Department of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Murayama R, Cai Y, Nakamura H, Hashimoto K. Demyelination in psychiatric and neurological disorders: Mechanisms, clinical impact, and novel therapeutic strategies. Neurosci Biobehav Rev 2025; 174:106209. [PMID: 40368261 DOI: 10.1016/j.neubiorev.2025.106209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/14/2025] [Accepted: 05/10/2025] [Indexed: 05/16/2025]
Abstract
Demyelination, defined as the loss of myelin sheaths around neuronal axons, is increasingly recognized as a key factor in a broad range of psychiatric and neurological disorders, including schizophrenia, major depressive disorder, bipolar disorder, post-traumatic stress disorder, autism spectrum disorder, substance use disorders, Alzheimer's disease, Parkinson's disease, and multiple sclerosis. This review investigates the core mechanisms driving demyelination, its clinical impact, and emerging therapeutic strategies aimed at maintaining or restoring myelin integrity. Disruption of myelin impairs crucial neural communication pathways, resulting in cognitive, motor, and behavioral deficits that substantially reduce quality of life and create significant economic and social challenges. Key contributors to demyelination include genetic predisposition, environmental triggers, immune dysregulation, neuroinflammation, and alterations in the gut-brain axis mediated by the vagus nerve. Promising therapies include sphingosine 1-phosphate receptor modulators and muscarinic acetylcholine receptor antagonists, both of which diminish immune-related myelin damage and may enhance neuroprotection. In addition, the novel antidepressant arketamine appears to boost myelination through transforming growth factor-β1 signaling pathways. Approaches targeting the gut-brain axis, such as noninvasive transcutaneous auricular vagus nerve stimulation and fecal microbiota transplantation, may also help reduce inflammation and support myelin repair. Future research should center on clarifying the precise molecular mechanisms of demyelination, developing targeted therapies, and leveraging advanced neuroimaging for earlier detection and personalized treatment. By combining immunomodulatory and neuroprotective strategies, there is potential to significantly improve outcomes for individuals affected by demyelinating psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Rumi Murayama
- Laboratory of Chemical Pharmacology, Chiba University Graduate School of Pharmaceutical Sciences, Chiba 260-8675, Japan; Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Yi Cai
- Laboratory of Chemical Pharmacology, Chiba University Graduate School of Pharmaceutical Sciences, Chiba 260-8675, Japan; Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Chiba University Graduate School of Pharmaceutical Sciences, Chiba 260-8675, Japan
| | - Kenji Hashimoto
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
4
|
Weng C, Groh AM, Yaqubi M, Cui QL, Stratton JA, Moore GRW, Antel JP. Heterogeneity of mature oligodendrocytes in the central nervous system. Neural Regen Res 2025; 20:1336-1349. [PMID: 38934385 PMCID: PMC11624867 DOI: 10.4103/nrr.nrr-d-24-00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/26/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system. Recent evidence has challenged the classical view of the functionally static mature oligodendrocyte and revealed a gamut of dynamic functions such as the ability to modulate neuronal circuitry and provide metabolic support to axons. Despite the recognition of potential heterogeneity in mature oligodendrocyte function, a comprehensive summary of mature oligodendrocyte diversity is lacking. We delve into early 20 th -century studies by Robertson and Río-Hortega that laid the foundation for the modern identification of regional and morphological heterogeneity in mature oligodendrocytes. Indeed, recent morphologic and functional studies call into question the long-assumed homogeneity of mature oligodendrocyte function through the identification of distinct subtypes with varying myelination preferences. Furthermore, modern molecular investigations, employing techniques such as single cell/nucleus RNA sequencing, consistently unveil at least six mature oligodendrocyte subpopulations in the human central nervous system that are highly transcriptomically diverse and vary with central nervous system region. Age and disease related mature oligodendrocyte variation denotes the impact of pathological conditions such as multiple sclerosis, Alzheimer's disease, and psychiatric disorders. Nevertheless, caution is warranted when subclassifying mature oligodendrocytes because of the simplification needed to make conclusions about cell identity from temporally confined investigations. Future studies leveraging advanced techniques like spatial transcriptomics and single-cell proteomics promise a more nuanced understanding of mature oligodendrocyte heterogeneity. Such research avenues that precisely evaluate mature oligodendrocyte heterogeneity with care to understand the mitigating influence of species, sex, central nervous system region, age, and disease, hold promise for the development of therapeutic interventions targeting varied central nervous system pathology.
