1
|
Wu D, Lim WK, Chai X, Seshachalam VP, Rasheed SAK, Ghosh S, Casey PJ. Gα13 Promotes Clonogenic Growth by Increasing Tolerance to Oxidative Metabolic Stress in Prostate Cancer Cells. Int J Mol Sci 2025; 26:4883. [PMID: 40430023 PMCID: PMC12111955 DOI: 10.3390/ijms26104883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 05/07/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025] Open
Abstract
The oncogenic role of the G12 family in many human solid cancers has been extensively studied, primarily through the effects of constitutively active mutants of these proteins on cell migration and invasion. However, these mutations are not seen in cancers, and the biological role of Gα13 in prostate cancer tumorigenesis is largely unexplored. Here, we report that Gα13 promotes anchorage-independent colony formation, spheroid formation, and xenograft tumor growth in human prostate cancer cell lines. Transcriptome analyses suggest that Gα13 modulates genes in the mitochondria and are involved in the oxidative stress response. Silencing of GNA13 increased mitochondrial superoxide levels when prostate cancer cells were cultured in galactose medium and increased the sensitivity to oxidative metabolic stress when the cells were cultured in media containing non-glycolytic metabolites. Furthermore, Gα13 levels impacts the abundance of superoxide dismutase 2 (SOD2) in the mitochondria, as well as SOD2 promoter activity and mRNA expression. Importantly, expression of SOD2 could rescue the effect of Gα13 loss on suppression of anchorage-independent growth. Likewise, stable knockdown of SOD2 decreased anchorage-independent cell growth, which was enhanced by overexpression of Gα13. These results outline a novel biological function of Gα13 mediated via SOD2 in prostate cancer tumorigenesis and highlight it as a potential treatment target.
Collapse
Affiliation(s)
- Di Wu
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Wei Kiang Lim
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Xiaoran Chai
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Veerabrahma Pratap Seshachalam
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Program in Clinical and Translational Liver Cancer Research, Division of Medical Science, National Cancer Center Singapore, 30 Hospital Boulevard, Singapore 168583, Singapore
| | - Suhail Ahmed Kabeer Rasheed
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Sujoy Ghosh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Laboratory of Functional Genomics, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Patrick J. Casey
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, 308 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
2
|
Fan L, Wang S. Biased GPCR Signaling: Possible Mechanisms and Therapeutic Applications. Biochemistry 2025; 64:1180-1192. [PMID: 40016120 DOI: 10.1021/acs.biochem.4c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Biased signaling refers to the phenomenon where a ligand selectively activates specific downstream pathways of G protein-coupled receptors (GPCRs), such as the G protein-mediated pathway or the β-arrestin-mediated pathway. This mechanism can be influenced by receptor bias, ligand bias, system bias and spatial bias, all of which are shaped by the receptor's conformational distinctions and kinetics. Since GPCRs are the largest class of drug targets, signaling bias garnered significant attention for its potential to enhance therapeutic efficacy while minimizing side effects. Despite intensive investigation, a major challenge lies in translating in vitro ligand efficacy into in vivo biological responses due to the dynamic and multifaceted nature of the in vivo environment. This review delves into the current understanding of GPCR-biased signaling, examining the role of structural bias at the molecular level, the impact of kinetic context on system and observational bias, and the challenges of applying these insights in drug development. It further explores future directions for advancing biased signaling applications, offering valuable perspectives on how to bridge the gap between in vitro studies and in vivo therapeutic design, ultimately accelerating the development of viable, biased therapeutics.
