1
|
Walter DM, Cho K, Sivakumar S, Lee ITH, Dohlman AB, Shurberg E, Jiang KX, Gupta AA, Frampton GM, Meyerson M. U2AF1 mutations rescue deleterious exon skipping induced by KRAS mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.21.644128. [PMID: 40196662 PMCID: PMC11974705 DOI: 10.1101/2025.03.21.644128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The mechanisms by which somatic mutations of splicing factors, such as U2AF1S34F in lung adenocarcinoma, contribute to cancer pathogenesis are not well understood. Here, we used prime editing to modify the endogenous U2AF1 gene in lung adenocarcinoma cells and assessed the resulting impact on alternative splicing. These analyses identified KRAS as a key target modulated by U2AF1S34F. One specific KRAS mutation, G12S, generates a cryptic U2AF1 binding site that leads to skipping of KRAS exon 2 and generation of a non-functional KRAS transcript. Expression of the U2AF1S34F mutant reverts this exon skipping and restores KRAS function. Analysis of cancer genomes reveals that U2AF1S34F mutations are enriched in KRASG12S-mutant lung adenocarcinomas. A comprehensive analysis of splicing factor/oncogene mutation co-occurrence in cancer genomes also revealed significant co-enrichment of KRASQ61R and U2AF1I24T mutations. Experimentally, KRASQ61R mutation leads to KRAS exon 3 skipping, which in turn can be rescued by the expression of U2AF1I24T. Analysis of genomic and clinical patient data suggests that both U2AF1 mutations occur secondary to KRAS mutation and are associated with decreased overall patient survival. Our findings provide evidence that splicing factor mutations can rescue splicing defects caused by oncogenic mutations. More broadly, they demonstrate a dynamic process of cascading selection where mutational events are positively selected in cancer genomes as a consequence of earlier mutations.
Collapse
Affiliation(s)
- David M Walter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Genetics, Harvard Medical School, Boston, MA
| | - Katherine Cho
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA
| | | | - Iris T-H Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA
| | - Anders B Dohlman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Genetics, Harvard Medical School, Boston, MA
| | - Ethan Shurberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA
| | - Kevin X Jiang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA
| | - Akansha A Gupta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA
| | | | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Genetics, Harvard Medical School, Boston, MA
| |
Collapse
|
2
|
Liu Y, Chen X, Chen J, Song C, Wei Z, Liu Z, Liu F. The Significance of MAPK Signaling Pathway in the Diagnosis and Subtype Classification of Intervertebral Disc Degeneration. JOR Spine 2025; 8:e70060. [PMID: 40134951 PMCID: PMC11932887 DOI: 10.1002/jsp2.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is a human aging disease related mainly to inflammation, cellular senescence, RNA/DNA methylation, and ECM. The mitogen-activated protein kinase (MAPK) signaling pathway is engaged in multiple biological functions by phosphorylating specific serine and threonine residues on target proteins through phosphorylation cascade effects, but the role and specific mechanisms of the MAPK signaling pathway in IDD are still unclear. METHODS We identified 20 MAPK-related differential genes by differential analysis of the GSE124272 and GSE150408 datasets from the GEO database. To explore the biological functions of these differential genes in humans, we performed GO and KEGG analyses. Additionally, we applied PPI networks, LASSO analysis, the RF algorithm, and the SVM-RFE algorithm to identify core MAPK-related genes. Finally, we conducted further validation using clinical samples. RESULTS We ultimately identified and validated four pivotal MAPK-related genes, namely, KRAS, JUN, RAP1B, and TNF, using clinical samples, and constructed the ROC curves to evaluate the predictive accuracy of the hub genes. A nomogram model was subsequently developed based on these four hub MAPK genes to predict the prevalence of IDD. Based on these four hub genes, we classified IDD patients into two MAP clusters by applying the consensus clustering method and identified 1916 DEGs by analyzing the differences between the two clusters. Further analysis using the same approach allowed us to identify two gene clusters based on these DEGs. We used a PCA algorithm to determine the MAPK score for each sample and discovered that MAPK cluster A and gene cluster A had higher scores, suggesting greater sensitivity to MAPK signaling pathway-associated agents in the subtype. We displayed the differing expression levels of four hub MAPK-related genes across the two clusters and their relationship with immune cell infiltration to highlight the distinctions between clusters A and B. CONCLUSION In summary, four hub MAPK signaling pathway-related genes, KRAS, JUN, RAP1B, and TNF, could be applied to the diagnosis and subtype classification of IDD and benefit the prevention and treatment of IDD.
Collapse
Affiliation(s)
- Yong Liu
- Department of Orthopedics, The Affiliated Hospital of Traditional Chinese MedicineSouthwest Medical UniversityLuzhouChina
| | - Xueyan Chen
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Jingwen Chen
- Department of Orthopedics, The Affiliated Hospital of Traditional Chinese MedicineSouthwest Medical UniversityLuzhouChina
| | - Chao Song
- Department of Orthopedics, The Affiliated Hospital of Traditional Chinese MedicineSouthwest Medical UniversityLuzhouChina
| | - Zhangchao Wei
- Department of Orthopedics, The Affiliated Hospital of Traditional Chinese MedicineSouthwest Medical UniversityLuzhouChina
| | - Zongchao Liu
- Department of Orthopedics, The Affiliated Hospital of Traditional Chinese MedicineSouthwest Medical UniversityLuzhouChina
- Department of OrthopedicsLuzhou Longmatan District People's HospitalLuzhouChina
| | - Fei Liu
- Department of Orthopedics, The Affiliated Hospital of Traditional Chinese MedicineSouthwest Medical UniversityLuzhouChina
- Department of OrthopedicsRuiKang Hospital Affiliated to Guangxi University of Chinese MedicineNanningChina
| |
Collapse
|
3
|
Fatima S, Kumar V, Kumar D. Molecular mechanism of genetic, epigenetic, and metabolic alteration in lung cancer. Med Oncol 2025; 42:61. [PMID: 39893601 DOI: 10.1007/s12032-025-02608-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025]
Abstract
Lung cancer, a leading cause of cancer-related deaths worldwide, is primarily linked to smoking, tobacco use, air pollution, and exposure to hazardous chemicals. Genetic alterations, particularly in oncogenes like RAS, EGFR, MYC, BRAF, HER, and P13K, can lead to metabolic changes in cancer cells. These cells often rely on glycolysis for energy production, even in the presence of oxygen, a phenomenon known as aerobic glycolysis. This metabolic shift, along with other alterations, contributes to cancer cell growth and survival. To develop effective therapies, it's crucial to understand the genetic and metabolic changes that drive lung cancer. This review aims to identify specific genes associated with these metabolic alterations and screen phytochemicals for their potential to target these genes. By targeting both genetic and metabolic pathways, we hope to develop innovative therapeutic approaches to combat lung cancer.