Collapse
Affiliation(s)
- Chao Weng
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Adam M.R. Groh
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Moein Yaqubi
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Qiao-Ling Cui
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jo Anne Stratton
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - G. R. Wayne Moore
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jack P. Antel
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
5
|
Zacher AC, Grabinski M, Console-Meyer L, Felmy F, Pätz-Warncke C. Oligodendrocyte arrangement, identification and morphology in the developing superior olivary complex. Front Cell Neurosci 2025; 19:1561312. [PMID: 40226299 PMCID: PMC11985757 DOI: 10.3389/fncel.2025.1561312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/17/2025] [Indexed: 04/15/2025] Open
Abstract
Oligodendrocytes provide myelination, metabolic and developmental support for neurons and circuits. Within the auditory superior olivary complex (SOC), relevant for sound localization and spectro-temporal integration, oligodendrocytes are fundamental for fast neuronal communication and accurate timing of sound signals. Despite their important role in function and development, an assessment of their developmental arrangement and morphology is missing for the SOC. Here, immunofluorescence labeling and single cell electroporation was used to quantify their distribution, identification and morphology between postnatal day (P) 5 and ~ P54 in the SOC of Mongolian gerbils (Meriones unguiculatus). Oligodendrocytes show developmental, region-specific accumulations, redistributions and density profiles. Their identification by Olig2 and SOX10 appears age specific, while myelinating oligodendrocytes are detected by co-labeling with S100 irrespective of age. Comparison of oligodendrocyte density and identification between mature gerbil and Etruscan shrew (Suncus etruscus), revealed species-specific differences. Morphologically, the number of myelinating processes decreased, while process length, diameter and coverage area of oligodendrocytes increased during development. Together, oligodendrocyte developmental alterations occur at moments of SOC circuit refinement supporting functions beyond myelination.
Collapse
Affiliation(s)
- Alina Carola Zacher
- Institute for Zoology, University of Veterinary Medicine Foundation, Hannover, Germany
- Hannover Graduate School for Neurosciences, Infection Medicine and Veterinary Sciences (HGNI), Hannover, Germany
| | - Melissa Grabinski
- Institute for Zoology, University of Veterinary Medicine Foundation, Hannover, Germany
| | - Laura Console-Meyer
- Institute for Zoology, University of Veterinary Medicine Foundation, Hannover, Germany
- Hannover Graduate School for Neurosciences, Infection Medicine and Veterinary Sciences (HGNI), Hannover, Germany
| | - Felix Felmy
- Institute for Zoology, University of Veterinary Medicine Foundation, Hannover, Germany
| | | |
Collapse
|
6
|
Bernstein HG, Nussbaumer M, Vasilevska V, Dobrowolny H, Nickl-Jockschat T, Guest PC, Steiner J. Glial cell deficits are a key feature of schizophrenia: implications for neuronal circuit maintenance and histological differentiation from classical neurodegeneration. Mol Psychiatry 2025; 30:1102-1116. [PMID: 39639174 PMCID: PMC11835740 DOI: 10.1038/s41380-024-02861-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Dysfunctional glial cells play a pre-eminent role in schizophrenia pathophysiology. Post-mortem studies have provided evidence for significantly decreased glial cell numbers in different brain regions of individuals with schizophrenia. Reduced glial cell numbers are most pronounced in oligodendroglia, but reduced astrocyte cell densities have also been reported. This review highlights that oligo- and astroglial deficits are a key histopathological feature in schizophrenia, distinct from typical changes seen in neurodegenerative disorders. Significant deficits of oligodendrocytes in schizophrenia may arise in two ways: (i) demise of mature functionally compromised oligodendrocytes; and (ii) lack of mature oligodendrocytes due to failed maturation of progenitor cells. We also analyse in detail the controversy regarding deficits of astrocytes. Regardless of their origin, glial cell deficits have several pathophysiological consequences. Among these, myelination deficits due to a reduced number of oligodendrocytes may be the most important factor, resulting in the disconnectivity between neurons and different brain regions observed in schizophrenia. When glial cells die, it appears to be through degeneration, a process which is basically reversible. Thus, therapeutic interventions that (i) help rescue glial cells (ii) or improve their maturation might be a viable option. Since antipsychotic treatment alone does not seem to prevent glial cell loss or maturation deficits, there is intense search for new therapeutic options. Current proposals range from the application of antidepressants and other chemical agents as well as physical exercise to engrafting healthy glial cells into brains of schizophrenia patients.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Madeleine Nussbaumer
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Veronika Vasilevska
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Department of Radiotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa, IA, USA
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa, IA, USA
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- German Center for Mental Health (DZPG), Partner Site Halle-Jena-Magdeburg, Magdeburg, Germany
| | - Paul C Guest
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Johann Steiner
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
- German Center for Mental Health (DZPG), Partner Site Halle-Jena-Magdeburg, Magdeburg, Germany.