Collapse
Affiliation(s)
- Luyu Fan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Sheng Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
3
|
Zhang H, Li H, Yu M, Yu M, Feng S, Tingting W, Yu Y, Zhang J, Liu K, Tan Y, Xiang B. Modified Electroconvulsive Therapy Normalizes Plasma GNA13 Following Schizophrenic Relapse. J ECT 2024; 40:286-292. [PMID: 39121017 DOI: 10.1097/yct.0000000000001050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
OBJECTIVE GNA13 is an important member of the G protein family, and its coding gene GNA13 has been identified as one of the risk genes for schizophrenia (SCZ). This study aimed to investigate the relationship between GNA13 levels and the clinical symptoms of SCZ following treatment with modified electroconvulsive therapy (MECT). METHODS This study recruited 82 SCZ patients and 86 healthy controls (HCs). Each SCZ patient received 6 sessions of MECT. The Positive and Negative Syndrome Scale (PANSS) was used to assess SCZ symptom severity. Plasma levels of GNA13 were measured by enzyme-linked immunosorbent assay. RESULTS Pretreatment, SCZ patients had a higher GNA13 level than HC ( t = 8.199, P < 0.001). MECT reduced the GNA13 level significantly ( t = 11.13, P < 0.001) and normalized the difference between SCZ and HC ( t = 0.219, P = 0.827). After treatment, the downregulation of GNA13 (ΔGNA13) was negatively correlated with the positive symptoms score reduction rate (ΔP) ( r = -0.379, P = 0.027) and positively correlated with the negative score reduction rate (ΔN) ( r = 0.480, P = 0.004) in females. In both males and females, the receiver operating characteristic curve revealed that the pretreatment GNA13 level could help differentiate SCZ from HC (male: area under the curve = 0.792, P < 0.001; female: area under the curve = 0.814, P < 0.001). CONCLUSION The reduced expression of GNA13 after MECT may be related to the exhibition of both negative and positive symptoms of SCZ in female patients.
Collapse
Affiliation(s)
| | | | | | | | - Shuangshuang Feng
- From the Department of Psychiatry, Fundamental and Clinical Research on Mental Disorders Key Laboratory of Luzhou, Medical Laboratory Center, Laboratory of Neurological Diseases & Brain Function, Affiliated Hospital of Southwest Medical University, Luzhou
| | - Wang Tingting
- From the Department of Psychiatry, Fundamental and Clinical Research on Mental Disorders Key Laboratory of Luzhou, Medical Laboratory Center, Laboratory of Neurological Diseases & Brain Function, Affiliated Hospital of Southwest Medical University, Luzhou
| | | | | | | | | | | |
Collapse
|
4
|
Upadhyay S, Kumar S, Singh VK, Tiwari R, Kumar A, Sundar S, Kumar R. Chemokines Signature and T Cell Dynamics in Leishmaniasis: Molecular insight and therapeutic application. Expert Rev Mol Med 2024; 27:1-55. [PMID: 39587036 PMCID: PMC11707835 DOI: 10.1017/erm.2024.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 09/04/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024]
Abstract
Leishmaniasis, caused by obligate intracellular Leishmania parasites, poses a significant global health burden. The control of Leishmania infection relies on an effective T cell-dependent immune response; however, various factors impede the host’s ability to mount a successful defence. Alterations in the chemokine profile, responsible for cell trafficking to the infection site, can disrupt optimal immune responses and influence the outcome of pathogenesis by facilitating parasite persistence. This review aims to emphasize the significance of the chemokine system in T cell responses and to summarize the current knowledge on the dysregulation of chemokines and their receptors associated with different subsets of T lymphocytes during Leishmaniasis. A comprehensive understanding of the dynamic nature of the chemokine system during Leishmaniasis is crucial for the development of successful immunotherapeutic approaches.