Collapse
Affiliation(s)
- Sheeri Fatima
- School of Health Science and Technology (SoHST), UPES, Dehradun, Uttarakhand, 248007, India
| | - Vineet Kumar
- Chemistry & Bioprospecting Division, Forest Research Institute, Dehradun, 248006, India
| | - Dhruv Kumar
- School of Health Science and Technology (SoHST), UPES, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
4
|
Rathod LS, Sakle NS, Mokale SN. KRAS inhibitors in drug resistance and potential for combination therapy. TUMORI JOURNAL 2025; 111:20-40. [PMID: 39506389 DOI: 10.1177/03008916241289206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Kirsten Rat Sarcoma (KRAS) is a potent target for cancer therapy because it acts as a signaling hub, engaging in various signaling pathways and regulating a number of cellular functions like cell differentiation, proliferation, and survival. Recently, an emergency approval from the US-FDA has been issued for KRASG12C inhibitors (sotorasib and adagrasib) for metastatic lung cancer treatment. However, clinical studies on covalent KRASG12C inhibitors have rapidly confronted resistance in patients. Many methods are being assessed to overcome this resistance, along with various combinatorial clinical studies that are in process. Moreover, because KRASG12D and KRASG12V are more common than KRASG12C, focus must be placed on the therapeutic strategies for this type of patient, along with sustained efforts in research on these targets. In the present review, we try to focus on various strategies to overcome rapid resistance through the use of combinational treatments to improve the activity of KRASG12C inhibitors.
Collapse
|
5
|
Kochen Rossi J, Nuevo-Tapioles C, O'Keefe RA, Hunkeler M, Schmoker AM, Fissore-O'Leary M, Su W, Ahearn IM, Branco C, Cheong H, Esposito D, Clotea I, Ueberheide B, Fischer ES, Philips MR. The differential interactomes of the KRAS splice variants identify BIRC6 as a ubiquitin ligase for KRAS4A. Cell Rep 2025; 44:115087. [PMID: 39705142 DOI: 10.1016/j.celrep.2024.115087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/09/2024] [Accepted: 11/27/2024] [Indexed: 12/22/2024] Open
Abstract
Transcripts of the KRAS locus are alternatively spliced to generate two proteins, KRAS4A and KRAS4B, which differ in their membrane-targeting sequences. These splice variants have been conserved for more than 450 million years, suggesting non-overlapping functions driven by differential membrane association. Here, we use proximity labeling to map the differential interactomes of the KRAS splice variants. We find 24 and 10 proteins that interact specifically with KRAS4A or KRAS4B, respectively. The KRAS interacting protein most specific to KRAS4A is BIRC6, a large member of the inhibitor of apoptosis protein family unique in possessing E2/E3 ubiquitin ligase activity. We find that this interaction takes place on the Golgi apparatus and results in the mono- and di-ubiquitination of KRAS4A at lysines 128 and 147. Silencing BIRC6 diminishes GTP loading of and growth stimulation by KRAS4A but not KRAS4B. Thus, BIRC6 is a ubiquitin ligase that inhibits apoptosis and also modifies KRAS4A.
Collapse
Affiliation(s)
- Juan Kochen Rossi
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | | | - Rachel A O'Keefe
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Moritz Hunkeler
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Anna M Schmoker
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Wenjuan Su
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ian M Ahearn
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Cristina Branco
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Hakyung Cheong
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Dominic Esposito
- Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ioana Clotea
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Beatrix Ueberheide
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Mark R Philips
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
6
|
Ma Q, Zhang W, Wu K, Shi L. The roles of KRAS in cancer metabolism, tumor microenvironment and clinical therapy. Mol Cancer 2025; 24:14. [PMID: 39806421 PMCID: PMC11727292 DOI: 10.1186/s12943-024-02218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 12/25/2024] [Indexed: 01/16/2025] Open
Abstract
KRAS is one of the most mutated genes, driving alternations in metabolic pathways that include enhanced nutrient uptaking, increased glycolysis, elevated glutaminolysis, and heightened synthesis of fatty acids and nucleotides. However, the beyond mechanisms of KRAS-modulated cancer metabolisms remain incompletely understood. In this review, we aim to summarize current knowledge on KRAS-related metabolic alterations in cancer cells and explore the prevalence and significance of KRAS mutation in shaping the tumor microenvironment and influencing epigenetic modification via various molecular activities. Given that cancer cells rely on these metabolic changes to sustain cell growth and survival, targeting these processes may represent a promising therapeutic strategy for KRAS-driven cancers.
Collapse
Affiliation(s)
- Qinglong Ma
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Wenyang Zhang
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Lei Shi
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK.
| |
Collapse
|
7
|
Hrckulak D, Onhajzer J, Krausova M, Stastna M, Kriz V, Janeckova L, Korinek V. Development of a new flippase-dependent mouse model for red fluorescence-based isolation of KRAS G12D oncogene-expressing tumor cells. Transgenic Res 2025; 34:9. [PMID: 39786607 PMCID: PMC11717838 DOI: 10.1007/s11248-024-00429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/10/2024] [Indexed: 01/12/2025]
Abstract
Proto-oncogene KRAS, GTPase (KRAS) is one of the most intensively studied oncogenes in cancer research. Although several mouse models allow for regulated expression of mutant KRAS, selective isolation and analysis of transforming or tumor cells that produce the KRAS oncogene remains a challenge. In our study, we present a knock-in model of oncogenic variant KRASG12D that enables the "activation" of KRASG12D expression together with production of red fluorescent protein tdTomato. Both proteins are expressed from the endogenous Kras locus after recombination of a transcriptional stop box in the genomic DNA by the enzyme flippase (Flp). We have demonstrated the functionality of the allele termed RedRas (abbreviated KrasRR) under in vitro conditions with mouse embryonic fibroblasts and organoids and in vivo in the lung and colon epithelium. After recombination with adenoviral vectors carrying the Flp gene, the KrasRR allele itself triggers formation of lung adenomas. In the colon epithelium, it causes the progression of adenomas that are triggered by the loss of tumor suppressor adenomatous polyposis coli (APC). Importantly, cells in which recombination has successfully occurred can be visualized and isolated using the fluorescence emitted by tdTomato. Furthermore, we show that KRASG12D production enables intestinal organoid growth independent of epidermal growth factor (EGF) signaling and that the KRASG12D function is effectively suppressed by specific inhibitor MRTX1133.