| |
Collapse
|
7
|
Preziosa P, Pagani E, Meani A, Margoni M, Rubin M, Esposito F, Palombo M, Filippi M, Rocca MA. Soma and neurite density abnormalities of paramagnetic rim lesions and core-sign lesions in multiple sclerosis. J Neurol 2025; 272:145. [PMID: 39812706 DOI: 10.1007/s00415-025-12887-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND In multiple sclerosis (MS), susceptibility-weighted imaging (SWI) may reveal white matter lesions (WML) with a paramagnetic rim ("paramagnetic rim lesions" [PRLs]) or diffuse hypointensity ("core-sign lesions"), reflecting different stages of WML evolution. OBJECTIVE Using the soma and neurite density imaging (SANDI) model on diffusion-weighted magnetic resonance imaging (MRI), we characterized microstructural abnormalities of MS PRLs and core-sign lesions and their clinical relevance. METHODS Forty MS patients and 20 healthy controls (HC) underwent a 3 T brain MRI. Using SANDI, the fractions of neurite (fneurite) and soma (fsoma) and size of soma (rsoma) were quantified in PRLs (including their core and rim separately), and core-sign lesions identified on SWI-phase. RESULTS Among 1811 WMLs, 122 (6.7%) core-sign lesions and 97 (5.4%) PRLs were identified. Compared to HC and MS normal-appearing white matter, all MS WML showed significantly lower fneurite and fsoma and higher rsoma (FDR-p < 0.001). Compared to SWI-isointense WML, core-sign lesions showed a significantly higher fneurite, and lower fsoma and rsoma (FDR-p ≤ 0.005). Compared to SWI-isointense WML and core-sign lesions, PRLs showed a significantly lower fneurite, higher fsoma, and higher rsoma (FDR-p ≤ 0.001). The PRL-core showed significantly lower fneurite, and higher rsoma than PRL-rim (FDR-p < 0.001). Lower PRL fneurite (β ≤ -0.006, FDR-p ≤ 0.015) and higher rsoma (β ≥ 0.032, FDR-p ≤ 0.024) were significantly associated with a longer disease duration and more severe disability. CONCLUSIONS In PRLs, the significant and clinically relevant neurite loss and increased soma fraction and size possibly reflect increased astrogliosis and activated microglia. Core-sign lesions exhibit milder axonal loss, microglia density and astrogliosis, supporting their less destructive nature.
Collapse
Affiliation(s)
- Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132, Milan, Italy.
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Meani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monica Margoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martina Rubin
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132, Milan, Italy
| | - Federica Esposito
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Laboratory of Human Genetics of Neurological Disorders, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Palombo
- School of Psychology, Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK
- School of Computer Science and Informatics, Cardiff University, Cardiff, UK
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132, Milan, Italy
| |
Collapse
|
8
|
Ismail FS, Faustmann PM, Corvace F, Faustmann TJ. Neuroglia in autoimmune encephalitis. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:147-157. [PMID: 40148042 DOI: 10.1016/b978-0-443-19102-2.00002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Neuroglial cells play a crucial role in central nervous system (CNS) health and disease. Antibody-associated autoimmune encephalitis (AE) represents a group of inflammatory brain diseases with antibodies (Abs) against neuronal cell surface (e.g., anti-N-methyl-d-aspartate receptor (NMDAR), anti-leucine-rich glioma-inactivated 1 (LGI1), γ-aminobutyric acid (GABA) type A or B receptor (GABAA/BR)) or intracellular neuronal proteins. AE with Abs against glial antigens, e.g., myelin oligodendrocyte glycoprotein (MOG), glial fibrillary acidic protein (GFAP) are also described. Besides the known pathomechanisms with direct pathogenic effects of primary neuronal Abs and activation of innate (dendritic cells) and adaptive (B and T cells) immune systems, research findings suggest the involvement of glial cells including astrocytes, microglia, oligodendrocytes in the pathogenesis of Ab-associated AE, but only a limited number of studies is available. Neuropathologic findings showed reactive astrogliosis and microgliosis with microglial activation/proliferation, e.g., in anti-NMDAR and anti-LGI1 encephalitis. Direct effects of the GABAAR and NMDAR Abs on astrocytic receptors are discussed. Because of the primary involvement of B and T cells in the pathogenesis of Ab-associated AE it can be assumed that astrocytic and microglial activation is largely a response to the primary changes, but additional direct effects of Abs on astrocytic receptors are possible. Further research in this field is required to explore the exact role of glial cells in Ab-associated AE.