Collapse
Affiliation(s)
- Shreya Upadhyay
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shashi Kumar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vishal Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rahul Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Awnish Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
5
|
Yin H, Kamakura N, Qian Y, Tatsumi M, Ikuta T, Liang J, Xu Z, Xia R, Zhang A, Guo C, Inoue A, He Y. Insights into lysophosphatidylserine recognition and Gα 12/13-coupling specificity of P2Y10. Cell Chem Biol 2024; 31:1899-1908.e5. [PMID: 39265572 DOI: 10.1016/j.chembiol.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/05/2024] [Accepted: 08/08/2024] [Indexed: 09/14/2024]
Abstract
The lysophosphatidylserine (LysoPS) receptor P2Y10, also known as LPS2, plays crucial roles in the regulation of immune responses and holds promise for the treatment of autoimmune diseases. Here, we report the cryoelectron microscopy (cryo-EM) structure of LysoPS-bound P2Y10 in complex with an engineered G13 heterotrimeric protein. The structure and a mutagenesis study highlight the predominant role of a comprehensive polar network in facilitating the binding and activation of the receptor by LysoPS. This interaction pattern is preserved in GPR174, but not in GPR34. Moreover, our structural study unveils the essential interactions that underlie the Gα13 engagement of P2Y10 and identifies key determinants for Gα12-vs.-Gα13-coupling selectivity, whose mutations selectively disrupt Gα12 engagement while preserving the intact coupling of Gα13. The combined structural and functional studies provide insights into the molecular mechanisms of LysoPS recognition and Gα12/13 coupling specificity.
Collapse
Affiliation(s)
- Han Yin
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Nozomi Kamakura
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yu Qian
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Manae Tatsumi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Tatsuya Ikuta
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Jiale Liang
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Zhenmei Xu
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ruixue Xia
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Anqi Zhang
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Changyou Guo
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Yuanzheng He
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
6
|
Pittala S, Haspula D, Cui Y, Yang WM, Kim YB, Davis RJ, Wing A, Rotman Y, McGuinness OP, Inoue A, Wess J. G 12/13-mediated signaling stimulates hepatic glucose production and has a major impact on whole body glucose homeostasis. Nat Commun 2024; 15:9996. [PMID: 39557854 PMCID: PMC11574106 DOI: 10.1038/s41467-024-54299-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024] Open
Abstract
Altered hepatic glucose fluxes are critical during the pathogenesis of type 2 diabetes. G protein-coupled receptors represent important regulators of hepatic glucose production. Recent studies have shown that hepatocytes express GPCRs that can couple to G12/13, a subfamily of heterotrimeric G proteins that has attracted relatively little attention in the past. Here we show, by analyzing several mutant mouse strains, that selective activation of hepatocyte G12/13 signaling leads to pronounced hyperglycemia and that this effect involves the stimulation of the ROCK1-JNK signaling cascade. Using both mouse and human hepatocytes, we also show that activation of endogenous sphingosine-1-phosphate type 1 receptors strongly promotes glucose release in a G12/13-dependent fashion. Studies with human liver samples indicate that hepatic GNA12 (encoding Gα12) expression levels positively correlate with indices of insulin resistance and impaired glucose homeostasis, consistent with a potential pathophysiological role of enhanced hepatic G12/13 signaling.
Collapse
Affiliation(s)
- Srinivas Pittala
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, NIDDK, NIH, Bethesda, MD, USA.
| | - Dhanush Haspula
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, NIDDK, NIH, Bethesda, MD, USA
| | - Yinghong Cui
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, NIDDK, NIH, Bethesda, MD, USA
| | - Won-Mo Yang
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Allison Wing
- Liver & Energy Metabolism Section, Liver Diseases Branch, NIDDK, NIH, Bethesda, MD, USA
| | - Yaron Rotman
- Liver & Energy Metabolism Section, Liver Diseases Branch, NIDDK, NIH, Bethesda, MD, USA
| | - Owen P McGuinness
- Departments of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, NIDDK, NIH, Bethesda, MD, USA.