Collapse
Grants
- 20-31322S Grantová Agentura České Republiky
- 20-31322S Grantová Agentura České Republiky
- 20-31322S Grantová Agentura České Republiky
- 20-31322S Grantová Agentura České Republiky
- 20-31322S Grantová Agentura České Republiky
- 20-31322S Grantová Agentura České Republiky
- 20-31322S Grantová Agentura České Republiky
- EXCELES, LX22NPO5102 Ministerstvo Školství, Mládeže a Tělovýchovy
- EXCELES, LX22NPO5102 Ministerstvo Školství, Mládeže a Tělovýchovy
- EXCELES, LX22NPO5102 Ministerstvo Školství, Mládeže a Tělovýchovy
- EXCELES, LX22NPO5102 Ministerstvo Školství, Mládeže a Tělovýchovy
- EXCELES, LX22NPO5102 Ministerstvo Školství, Mládeže a Tělovýchovy
- EXCELES, LX22NPO5102 Ministerstvo Školství, Mládeže a Tělovýchovy
Collapse
Affiliation(s)
- Dusan Hrckulak
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Jakub Onhajzer
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Michaela Krausova
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
- Institute of Pathology 1St Faculty of Medicine Charles University and General University Hospital, Prague, Czech Republic
| | - Monika Stastna
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Vitezslav Kriz
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Lucie Janeckova
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Vladimir Korinek
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
8
|
Cresca S, Parise A, Magistrato A. Assessing the Mechanism of Rac1b: An All-Atom Simulation Study of the Alternative Spliced Variant of Rac1 Small Rho GTPase. J Chem Inf Model 2024; 64:9474-9486. [PMID: 39632743 DOI: 10.1021/acs.jcim.4c01376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The Rho GTPase family plays a key role in cell migration, cytoskeletal dynamics, and intracellular signaling. Rac1 and its splice variant Rac1b, characterized by the insertion of an Extraloop, are frequently associated with cancer. These small GTPases switch between an active GTP-bound state and an inactive GDP-bound state, a process that is regulated by specific protein modulators. Among them, the Guanine nucleotide exchange factor (GEF) protein DOCK5 specifically targets Rho GTPases, promoting their activation by facilitating the exchange of GDP for GTP. In this study, we performed cumulative 10-μs-long all-atom molecular dynamics simulations of Rac1 and Rac1b, in isolation and in complex with DOCK5 and ELMO1, to investigate the impact of the Rac1b Extraloop. Our findings reveal that this Extraloop decreases the GDP residence time as compared to Rac1, mimicking the effect of accelerated GDP/GTP exchange induced by DOCK5. Furthermore, both Rac1b Extraloop and the ELMO1 protein stabilize the GTPase/DOCK5 complex, contributing to facilitate GDP dissociation. This shifts the balance between the GPT- and GDP-bound state of Rac1b toward the active GTP-bound state, sending a prooncogenic signal. Besides broadening our understanding of the biological functions of small Rho GTPases, this study provides key information to exploit a previously unexplored therapeutic niche to counter Rac1b-associated cancer.
Collapse
Affiliation(s)
- Sofia Cresca
- Theory Department, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Consiglio Nazionale delle Ricerche (CNR)-IOM, c/o International School for Advanced Studies (SISSA/ISAS), via Bonomea 265, 34136 Trieste, Italy
| | - Angela Parise
- Consiglio Nazionale delle Ricerche (CNR)-IOM, c/o International School for Advanced Studies (SISSA/ISAS), via Bonomea 265, 34136 Trieste, Italy
| | - Alessandra Magistrato
- Consiglio Nazionale delle Ricerche (CNR)-IOM, c/o International School for Advanced Studies (SISSA/ISAS), via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
9
|
Sabt A, Tawfik HO, Khaleel EF, Badi RM, Ibrahim HAA, Elkaeed EB, Eldehna WM. An overview of recent advancements in small molecules suppression of oncogenic signaling of K-RAS: an updated review. Mol Divers 2024; 28:4581-4608. [PMID: 38289431 DOI: 10.1007/s11030-023-10777-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2024]
Abstract
RAS (rat sarcoma) oncoproteins are crucial for the growth of some human cancers, including lung, colorectal, and pancreatic adenocarcinomas. The RAS family contains three known human isoforms H(Harvey)-RAS, N(Neuroblastoma)-RAS, and K(Kirsten)-RAS. Mutations in RAS proteins cause up to ~ 30% of cancer cases. For almost 30 years, mutant proteins druggable pockets remained undiscovered, they are nearly identical to their essential, wild-type counterparts and cause cancer. Recent research has increased our knowledge of RAS's structure, processing, and signaling pathways and revealed novel insights into how it works in cancer cells. We highlight several approaches that inhibit RAS activity with small compounds in this review: substances that blocked farnesyltransferase (FTase), isoprenylcysteine carboxyl methyltransferase (Icmt), and RAS-converting enzyme 1 (Rce1) three important enzymes required for RAS localization. Inhibitors block the son of sevenless (SOS) protein's role in nucleotide exchange activity, small molecules that interfered with the phosphodiesterase (PDEδ)-mediated intracellular RAS transport processes, substances that focused on inhibiting RAS-effector interactions. Inhibitors are made to suppress the oncogenic K-RAS G12C mutant only when the nucleophilic cysteine residue at codon 12 is present and many inhibitors with various mechanisms like breaking the organization membrane of K-RAS nano-clustering. So, this is a thorough analysis of the most recent advancements in K-RAS-targeted anticancer techniques, hopefully offering insight into the field's future.
Collapse
Affiliation(s)
- Ahmed Sabt
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo, Egypt.
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Eman F Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Rehab Mustafa Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | | | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, 13713, Riyadh, Saudi Arabia
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt.
| |
Collapse
|
10
|
Aljuhani TA, Shaik NA, Alqawas RT, Bokhary RY, Al-Mutadares M, Al Mahdi HB, Al-Rayes N, El-Harouni AA, Elango R, Banaganapalli B, Awan ZA. Exploring somatic mutations in BRAF, KRAS, and NRAS as therapeutic targets in Saudi colorectal cancer patients through massive parallel sequencing and variant classification. Front Pharmacol 2024; 15:1498295. [PMID: 39635441 PMCID: PMC11614610 DOI: 10.3389/fphar.2024.1498295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Background Colorectal cancer (CRC) is the leading cancer among Saudis, and mutations in BRAF, KRAS, and NRAS genes are therapeutically significant due to their association with pathways critical for cell cycle regulation. This study evaluates the prevalence and frequency of somatic mutations in these actionable genes in Saudi CRC patients and assesses their pathogenicity with bioinformatics methods. Methodology The study employed the TruSight Tumor 15 next-generation sequencing (NGS) panel on 86 colorectal cancer (CRC) samples to detect somatic mutations in BRAF, KRAS, and NRAS genes. Bioinformatic analyses of NGS sequences included variant annotation with ANNOVAR, pathogenicity prediction, variant reclassification with CancerVar, and extensive structural analysis. Additionally, molecular docking assessed the binding of Encorafenib to wild-type and mutant BRAF proteins, providing insights into the therapeutic relevance of pathogenic variants. Results Out of 86 tumor samples, 40 (46.5%) harbored somatic mutations within actionable genes (BRAF: 2.3%, KRAS: 43%, NRAS: 2.3%). Fourteen missense variants were identified (BRAF: n = 1, KRAS: n = 11, NRAS: n = 2). Variants with strong clinical significance included BRAF V600E (2.32%) and KRAS G12D (18.60%). Variants with potential clinical significance included several KRAS and an NRAS mutation, while variants of unknown significance included KRAS E49K and NRAS R102Q. One variant was novel: NRAS R102Q, and two were rare: KRAS E49K and G138E. We further extended the CancerVar prediction capability by adding new pathogenicity prediction tools. Molecular docking demonstrated that Encorafenib inhibits the V600E variant BRAF protein less effectively compared to its wild-type counterpart. Conclusion Overall, this study highlights the importance of comprehensive molecular screening and bioinformatics in understanding the mutational landscape of CRC in the Saudi population, ultimately improving targeted drug treatments.