Collapse
Affiliation(s)
- Fatme Seval Ismail
- Department of Neurology, Klinikum Vest, Academic Teaching Hospital of the Ruhr University Bochum, Recklinghausen, Germany
| | - Pedro M Faustmann
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany.
| | - Franco Corvace
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| | - Timo Jendrik Faustmann
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
9
|
Vander Wall R, Basavarajappa D, Palanivel V, Sharma S, Gupta V, Klistoner A, Graham S, You Y. VEP Latency Delay Reflects Demyelination Beyond the Optic Nerve in the Cuprizone Model. Invest Ophthalmol Vis Sci 2024; 65:50. [PMID: 39576623 PMCID: PMC11587907 DOI: 10.1167/iovs.65.13.50] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/24/2024] [Indexed: 11/24/2024] Open
Abstract
Purpose Remyelination therapies are advancing for multiple sclerosis, focusing on visual pathways and using visual evoked potentials (VEPs) for de/remyelination processes. While the cuprizone (CZ) model and VEPs are core tools in preclinical trials, many overlook the posterior visual pathway. This study aimed to assess functional and structural changes across the murine visual pathway during de/remyelination. Methods One group of C57BL/6 mice underwent a CZ diet for 6 weeks to simulate demyelination, with a subset returning to a regular diet to induce remyelination. An additional group was fed a protracted CZ diet for 12 weeks to maintain chronic demyelination. Visual function was evaluated using electrophysiological recordings, including scotopic threshold responses (STRs) and electroretinograms (ERGs), with VEPs serving as a key biomarker for overall pathway health. Tissues from eyes, brains, and optic nerves (ONs) were collected at different time points for structural analysis. Results Our results demonstrated significant effects on VEPs, including increased N1 latencies and reduced amplitudes in the CZ mouse model. However, retinal function remained unaffected, as evidenced by unchanged STRs, ERGs, and retinal ganglion cell counts. Analysis of ONs revealed morphological changes, characterized by a significantly decreased axon diameter in the core region compared to the subpial region. Additionally, there was a significant increase in the g-ratio of the core region at 12 weeks CZ compared to controls. Immunofluorescence further demonstrated a decrease in myelin basic protein levels at 6 and 12 weeks in CZ animals. Interestingly, the dorsal lateral geniculate nucleus and primary visual cortex (V1) exhibited similar myelin changes, correlating with VEP latency alterations. Conclusions These data reveal that interpreting VEP latency solely as a marker for ON demyelination is incomplete. Previous preclinical studies have overlooked the posterior visual pathways, necessitating a broader interpretation of VEP latency to cover the entire visual pathway.
Collapse
Affiliation(s)
- Roshana Vander Wall
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Viswanthram Palanivel
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Samridhi Sharma
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Vivek Gupta
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Alexander Klistoner
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Stuart Graham
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
- Save Sight Institute, Sydney University, Sydney, NSW, Australia
| | - Yuyi You
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
- Save Sight Institute, Sydney University, Sydney, NSW, Australia
| |
Collapse
|
10
|
Yamazaki R, Ohno N. Myosin superfamily members during myelin formation and regeneration. J Neurochem 2024; 168:2264-2274. [PMID: 39136255 DOI: 10.1111/jnc.16202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/10/2024] [Accepted: 07/31/2024] [Indexed: 10/04/2024]
Abstract
Myelin is an insulator that forms around axons that enhance the conduction velocity of nerve fibers. Oligodendrocytes dramatically change cell morphology to produce myelin throughout the central nervous system (CNS). Cytoskeletal alterations are critical for the morphogenesis of oligodendrocytes, and actin is involved in cell differentiation and myelin wrapping via polymerization and depolymerization, respectively. Various protein members of the myosin superfamily are known to be major binding partners of actin filaments and have been intensively researched because of their involvement in various cellular functions, including differentiation, cell movement, membrane trafficking, organelle transport, signal transduction, and morphogenesis. Some members of the myosin superfamily have been found to play important roles in the differentiation of oligodendrocytes and in CNS myelination. Interestingly, each member of the myosin superfamily expressed in oligodendrocyte lineage cells also shows specific spatial and temporal expression patterns and different distributions. In this review, we summarize previous findings related to the myosin superfamily and discuss how these molecules contribute to myelin formation and regeneration by oligodendrocytes.