| |
Collapse
|
7
|
Wang C, Xiong S, Hu S, Yang L, Huang Y, Chen H, Xu B, Xiao T, Liu Q. Genome-wide identification of Gα family in grass carp (Ctenopharyngodon idella) and reproductive regulation functional characteristics of Cignaq. BMC Genomics 2024; 25:800. [PMID: 39182029 PMCID: PMC11344465 DOI: 10.1186/s12864-024-10717-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND The Gα family plays a crucial role in the complex reproductive regulatory network of teleosts. However, the characterization and function of Gα family members, especially Gαq, remain poorly understood in teleosts. To analyze the characterization, expression, and function of grass carp (Ctenopharyngodon idella) Gαq, we identified the Gα family members in grass carp genome, and analyzed the expression, distribution, and signal transduction of Gαq/gnaq. We also explored the role of Gαq in the reproductive regulation of grass carp. RESULTS Our results showed that the grass carp genome contains 27 Gα genes with 46 isoforms, which are divided into four subfamilies: Gαs, Gαi/o, Gαq/11, and Gα12/13. The expression level of Cignaq in the testis was the highest and significantly higher than in other tissues, followed by the hypothalamus and brain. The luteinizing hormone receptor (LHR) was mainly localized to the nucleus in grass carp oocytes, with signals also present in follicular cells. In contrast, Gαq signal was mainly found in the cytoplasm of oocytes, with no signal in follicular cells. In the testis, Gαq and LHR were co-localized in the cytoplasm. Furthermore, the grass carp Gαq recombinant protein significantly promoted Cipgr expression. CONCLUSIONS These results provided preliminary evidence for understanding the role of Gαq in the reproductive regulation of teleosts.
Collapse
Affiliation(s)
- Chong Wang
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Shuting Xiong
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Shitao Hu
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Le Yang
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Yuhong Huang
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Haitai Chen
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Baohong Xu
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
| | - Tiaoyi Xiao
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China.
| | - Qiaolin Liu
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
8
|
Wu D, Casey PJ. GPCR-Gα13 Involvement in Mitochondrial Function, Oxidative Stress, and Prostate Cancer. Int J Mol Sci 2024; 25:7162. [PMID: 39000269 PMCID: PMC11241654 DOI: 10.3390/ijms25137162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Gα13 and Gα12, encoded by the GNA13 and GNA12 genes, respectively, are members of the G12 family of Gα proteins that, along with their associated Gβγ subunits, mediate signaling from specific G protein-coupled receptors (GPCRs). Advanced prostate cancers have increased expression of GPCRs such as CXC Motif Chemokine Receptor 4 (CXCR4), lysophosphatidic acid receptor (LPAR), and protease activated receptor 1 (PAR-1). These GPCRs signal through either the G12 family, or through Gα13 exclusively, often in addition to other G proteins. The effect of Gα13 can be distinct from that of Gα12, and the role of Gα13 in prostate cancer initiation and progression is largely unexplored. The oncogenic effect of Gα13 on cell migration and invasion in prostate cancer has been characterized, but little is known about other biological processes such as mitochondrial function and oxidative stress. Current knowledge on the link between Gα13 and oxidative stress is based on animal studies in which GPCR-Gα13 signaling decreased superoxide levels, and the overexpression of constitutively active Gα13 promoted antioxidant gene activation. In human samples, mitochondrial superoxide dismutase 2 (SOD2) correlates with prostate cancer risk and prognostic Gleason grade. However, overexpression of SOD2 in prostate cancer cells yielded conflicting results on cell growth and survival under basal versus oxidative stress conditions. Hence, it is necessary to explore the effect of Gα13 on prostate cancer tumorigenesis, as well as the effect of Gα13 on SOD2 in prostate cancer cell growth under oxidative stress conditions.