Collapse
Affiliation(s)
- Thamer Abdulhamid Aljuhani
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor Ahmad Shaik
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rahaf Talal Alqawas
- Molecular Diagnostic Laboratory at King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Rana Y. Bokhary
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmood Al-Mutadares
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Nuha Al-Rayes
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Ramu Elango
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Babajan Banaganapalli
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zuhier Ahmad Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Biswas J, Boussi L, Stein E, Abdel-Wahab O. Aberrant pre-mRNA processing in cancer. J Exp Med 2024; 221:e20230891. [PMID: 39316554 PMCID: PMC11448470 DOI: 10.1084/jem.20230891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/29/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Dysregulation of the flow of information from genomic DNA to RNA to protein occurs within all cancer types. In this review, we described the current state of understanding of how RNA processing is dysregulated in cancer with a focus on mutations in the RNA splicing factor machinery that are highly prevalent in hematologic malignancies. We discuss the downstream effects of these mutations highlighting both individual genes as well as common pathways that they perturb. We highlight examples of how alterations in RNA processing have been harnessed for therapeutic intent as well as to promote the selective toxicity of cancer cells.
Collapse
Affiliation(s)
- Jeetayu Biswas
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Leora Boussi
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eytan Stein
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
12
|
Jungholm O, Trkulja C, Moche M, Srinivasa SP, Christakopoulou MN, Davidson M, Reymer A, Jardemark K, Fogaça RL, Ashok A, Jeffries G, Ampah-Korsah H, Strandback E, Andréll J, Nyman T, Nouairia G, Orwar O. Novel druggable space in human KRAS G13D discovered using structural bioinformatics and a P-loop targeting monoclonal antibody. Sci Rep 2024; 14:19656. [PMID: 39179604 PMCID: PMC11344056 DOI: 10.1038/s41598-024-70217-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
KRAS belongs to a family of small GTPases that act as binary switches upstream of several signalling cascades, controlling proliferation and survival of cells. Mutations in KRAS drive oncogenesis, especially in pancreatic, lung, and colorectal cancers (CRC). Although historic attempts at targeting mutant KRAS with small molecule inhibitors have proven challenging, there are recent successes with the G12C, and G12D mutations. However, clinically important RAS mutations such as G12V, G13D, Q61L, and A146T, remain elusive drug targets, and insights to their structural landscape is of critical importance to develop novel, and effective therapeutic concepts. We present a fully open, P-loop exposing conformer of KRAS G13D by X-ray crystallography at 1.4-2.4 Å resolution in Mg2+-free phosphate and malonate buffers. The G13D conformer has the switch-I region displaced in an upright position leaving the catalytic core fully exposed. To prove that this state is druggable, we developed a P-loop-targeting monoclonal antibody (mAb). The mAb displayed high-affinity binding to G13D and was shown using high resolution fluorescence microscopy to be spontaneously taken up by G13D-mutated HCT 116 cells (human CRC derived) by macropinocytosis. The mAb inhibited KRAS signalling in phosphoproteomic and genomic studies. Taken together, the data propose novel druggable space of G13D that is reachable in the cellular context. It is our hope that these findings will stimulate attempts to drug this fully open state G13D conformer using mAbs or other modalities.
Collapse
Affiliation(s)
- Oscar Jungholm
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Carolina Trkulja
- Oblique Therapeutics AB, 41346, Gothenburg, Sweden
- Fluicell AB, Flöjelbergsgatan 8C, 431 37, Mölndal, Sweden
| | - Martin Moche
- Protein Science Facility, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Sreesha P Srinivasa
- Oblique Therapeutics AB, 41346, Gothenburg, Sweden
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, India
| | | | - Max Davidson
- Oblique Therapeutics AB, 41346, Gothenburg, Sweden
| | - Anna Reymer
- Oblique Therapeutics AB, 41346, Gothenburg, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Kent Jardemark
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | | | | | - Gavin Jeffries
- Fluicell AB, Flöjelbergsgatan 8C, 431 37, Mölndal, Sweden
| | - Henry Ampah-Korsah
- Protein Science Facility, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Emilia Strandback
- Protein Science Facility, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Juni Andréll
- Protein Science Facility, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Tomas Nyman
- Protein Science Facility, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Ghada Nouairia
- Department of Medicine Huddinge, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Owe Orwar
- Oblique Therapeutics AB, 41346, Gothenburg, Sweden.
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
13
|
Casacuberta-Serra S, González-Larreategui Í, Capitán-Leo D, Soucek L. MYC and KRAS cooperation: from historical challenges to therapeutic opportunities in cancer. Signal Transduct Target Ther 2024; 9:205. [PMID: 39164274 PMCID: PMC11336233 DOI: 10.1038/s41392-024-01907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 08/22/2024] Open
Abstract
RAS and MYC rank amongst the most commonly altered oncogenes in cancer, with RAS being the most frequently mutated and MYC the most amplified. The cooperative interplay between RAS and MYC constitutes a complex and multifaceted phenomenon, profoundly influencing tumor development. Together and individually, these two oncogenes regulate most, if not all, hallmarks of cancer, including cell death escape, replicative immortality, tumor-associated angiogenesis, cell invasion and metastasis, metabolic adaptation, and immune evasion. Due to their frequent alteration and role in tumorigenesis, MYC and RAS emerge as highly appealing targets in cancer therapy. However, due to their complex nature, both oncogenes have been long considered "undruggable" and, until recently, no drugs directly targeting them had reached the clinic. This review aims to shed light on their complex partnership, with special attention to their active collaboration in fostering an immunosuppressive milieu and driving immunotherapeutic resistance in cancer. Within this review, we also present an update on the different inhibitors targeting RAS and MYC currently undergoing clinical trials, along with their clinical outcomes and the different combination strategies being explored to overcome drug resistance. This recent clinical development suggests a paradigm shift in the long-standing belief of RAS and MYC "undruggability", hinting at a new era in their therapeutic targeting.
Collapse
Affiliation(s)
| | - Íñigo González-Larreategui
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Daniel Capitán-Leo
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Laura Soucek
- Peptomyc S.L., Barcelona, Spain.
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
- Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
14
|
Zheng Y, Zhong G, Song Q, Zhang H, Wang S, Lin C, He C, Li M. Mapping alternative splicing events in colorectal cancer. Discov Oncol 2024; 15:280. [PMID: 39004679 PMCID: PMC11247070 DOI: 10.1007/s12672-024-01149-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024] Open
Abstract
Although aberrant splicing events of genes are closely related to the development and progression of colorectal cancer (CRC), the mapping of abnormal splicing events, especially alternative splicing (AS) event types and the underlying effects, remain investigational. In the present study, we analyzed a public RNA-seq database (GSE138202) and identified 14,314 significant AS events in CRC patients compared to healthy individuals. Most of the key genes such as oncogenes involved in the development of CRC have different AS event types. Moreover, the results demonstrate that certain AS events may play a significant role in the functioning of key genes involved in splicing factors and microRNAs. Furthermore, we observed that the oncogene CDK4 in CRC tends to undergo exon 2 skipping AS events, resulting in a stronger tendency for protein expression to form complexes with CCND1, thereby inhibiting the cell cycle and weakening cell proliferation, while enhancing cell migration capability. These findings not only provide new insights into the mechanism of AS in regulating CRC, but also offers a theoretical basis for targeted splicing therapy in CRC.