Collapse
Affiliation(s)
- Reiji Yamazaki
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
11
|
Yamazaki R, Ohno N. Neutral Red Labeling: A Novel Vital Staining Method for Investigating Central and Peripheral Nervous System Lesions. Acta Histochem Cytochem 2024; 57:131-135. [PMID: 39228906 PMCID: PMC11367148 DOI: 10.1267/ahc.24-00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 09/05/2024] Open
Abstract
Multiple sclerosis, neuromyelitis optica, Guillain-Barré syndrome and chronic inflammatory demyelinating polyradiculoneuropathy are representative demyelinating diseases of the central and peripheral nervous system. Remyelination by myelin forming cells is important for functional recovery from the neurological deficits caused in the demyelinating diseases. Lysophosphatidylcholine-induced demyelination in mice is commonly used to identify and study the molecular pathways of demyelination and remyelination. However, detection of focally demyelinated lesions is difficult and usually requires sectioning of demyelinated lesions in tissues for microscopic analysis. In this review, we describe the development and application of a novel vital staining method for labeling demyelinated lesions using intraperitoneal injection of neutral red (NR) dye. NR labeling reduces the time and effort required to search for demyelinated lesions in tissues, and facilitates electron microscopic analysis of myelin structures. NR labeling also has the potential to contribute to the elucidation of pathologies in the central and peripheral nervous system and assist with identification of drug candidates that promote remyelination.
Collapse
Affiliation(s)
- Reiji Yamazaki
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
12
|
Yamazaki R, Ohno N. The Mouse Model of Internal Capsule Demyelination: A Novel Tool for Investigating Motor Functional Changes Caused by Demyelination and for Evaluating Drugs That Promote Remyelination. Acta Histochem Cytochem 2024; 57:1-5. [PMID: 38463203 PMCID: PMC10918433 DOI: 10.1267/ahc.24-00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 03/12/2024] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system, characterized by remyelination failure and axonal dysfunction. Remyelination by oligodendrocytes is critical for improvement of neurological deficits associated with demyelination. Rodent models of demyelination are frequently used to develop and evaluate therapies for MS. However, a suitable mouse model for assessing remyelination-associated recovery of motor functions is currently unavailable. In this review, we describe the development of the mouse model of internal capsule (IC) demyelination by focal injection of lysolecithin into brain and its application in the evaluation of drugs for demyelinating diseases. This mouse model exhibits motor deficits and subsequent functional recovery accompanying IC remyelination. Notably, this model shows enhancement of functional recovery as well as tissue regeneration when treated with clemastine, a drug that promotes remyelination. The IC demyelination mouse model should contribute to the development of novel drugs that promote remyelination and ameliorate neurological deficits in demyelinating diseases.
Collapse
Affiliation(s)
- Reiji Yamazaki
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
13
|
Chen K, Garcia Padilla C, Kiselyov K, Kozai TDY. Cell-specific alterations in autophagy-lysosomal activity near the chronically implanted microelectrodes. Biomaterials 2023; 302:122316. [PMID: 37738741 PMCID: PMC10897938 DOI: 10.1016/j.biomaterials.2023.122316] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/22/2023] [Accepted: 09/02/2023] [Indexed: 09/24/2023]
Abstract
Intracortical microelectrodes that can record and stimulate brain activity have become a valuable technique for basic science research and clinical applications. However, long-term implantation of these microelectrodes can lead to progressive neurodegeneration in the surrounding microenvironment, characterized by elevation in disease-associated markers. Dysregulation of autophagy-lysosomal degradation, a major intracellular waste removal process, is considered a key factor in the onset and progression of neurodegenerative diseases. It is plausible that similar dysfunctions in autophagy-lysosomal degradation contribute to tissue degeneration following implantation-induced focal brain injury, ultimately impacting recording performance. To understand how the focal, persistent brain injury caused by long-term microelectrode implantation impairs autophagy-lysosomal pathway, we employed two-photon microscopy and immunohistology. This investigation focused on the spatiotemporal characterization of autophagy-lysosomal activity near the chronically implanted microelectrode. We observed an aberrant accumulation of immature autophagy vesicles near the microelectrode over the chronic implantation period. Additionally, we found deficits in autophagy-lysosomal clearance proximal to the chronic implant, which was associated with an accumulation of autophagy cargo and a reduction in lysosomal protease level during the chronic period. Furthermore, our evidence demonstrates reactive astrocytes have myelin-containing lysosomes near the microelectrode, suggesting its role of myelin engulfment during acute implantation period. Together, this study sheds light on the process of brain tissue degeneration caused by long-term microelectrode implantation, with a specific focus on impaired intracellular waste degradation.