Collapse
Affiliation(s)
- Di Wu
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore;
| | - Patrick J. Casey
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore;
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, 308 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
9
|
Shi L, Luo B, Deng L, Zhang Q, Li Y, Sun D, Zhang H, Zhuang L. The lncRNA TRG-AS1 promotes the growth of colorectal cancer cells through the regulation of P2RY10/GNA13. Scand J Gastroenterol 2024; 59:710-721. [PMID: 38357893 DOI: 10.1080/00365521.2024.2318363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/24/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND The lncRNA TRG-AS1 and its co-expressed gene P2RY10 are important for colorectal cancer (CRC) occurrence and development. The purpose of our research was to explore the roles of TRG-AS1 and P2RY10 in CRC progression. METHODS The abundance of TRG-AS1 and P2RY10 in CRC cell lines (HT-29 and LoVo) and normal colon cells FHC was determined and difference between CRC cells and normal cells was compared. LoVo cells were transfected with si-TRG-AS1 and si-P2RY10 constructs. Subsequently, the viability, colony formation, and migration of the transfected cells were analyzed using cell counting kit-8, clonogenicity, and scratch-wound/Transwell® assays, respectively. Cells overexpressing GNA13 were used to further explore the relationship between TRG-AS1 and P2RY10 along with their downstream functions. Finally, nude mice were injected with different transfected cell types to observe tumor formation in vivo. RESULTS TRG-AS1 and P2RY10 were significantly upregulated in HT-29 and LoVo compared to FHC cells. TRG-AS1 knockdown and P2RY10 silencing suppressed the viability, colony formation, and migration of LoVo cells. TRG-AS1 knockdown downregulated the expression of P2RY10, GNA12, and GNA13, while P2RY10 silencing downregulated the expression of TRG-AS1, GNA12, and GNA13. Additionally, GNA13 overexpression reversed the cell growth and gene expression changes in LoVo cells induced by TRG-AS1 knockdown or P2RY10 silencing. In vivo experiments revealed that CRC tumor growth was suppressed by TRG-AS1 knockdown and P2RY10 silencing. CONCLUSIONS TRG-AS1 knockdown repressed the growth of HT-29 and LoVo by regulating P2RY10 and GNA13 expression.
Collapse
Affiliation(s)
- Longqing Shi
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Baoyang Luo
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Linghui Deng
- Department of Oncology, Wujin Affiliated Hospital of Jiangsu University and The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qi Zhang
- Department of Oncology, Wujin Affiliated Hospital of Jiangsu University and The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Yuanjiu Li
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Donglin Sun
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Hua Zhang
- Department of Oncology, Wujin Affiliated Hospital of Jiangsu University and The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Lin Zhuang
- The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Department of General Surgery, Wujin Affiliated Hospital of Jiangsu University and The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
10
|
Katagade V, Kandroo M, Ratnaparkhi A. Embryonic spatiotemporal expression pattern of Folded gastrulation suggests roles in multiple morphogenetic events and regulation by AbdA. G3 (BETHESDA, MD.) 2024; 14:jkae032. [PMID: 38366558 PMCID: PMC11653764 DOI: 10.1093/g3journal/jkae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/03/2023] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
In Drosophila, the signaling pathway activated by the ligand Folded gastrulation (Fog) is among the few known G protein-coupled receptor (GPCR) pathways to regulate cell shape change with a well-characterized role in gastrulation. However, an understanding of the spectrum of morphogenetic events regulated by Fog signaling is still lacking. Here, we present an analysis of the expression pattern and regulation of fog using a genome-engineered Fog::sfGFP line. We show that Fog expression is widespread and in tissues previously not associated with the signaling pathway including germ cells, trachea, and amnioserosa. In the central nervous system (CNS), we find that the ligand is expressed in multiple types of glia indicating a prominent role in the development of these cells. Consistent with this, we have identified 3 intronic enhancers whose expression in the CNS overlaps with Fog::sfGFP. Further, we show that enhancer-1, (fogintenh-1) located proximal to the coding exon is responsive to AbdA. Supporting this, we find that fog expression is downregulated in abdA mutants. Together, our study highlights the broad scope of Fog-GPCR signaling during embryogenesis and identifies Hox gene AbdA as a novel regulator of fog expression.