Collapse
Affiliation(s)
- Yifeng Zheng
- Department of Gastroenterology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guoqiang Zhong
- Department of Gastroenterology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiuyu Song
- Department of Gastroenterology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haonan Zhang
- Department of Gastroenterology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shanping Wang
- Department of Gastroenterology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chuangzhen Lin
- Department of Gastroenterology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chengcheng He
- Department of Gastroenterology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Mingsong Li
- Department of Gastroenterology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
15
|
Chetta M, Basile A, Tarsitano M, Rivieccio M, Oro M, Capitanio N, Bukvic N, Priolo M, Rosati A. The Target Therapy Hyperbole: "KRAS (p.G12C)"-The Simplification of a Complex Biological Problem. Cancers (Basel) 2024; 16:2389. [PMID: 39001451 PMCID: PMC11240669 DOI: 10.3390/cancers16132389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) gene variations are linked to the development of numerous cancers, including non-small cell lung cancer (NSCLC), colorectal cancer (CRC), and pancreatic ductal adenocarcinoma (PDAC). The lack of typical drug-binding sites has long hampered the discovery of therapeutic drugs targeting KRAS. Since "CodeBreaK 100" demonstrated Sotorasib's early safety and efficacy and led to its approval, especially in the treatment of non-small cell lung cancer (NSCLC), the subsequent identification of specific inhibitors for the p.G12C mutation has offered hope. However, the CodeBreaK 200 study found no significant difference in overall survival (OS) between patients treated with Docetaxel and Sotorasib (AMG 510), adding another degree of complexity to this ongoing challenge. The current study compares the three-dimensional structures of the two major KRAS isoforms, KRAS4A and KRAS4B. It also investigates the probable structural changes caused by the three major mutations (p.G12C, p.G12D, and p.G12V) within Sotorasib's pocket domain. The computational analysis demonstrates that the wild-type and mutant isoforms have distinct aggregation propensities, resulting in the creation of alternate oligomeric configurations. This study highlights the increased complexity of the biological issue of using KRAS as a therapeutic target. The present study stresses the need for a better understanding of the structural dynamics of KRAS and its mutations to design more effective therapeutic approaches. It also emphasizes the potential of computational approaches to shed light on the complicated molecular pathways that drive KRAS-mediated oncogenesis. This study adds to the ongoing efforts to address the therapeutic hurdles presented by KRAS in cancer treatment.
Collapse
Affiliation(s)
- Massimiliano Chetta
- U.O.C. Medical and Laboratory Genetics, A.O.R.N., Cardarelli, 80131 Naples, Italy; (M.T.); (M.R.); (M.O.); (M.P.)
| | - Anna Basile
- StressBioLab, Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.B.); (A.R.)
| | - Marina Tarsitano
- U.O.C. Medical and Laboratory Genetics, A.O.R.N., Cardarelli, 80131 Naples, Italy; (M.T.); (M.R.); (M.O.); (M.P.)
| | - Maria Rivieccio
- U.O.C. Medical and Laboratory Genetics, A.O.R.N., Cardarelli, 80131 Naples, Italy; (M.T.); (M.R.); (M.O.); (M.P.)
| | - Maria Oro
- U.O.C. Medical and Laboratory Genetics, A.O.R.N., Cardarelli, 80131 Naples, Italy; (M.T.); (M.R.); (M.O.); (M.P.)
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy;
| | - Nenad Bukvic
- Medical Genetics Section, University Hospital Consortium Corporation Polyclinics of Bari, 70124 Bari, Italy;
| | - Manuela Priolo
- U.O.C. Medical and Laboratory Genetics, A.O.R.N., Cardarelli, 80131 Naples, Italy; (M.T.); (M.R.); (M.O.); (M.P.)
| | - Alessandra Rosati
- StressBioLab, Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.B.); (A.R.)
| |
Collapse
|
16
|
Gimeno-Valiente F, López-Rodas G, Castillo J, Franco L. The Many Roads from Alternative Splicing to Cancer: Molecular Mechanisms Involving Driver Genes. Cancers (Basel) 2024; 16:2123. [PMID: 38893242 PMCID: PMC11171328 DOI: 10.3390/cancers16112123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer driver genes are either oncogenes or tumour suppressor genes that are classically activated or inactivated, respectively, by driver mutations. Alternative splicing-which produces various mature mRNAs and, eventually, protein variants from a single gene-may also result in driving neoplastic transformation because of the different and often opposed functions of the variants of driver genes. The present review analyses the different alternative splicing events that result in driving neoplastic transformation, with an emphasis on their molecular mechanisms. To do this, we collected a list of 568 gene drivers of cancer and revised the literature to select those involved in the alternative splicing of other genes as well as those in which its pre-mRNA is subject to alternative splicing, with the result, in both cases, of producing an oncogenic isoform. Thirty-one genes fall into the first category, which includes splicing factors and components of the spliceosome and splicing regulators. In the second category, namely that comprising driver genes in which alternative splicing produces the oncogenic isoform, 168 genes were found. Then, we grouped them according to the molecular mechanisms responsible for alternative splicing yielding oncogenic isoforms, namely, mutations in cis splicing-determining elements, other causes involving non-mutated cis elements, changes in splicing factors, and epigenetic and chromatin-related changes. The data given in the present review substantiate the idea that aberrant splicing may regulate the activation of proto-oncogenes or inactivation of tumour suppressor genes and details on the mechanisms involved are given for more than 40 driver genes.
Collapse
Affiliation(s)
- Francisco Gimeno-Valiente
- Cancer Evolution and Genome Instability Laboratory, University College London Cancer Institute, London WC1E 6DD, UK;
| | - Gerardo López-Rodas
- Department of Oncology, Institute of Health Research INCLIVA, 46010 Valencia, Spain; (G.L.-R.); (J.C.)
- Department of Biochemistry and Molecular Biology, Universitat de València, 46010 Valencia, Spain
| | - Josefa Castillo
- Department of Oncology, Institute of Health Research INCLIVA, 46010 Valencia, Spain; (G.L.-R.); (J.C.)
- Department of Biochemistry and Molecular Biology, Universitat de València, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Luis Franco
- Department of Oncology, Institute of Health Research INCLIVA, 46010 Valencia, Spain; (G.L.-R.); (J.C.)
- Department of Biochemistry and Molecular Biology, Universitat de València, 46010 Valencia, Spain
| |
Collapse
|
17
|
Lee SG, Furth PA, Hennighausen L, Lee HK. Variant- and vaccination-specific alternative splicing profiles in SARS-CoV-2 infections. iScience 2024; 27:109177. [PMID: 38414855 PMCID: PMC10897911 DOI: 10.1016/j.isci.2024.109177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/28/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
The COVID-19 pandemic, driven by the SARS-CoV-2 virus and its variants, highlights the important role of understanding host-viral molecular interactions influencing infection outcomes. Alternative splicing post-infection can impact both host responses and viral replication. We analyzed RNA splicing patterns in immune cells across various SARS-CoV-2 variants, considering immunization status. Using a dataset of 190 RNA-seq samples from our prior studies, we observed a substantial deactivation of alternative splicing and RNA splicing-related genes in COVID-19 patients. The alterations varied significantly depending on the infecting variant and immunization history. Notably, Alpha or Beta-infected patients differed from controls, while Omicron-infected patients displayed a splicing profile closer to controls. Particularly, vaccinated Omicron-infected individuals showed a distinct dynamic in alternative splicing patterns not widely shared among other groups. Our findings underscore the intricate interplay between SARS-CoV-2 variants, vaccination-induced immunity, and alternative splicing, emphasizing the need for further investigations to deepen understanding and guide therapeutic development.