Collapse
Affiliation(s)
- Keying Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Camila Garcia Padilla
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Kirill Kiselyov
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Chen K, Cambi F, Kozai TDY. Pro-myelinating clemastine administration improves recording performance of chronically implanted microelectrodes and nearby neuronal health. Biomaterials 2023; 301:122210. [PMID: 37413842 PMCID: PMC10528716 DOI: 10.1016/j.biomaterials.2023.122210] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Intracortical microelectrodes have become a useful tool in neuroprosthetic applications in the clinic and to understand neurological disorders in basic neurosciences. Many of these brain-machine interface technology applications require successful long-term implantation with high stability and sensitivity. However, the intrinsic tissue reaction caused by implantation remains a major failure mechanism causing loss of recorded signal quality over time. Oligodendrocytes remain an underappreciated intervention target to improve chronic recording performance. These cells can accelerate action potential propagation and provides direct metabolic support for neuronal health and functionality. However, implantation injury causes oligodendrocyte degeneration and leads to progressive demyelination in surrounding brain tissue. Previous work highlighted that healthy oligodendrocytes are necessary for greater electrophysiological recording performance and the prevention of neuronal silencing around implanted microelectrodes over the chronic implantation period. Thus, we hypothesize that enhancing oligodendrocyte activity with a pharmaceutical drug, Clemastine, will prevent the chronic decline of microelectrode recording performance. Electrophysiological evaluation showed that the promyelination Clemastine treatment significantly elevated the signal detectability and quality, rescued the loss of multi-unit activity, and increased functional interlaminar connectivity over 16-weeks of implantation. Additionally, post-mortem immunohistochemistry showed that increased oligodendrocyte density and myelination coincided with increased survival of both excitatory and inhibitory neurons near the implant. Overall, we showed a positive relationship between enhanced oligodendrocyte activity and neuronal health and functionality near the chronically implanted microelectrode. This study shows that therapeutic strategy that enhance oligodendrocyte activity is effective for integrating the functional device interface with brain tissue over chronic implantation period.
Collapse
Affiliation(s)
- Keying Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Franca Cambi
- Veterans Administration Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Chen K, Cambi F, Kozai TDY. Pro-myelinating Clemastine administration improves recording performance of chronically implanted microelectrodes and nearby neuronal health. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526463. [PMID: 36778360 PMCID: PMC9915570 DOI: 10.1101/2023.01.31.526463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Intracortical microelectrodes have become a useful tool in neuroprosthetic applications in the clinic and to understand neurological disorders in basic neurosciences. Many of these brain-machine interface technology applications require successful long-term implantation with high stability and sensitivity. However, the intrinsic tissue reaction caused by implantation remains a major failure mechanism causing loss of recorded signal quality over time. Oligodendrocytes remain an underappreciated intervention target to improve chronic recording performance. These cells can accelerate action potential propagation and provides direct metabolic support for neuronal health and functionality. However, implantation injury causes oligodendrocyte degeneration and leads to progressive demyelination in surrounding brain tissue. Previous work highlighted that healthy oligodendrocytes are necessary for greater electrophysiological recording performance and the prevention of neuronal silencing around implanted microelectrodes over chronic implantation. Thus, we hypothesize that enhancing oligodendrocyte activity with a pharmaceutical drug, Clemastine, will prevent the chronic decline of microelectrode recording performance. Electrophysiological evaluation showed that the promyelination Clemastine treatment significantly elevated the signal detectability and quality, rescued the loss of multi-unit activity, and increased functional interlaminar connectivity over 16-weeks of implantation. Additionally, post-mortem immunohistochemistry showed that increased oligodendrocyte density and myelination coincided with increased survival of both excitatory and inhibitory neurons near the implant. Overall, we showed a positive relationship between enhanced oligodendrocyte activity and neuronal health and functionality near the chronically implanted microelectrode. This study shows that therapeutic strategy that enhance oligodendrocyte activity is effective for integrating the functional device interface with brain tissue over chronic implantation period. Abstract Figure
Collapse
|