Collapse
Affiliation(s)
- Vrushali Katagade
- MACS-Agharkar Research Institute (Affiliated to Savitribai Phule Pune
University), Developmental Biology Group, G.G. Agarkar Road,
Pune 411 004, Maharashtra, India
| | - Manisha Kandroo
- MACS-Agharkar Research Institute (Affiliated to Savitribai Phule Pune
University), Developmental Biology Group, G.G. Agarkar Road,
Pune 411 004, Maharashtra, India
| | - Anuradha Ratnaparkhi
- MACS-Agharkar Research Institute (Affiliated to Savitribai Phule Pune
University), Developmental Biology Group, G.G. Agarkar Road,
Pune 411 004, Maharashtra, India
| |
Collapse
|
11
|
Wu Y, Zhang P, Fan H, Zhang C, Yu P, Liang X, Chen Y. GPR35 acts a dual role and therapeutic target in inflammation. Front Immunol 2023; 14:1254446. [PMID: 38035084 PMCID: PMC10687457 DOI: 10.3389/fimmu.2023.1254446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
GPR35 is a G protein-coupled receptor with notable involvement in modulating inflammatory responses. Although the precise role of GPR35 in inflammation is not yet fully understood, studies have suggested that it may have both pro- and anti-inflammatory effects depending on the specific cellular environment. Some studies have shown that GPR35 activation can stimulate the production of pro-inflammatory cytokines and facilitate the movement of immune cells towards inflammatory tissues or infected areas. Conversely, other investigations have suggested that GPR35 may possess anti-inflammatory properties in the gastrointestinal tract, liver and certain other tissues by curbing the generation of inflammatory mediators and endorsing the differentiation of regulatory T cells. The intricate role of GPR35 in inflammation underscores the requirement for more in-depth research to thoroughly comprehend its functional mechanisms and its potential significance as a therapeutic target for inflammatory diseases. The purpose of this review is to concurrently investigate the pro-inflammatory and anti-inflammatory roles of GPR35, thus illuminating both facets of this complex issue.
Collapse
Affiliation(s)
- Yetian Wu
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Pei Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Hongjie Fan
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Caiying Zhang
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Pengfei Yu
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Xinmiao Liang
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yang Chen
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
12
|
Zhang D, Decker AM, Woodhouse K, Snyder R, Patel P, Harris DL, Tao YX, Li JX, Zhang Y. Isoquinolone derivatives as lysophosphatidic acid receptor 5 (LPA5) antagonists: Investigation of structure-activity relationships, ADME properties and analgesic effects. Eur J Med Chem 2022; 243:114741. [PMID: 36126387 PMCID: PMC10155261 DOI: 10.1016/j.ejmech.2022.114741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/18/2022]
Abstract
Blockade of lysophosphatidic acid receptor 5 (LPA5) by a recently reported antagonist AS2717638 (2) attenuated inflammatory and neuropathic pains, although it showed moderate in vivo efficacy and its structure-activity relationships and the ADME properties are little studied. We therefore designed and synthesized a series of isoquinolone derivatives and evaluated their potency in LPA5 calcium mobilization and cAMP assays. Our results show that substituted phenyl groups or bicyclic aromatic rings such as benzothiophenes or benzofurans are tolerated at the 2-position, 4-substituted piperidines are favored at the 4-position, and methoxy groups at the 6- and 7-positions are essential for activity. Compounds 65 and 66 showed comparable in vitro potency, excellent selectivity against LPA1-LPA4 and >50 other GPCRs, moderate metabolic stability, and high aqueous solubility and brain permeability. Both 65 and 66 significantly attenuated nociceptive hypersensitivity at lower doses than 2 and had longer-lasting effects in an inflammatory pain model, and 66 also dose-dependently reduced mechanical allodynia in the chronic constriction injury model and opioid-induced hyperalgesia at doses that had no effect on the locomotion in rats. These results suggest that these isoquinolone derivatives as LPA5 antagonists are of promise as potential analgesics.
Collapse
Affiliation(s)
- Dehui Zhang
- Research Triangle Institute, Research Triangle Park, NC, 27709, USA
| | - Ann M Decker
- Research Triangle Institute, Research Triangle Park, NC, 27709, USA
| | - Kristen Woodhouse
- Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York, Buffalo, NY, 14203, USA
| | - Rodney Snyder
- Research Triangle Institute, Research Triangle Park, NC, 27709, USA
| | - Purvi Patel
- Research Triangle Institute, Research Triangle Park, NC, 27709, USA
| | - Danni L Harris
- Research Triangle Institute, Research Triangle Park, NC, 27709, USA
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York, Buffalo, NY, 14203, USA
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|