Collapse
Affiliation(s)
- Sung-Gwon Lee
- Section of Genetics and Physiology, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Priscilla A Furth
- Section of Genetics and Physiology, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lothar Hennighausen
- Section of Genetics and Physiology, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Hye Kyung Lee
- Section of Genetics and Physiology, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
18
|
Whitley MJ, Tran TH, Rigby M, Yi M, Dharmaiah S, Waybright TJ, Ramakrishnan N, Perkins S, Taylor T, Messing S, Esposito D, Nissley DV, McCormick F, Stephen AG, Turbyville T, Cornilescu G, Simanshu DK. Comparative analysis of KRAS4a and KRAS4b splice variants reveals distinctive structural and functional properties. SCIENCE ADVANCES 2024; 10:eadj4137. [PMID: 38354232 PMCID: PMC11636682 DOI: 10.1126/sciadv.adj4137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
KRAS, the most frequently mutated oncogene in human cancer, produces two isoforms, KRAS4a and KRAS4b, through alternative splicing. These isoforms differ in exon 4, which encodes the final 15 residues of the G-domain and hypervariable regions (HVRs), vital for trafficking and membrane localization. While KRAS4b has been extensively studied, KRAS4a has been largely overlooked. Our multidisciplinary study compared the structural and functional characteristics of KRAS4a and KRAS4b, revealing distinct structural properties and thermal stability. Position 151 influences KRAS4a's thermal stability, while position 153 affects binding to RAF1 CRD protein. Nuclear magnetic resonance analysis identified localized structural differences near sequence variations and provided a solution-state conformational ensemble. Notably, KRAS4a exhibits substantial transcript abundance in bile ducts, liver, and stomach, with transcript levels approaching KRAS4b in the colon and rectum. Functional disparities were observed in full-length KRAS variants, highlighting the impact of HVR variations on interaction with trafficking proteins and downstream effectors like RAF and PI3K within cells.
Collapse
Affiliation(s)
- Matthew J. Whitley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Timothy H. Tran
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Megan Rigby
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ming Yi
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Srisathiyanarayanan Dharmaiah
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Timothy J. Waybright
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nitya Ramakrishnan
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Shelley Perkins
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Troy Taylor
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Simon Messing
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dwight V. Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 1450 3rd Street, San Francisco, CA, USA
| | - Andrew G. Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Thomas Turbyville
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Gabriel Cornilescu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dhirendra K. Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
19
|
Zhang X, Bolck HA, Rupp NJ, Moch H. Genomic alterations and diagnosis of renal cancer. Virchows Arch 2024; 484:323-337. [PMID: 37999735 PMCID: PMC10948545 DOI: 10.1007/s00428-023-03700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/24/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
The application of molecular profiling has made substantial impact on the classification of urogenital tumors. Therefore, the 2022 World Health Organization incorporated the concept of molecularly defined renal tumor entities into its classification, including succinate dehydrogenase-deficient renal cell carcinoma (RCC), FH-deficient RCC, TFE3-rearranged RCC, TFEB-altered RCC, ALK-rearranged RCC, ELOC-mutated RCC, and renal medullary RCC, which are characterized by SMARCB1-deficiency. This review aims to provide an overview of the most important molecular alterations in renal cancer, with a specific focus on the diagnostic value of characteristic genomic aberrations, their chromosomal localization, and associations with renal tumor subtypes. It may not yet be the time to completely shift to a molecular RCC classification, but undoubtedly, the application of molecular profiling will enhance the accuracy of renal cancer diagnosis, and ultimately guide personalized treatment strategies for patients.
Collapse
Affiliation(s)
- Xingming Zhang
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstr. 12, 8091, Zurich, Switzerland
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Hella A Bolck
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstr. 12, 8091, Zurich, Switzerland
| | - Niels J Rupp
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstr. 12, 8091, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstr. 12, 8091, Zurich, Switzerland.
- Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
20
|
Khozooei S, Veerappan S, Toulany M. YB-1 activating cascades as potential targets in KRAS-mutated tumors. Strahlenther Onkol 2023; 199:1110-1127. [PMID: 37268766 DOI: 10.1007/s00066-023-02092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/23/2023] [Indexed: 06/04/2023]
Abstract
Y‑box binding protein‑1 (YB-1) is a multifunctional protein that is highly expressed in human solid tumors of various entities. Several cellular processes, e.g. cell cycle progression, cancer stemness and DNA damage signaling that are involved in the response to chemoradiotherapy (CRT) are tightly governed by YB‑1. KRAS gene with about 30% mutations in all cancers, is considered the most commonly mutated oncogene in human cancers. Accumulating evidence indicates that oncogenic KRAS mediates CRT resistance. AKT and p90 ribosomal S6 kinase are downstream of KRAS and are the major kinases that stimulate YB‑1 phosphorylation. Thus, there is a close link between the KRAS mutation status and YB‑1 activity. In this review paper, we highlight the importance of the KRAS/YB‑1 cascade in the response of KRAS-mutated solid tumors to CRT. Likewise, the opportunities to interfere with this pathway to improve CRT outcome are discussed in light of the current literature.
Collapse
Affiliation(s)
- Shayan Khozooei
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Soundaram Veerappan
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
21
|
Chiari R, Palladino S, Emili R, De Lisa M, Sarti D, Catalano V, Magnani M, Graziano F, Ruzzo A. KRAS4A and KRAS4B in liquid biopsy of metastatic lung adenocarcinoma patients treated with Pembrolizumab or chemotherapy plus Pembrolizumab. Sci Rep 2023; 13:21036. [PMID: 38030703 PMCID: PMC10687227 DOI: 10.1038/s41598-023-48304-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023] Open
Abstract
KRAS is involved in the stability and expression of PD-L1. We investigated the expression of circulating mRNA (cmRNA) of KRAS4A and KRAS4B and the possible impact on progression-free survival (PFS) of patients with metastatic lung adenocarcinoma treated with immunotherapy. Patients without driver mutations undergoing Pembrolizumab (P) or P plus chemotherapy (PC) were prospectively accrued for liquid biopsy analysis of KRAS4A, KRAS4B, and PD-L1 cmRNA. Both KRAS isoforms were also studied for association with PD-L1 cmRNA. Of 56 patients, 28 received P and 28 PC. Patients with high levels of both KRAS isoforms showed significantly better PFS. The median PFS for KRAS4A was 29 months (95% CI 22-29 months) and KRAS4B 24 months (95% CI 13-29 months), respectively. The median PFS of patients with low levels of both isoforms was 12 months (95% CI 6-15 months for KRAS4A and 95% CI 5-20 months for KRAS4B). High KRAS4A retained a significant positive association with PFS in the multivariate model. An exploratory analysis in treatment subgroups found a positive association between high KRAS4A and KRAS4B with PFS in patients treated with P. PD-L1 cmRNA was significantly higher in patients with high KRAS isoforms levels and this effect was pronounced for high KRAS4A carriers. KRAS4A deserves further investigation as a potential marker for defining patients who may benefit the most from immune checkpoint inhibitors therapy and improving personalized cancer immunotherapeutic strategies.
Collapse
Affiliation(s)
- Rita Chiari
- Oncology Unit, AST1 Pesaro e Urbino, Stabilimento di Muraglia - Via Lombroso 1, 61122, Pesaro, Italy
- Oncology Unit, AST1 Pesaro e Urbino, Fano, Italy
| | - Silvia Palladino
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Via Arco d'Augusto, 2, 61032, Fano, Italy
| | - Rita Emili
- Oncology Unit, AST1 Pesaro e Urbino, Urbino, Italy
| | | | | | | | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Via Arco d'Augusto, 2, 61032, Fano, Italy
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Francesco Graziano
- Oncology Unit, AST1 Pesaro e Urbino, Stabilimento di Muraglia - Via Lombroso 1, 61122, Pesaro, Italy.
| | - Annamaria Ruzzo
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Via Arco d'Augusto, 2, 61032, Fano, Italy.
| |
Collapse
|
22
|
Lee SG, Furth PA, Hennighausen L, Lee HK. Variant- and Vaccination-Specific Alternative Splicing Profiles in SARS-CoV-2 Infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.24.568603. [PMID: 38076812 PMCID: PMC10705549 DOI: 10.1101/2023.11.24.568603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The COVID-19 pandemic, caused by the coronavirus SARS-CoV-2, and its subsequent variants has underscored the importance of understanding the host-viral molecular interactions to devise effective therapeutic strategies. A significant aspect of these interactions is the role of alternative splicing in modulating host responses and viral replication mechanisms. Our study sought to delineate the patterns of alternative splicing of RNAs from immune cells across different SARS-CoV-2 variants and vaccination statuses, utilizing a robust dataset of 190 RNA-seq samples from our previous studies, encompassing an average of 212 million reads per sample. We identified a dynamic alteration in alternative splicing and genes related to RNA splicing were highly deactivated in COVID-19 patients and showed variant- and vaccination-specific expression profiles. Overall, Omicron-infected patients exhibited a gene expression profile akin to healthy controls, unlike the Alpha or Beta variants. However, significantly, we found identified a subset of infected individuals, most pronounced in vaccinated patients infected with Omicron variant, that exhibited a specific dynamic in their alternative splicing patterns that was not widely shared amongst the other groups. Our findings underscore the complex interplay between SARS-CoV-2 variants, vaccination-induced immune responses, and alternative splicing, emphasizing the necessity for further investigations into these molecular cross-talks to foster deeper understanding and guide strategic therapeutic development.
Collapse
Affiliation(s)
- Sung-Gwon Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, USA
| | - Priscilla A. Furth
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, USA
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, USA
| | - Hye Kyung Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, USA
| |
Collapse
|
23
|
de Jesus VHF, Mathias-Machado MC, de Farias JPF, Aruquipa MPS, Jácome AA, Peixoto RD. Targeting KRAS in Pancreatic Ductal Adenocarcinoma: The Long Road to Cure. Cancers (Basel) 2023; 15:5015. [PMID: 37894382 PMCID: PMC10605759 DOI: 10.3390/cancers15205015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains an important cause of cancer-related mortality, and it is expected to play an even bigger part in cancer burden in the years to come. Despite concerted efforts from scientists and physicians, patients have experienced little improvement in survival over the past decades, possibly because of the non-specific nature of the tested treatment modalities. Recently, the discovery of potentially targetable molecular alterations has paved the way for the personalized treatment of PDAC. Indeed, the central piece in the molecular framework of PDAC is starting to be unveiled. KRAS mutations are seen in 90% of PDACs, and multiple studies have demonstrated their pivotal role in pancreatic carcinogenesis. Recent investigations have shed light on the differences in prognosis as well as therapeutic implications of the different KRAS mutations and disentangled the relationship between KRAS and effectors of downstream and parallel signaling pathways. Additionally, the recognition of other mechanisms involving KRAS-mediated pathogenesis, such as KRAS dosing and allelic imbalance, has contributed to broadening the current knowledge regarding this molecular alteration. Finally, KRAS G12C inhibitors have been recently tested in patients with pancreatic cancer with relative success, and inhibitors of KRAS harboring other mutations are under clinical development. These drugs currently represent a true hope for a meaningful leap forward in this dreadful disease.
Collapse
Affiliation(s)
| | | | | | | | - Alexandre A. Jácome
- Department of Gastrointestinal Medical Oncology, Oncoclínicas, Belo Horizonte 30360-680, Brazil
| | | |
Collapse
|
24
|
Yan Y, Ren Y, Bao Y, Wang Y. RNA splicing alterations in lung cancer pathogenesis and therapy. CANCER PATHOGENESIS AND THERAPY 2023; 1:272-283. [PMID: 38327600 PMCID: PMC10846331 DOI: 10.1016/j.cpt.2023.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/25/2023] [Accepted: 04/29/2023] [Indexed: 02/09/2024]
Abstract
RNA splicing alterations are widespread and play critical roles in cancer pathogenesis and therapy. Lung cancer is highly heterogeneous and causes the most cancer-related deaths worldwide. Large-scale multi-omics studies have not only characterized the mutational landscapes but also discovered a plethora of transcriptional and post-transcriptional changes in lung cancer. Such resources have greatly facilitated the development of new diagnostic markers and therapeutic options over the past two decades. Intriguingly, altered RNA splicing has emerged as an important molecular feature and therapeutic target of lung cancer. In this review, we provide a brief overview of splicing dysregulation in lung cancer and summarize the recent progress on key splicing events and splicing factors that contribute to lung cancer pathogenesis. Moreover, we describe the general strategies targeting splicing alterations in lung cancer and highlight the potential of combining splicing modulation with currently approved therapies to combat this deadly disease. This review provides new mechanistic and therapeutic insights into splicing dysregulation in cancer.
Collapse
Affiliation(s)
- Yueren Yan
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Yunpeng Ren
- Department of Cellular and Genetic Medicine, Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yufang Bao
- Department of Cellular and Genetic Medicine, Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yongbo Wang
- Department of Cellular and Genetic Medicine, Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
25
|
Zheng Y, Zhong G, He C, Li M. Targeted splicing therapy: new strategies for colorectal cancer. Front Oncol 2023; 13:1222932. [PMID: 37664052 PMCID: PMC10470845 DOI: 10.3389/fonc.2023.1222932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
RNA splicing is the process of forming mature mRNA, which is an essential phase necessary for gene expression and controls many aspects of cell proliferation, survival, and differentiation. Abnormal gene-splicing events are closely related to the development of tumors, and the generation of oncogenic isoform in splicing can promote tumor progression. As a main process of tumor-specific splicing variants, alternative splicing (AS) can promote tumor progression by increasing the production of oncogenic splicing isoforms and/or reducing the production of normal splicing isoforms. This is the focus of current research on the regulation of aberrant tumor splicing. So far, AS has been found to be associated with various aspects of tumor biology, including cell proliferation and invasion, resistance to apoptosis, and sensitivity to different chemotherapeutic drugs. This article will review the abnormal splicing events in colorectal cancer (CRC), especially the tumor-associated splicing variants arising from AS, aiming to offer an insight into CRC-targeted splicing therapy.
Collapse
Affiliation(s)
| | | | - Chengcheng He
- Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | | |
Collapse
|
26
|
Bteich F, Mohammadi M, Li T, Bhat MA, Sofianidi A, Wei N, Kuang C. Targeting KRAS in Colorectal Cancer: A Bench to Bedside Review. Int J Mol Sci 2023; 24:12030. [PMID: 37569406 PMCID: PMC10418782 DOI: 10.3390/ijms241512030] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease with a myriad of alterations at the cellular and molecular levels. Kristen rat sarcoma (KRAS) mutations occur in up to 40% of CRCs and serve as both a prognostic and predictive biomarker. Oncogenic mutations in the KRAS protein affect cellular proliferation and survival, leading to tumorigenesis through RAS/MAPK pathways. Until recently, only indirect targeting of the pathway had been investigated. There are now several KRAS allele-specific inhibitors in late-phase clinical trials, and many newer agents and targeting strategies undergoing preclinical and early-phase clinical testing. The adequate treatment of KRAS-mutated CRC will inevitably involve combination therapies due to the existence of robust adaptive resistance mechanisms in these tumors. In this article, we review the most recent understanding and findings related to targeting KRAS mutations in CRC, mechanisms of resistance to KRAS inhibitors, as well as evolving treatment strategies for KRAS-mutated CRC patients.
Collapse
Affiliation(s)
- Fernand Bteich
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY 10467, USA;
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.M.); (T.L.); (M.A.B.); (N.W.)
| | - Mahshid Mohammadi
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.M.); (T.L.); (M.A.B.); (N.W.)
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Terence Li
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.M.); (T.L.); (M.A.B.); (N.W.)
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Muzaffer Ahmed Bhat
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.M.); (T.L.); (M.A.B.); (N.W.)
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Amalia Sofianidi
- Oncology Unit, Third Department of Internal Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Ning Wei
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.M.); (T.L.); (M.A.B.); (N.W.)
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Chaoyuan Kuang
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY 10467, USA;
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.M.); (T.L.); (M.A.B.); (N.W.)
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
27
|
Wojtyś W, Oroń M. How Driver Oncogenes Shape and Are Shaped by Alternative Splicing Mechanisms in Tumors. Cancers (Basel) 2023; 15:cancers15112918. [PMID: 37296881 DOI: 10.3390/cancers15112918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The development of RNA sequencing methods has allowed us to study and better understand the landscape of aberrant pre-mRNA splicing in tumors. Altered splicing patterns are observed in many different tumors and affect all hallmarks of cancer: growth signal independence, avoidance of apoptosis, unlimited proliferation, invasiveness, angiogenesis, and metabolism. In this review, we focus on the interplay between driver oncogenes and alternative splicing in cancer. On one hand, oncogenic proteins-mutant p53, CMYC, KRAS, or PI3K-modify the alternative splicing landscape by regulating expression, phosphorylation, and interaction of splicing factors with spliceosome components. Some splicing factors-SRSF1 and hnRNPA1-are also driver oncogenes. At the same time, aberrant splicing activates key oncogenes and oncogenic pathways: p53 oncogenic isoforms, the RAS-RAF-MAPK pathway, the PI3K-mTOR pathway, the EGF and FGF receptor families, and SRSF1 splicing factor. The ultimate goal of cancer research is a better diagnosis and treatment of cancer patients. In the final part of this review, we discuss present therapeutic opportunities and possible directions of further studies aiming to design therapies targeting alternative splicing mechanisms in the context of driver oncogenes.
Collapse
Affiliation(s)
- Weronika Wojtyś
- Laboratory of Human Disease Multiomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Magdalena Oroń
- Laboratory of Human Disease Multiomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| |
Collapse
|
28
|
García-España A, Philips MR. Origin and Evolution of RAS Membrane Targeting. Oncogene 2023; 42:1741-1750. [PMID: 37031342 PMCID: PMC10413328 DOI: 10.1038/s41388-023-02672-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 04/10/2023]
Abstract
KRAS, HRAS and NRAS proto-oncogenes belong to a family of 40 highly homologous genes, which in turn are a subset of a superfamily of >160 genes encoding small GTPases. RAS proteins consist of a globular G-domain (aa1-166) and a 22-23 aa unstructured hypervariable region (HVR) that mediates membrane targeting. The evolutionary origins of the RAS isoforms, their HVRs and alternative splicing of the KRAS locus has not been explored. We found that KRAS is basal to the RAS proto-oncogene family and its duplication generated HRAS in the common ancestor of vertebrates. In a second round of duplication HRAS generated NRAS and KRAS generated an additional RAS gene we have designated KRASBL, absent in mammals and birds. KRAS4A arose through a duplication and insertion of the 4th exon of NRAS into the 3rd intron of KRAS. We found evolutionary conservation of a short polybasic region (PBR1) in HRAS, NRAS and KRAS4A, a second polybasic region (PBR2) in KRAS4A, two neutralized basic residues (NB) and a serine in KRAS4B and KRASBL, and a modification of the CaaX motif in vertebrates with farnesyl rather than geranylgeranyl polyisoprene lipids, suggesting that a less hydrophobic membrane anchor is critical to RAS protein function. The persistence of four RAS isoforms through >400 million years of evolution argues strongly for differential function.
Collapse
Affiliation(s)
| | - Mark R Philips
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
29
|
García-España A, Philips MR. Origin and evolution of RAS oncoprotein membrane targeting. RESEARCH SQUARE 2023:rs.3.rs-2485219. [PMID: 36711820 PMCID: PMC9882654 DOI: 10.21203/rs.3.rs-2485219/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
KRAS, HRAS and NRAS oncogenes belong to a family of 40 highly homologous genes, which in turn are a subset of a superfamily of >160 genes encoding small GTPases. RAS oncoproteins consist of a globular G-domain (aa1-166) and a 22-23aa unstructured hypervariable region (HVR) that mediates membrane targeting. The evolutionarily origins of the RAS isoforms, their HVRs and alternative splicing of the KRAS locus has not been explored. We found that KRAS is basal to the oncogene family and its duplication generated HRAS in the common ancestor of vertebrates. In a second round of duplication HRAS generated NRAS and KRAS generated an additional RAS gene we have designated KRASBL, absent in mammals and birds. KRAS4A arose through a duplication and insertion of the 4th exon of NRAS into the 3rd intron of KRAS. We found evolutionarily conservation of a short polybasic region (PBR1) in HRAS, NRAS and KRAS4A, a second polybasic region (PBR2) in KRAS4A, two neutralized basic residues (NB) and a serine in KRAS4B and KRASBL, and a modification of the CaaX motif in vertebrates with farnesyl rather than geranylgeranyl polyisoprene lipids, suggesting that a less hydrophobic membrane anchor is critical to RAS oncoprotein function. The persistence of four RAS isoforms through >400 MY of evolution argues strongly for differential function.
Collapse
Affiliation(s)
| | - Mark R Philips
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|