1
|
Tangudu NK, Grumet AN, Fang R, Buj R, Cole AR, Uboveja A, Amalric A, Yang B, Huang Z, Happe C, Sun M, Gelhaus SL, MacDonald ML, Hempel N, Snyder NW, Kedziora KM, Valvezan AJ, Aird KM. ATR promotes mTORC1 activity via de novo cholesterol synthesis. EMBO Rep 2025:10.1038/s44319-025-00451-3. [PMID: 40514450 DOI: 10.1038/s44319-025-00451-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 06/16/2025] Open
Abstract
DNA damage and cellular metabolism exhibit a complex interplay characterized by bidirectional feedback. Key mediators of these pathways include ATR and mTORC1, respectively. Previous studies established ATR as a regulatory upstream factor of mTORC1 during replication stress; however, the precise mechanisms remain poorly defined. Additionally, the activity of this signaling axis in unperturbed cells has not been extensively investigated. We demonstrate that ATR promotes mTORC1 activity across various human cancer cells and both human and mouse normal cells under basal conditions. This effect is enhanced in human cancer cells (SKMEL28, RPMI-7951, HeLa) following knockdown of p16, a cell cycle inhibitor that we have previously found increases mTORC1 activity and here found increases ATR activity. Mechanistically, ATR promotes de novo cholesterol synthesis and mTORC1 activation through the phosphorylation and upregulation of lanosterol synthase (LSS), independently of both CHK1 and the TSC complex. Interestingly, this pathway is distinct from the regulation of mTORC1 by ATM and may be specific to cancer cells. Finally, ATR-mediated increased cholesterol correlates with enhanced localization of mTOR to lysosomes. Collectively, our findings demonstrate a novel connection linking ATR and mTORC1 signaling through the modulation of cholesterol metabolism.
Collapse
Affiliation(s)
- Naveen Kumar Tangudu
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alexandra N Grumet
- Center for Advanced Biotechnology and Medicine, Department of Pharmacology, and Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Richard Fang
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Raquel Buj
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aidan R Cole
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Apoorva Uboveja
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amandine Amalric
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Baixue Yang
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tsinghua University School of Medicine, Beijing, P.R. China
| | - Zhentai Huang
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cassandra Happe
- Health Sciences Mass Spectrometry Core, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mai Sun
- Health Sciences Mass Spectrometry Core, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stacy L Gelhaus
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Health Sciences Mass Spectrometry Core, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew L MacDonald
- Health Sciences Mass Spectrometry Core, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nadine Hempel
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Malignant Hematology & Medical Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nathaniel W Snyder
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Katarzyna M Kedziora
- Department of Cell Biology, Center for Biologic Imaging (CBI), University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexander J Valvezan
- Center for Advanced Biotechnology and Medicine, Department of Pharmacology, and Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA.
| | - Katherine M Aird
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Luo Y, Biswas H, Makinwa Y, Liu SH, Dong Z, Liu JY, Zhang JT, Zou Y. A PP2A-mtATR-tBid axis links DNA damage-induced CIP2A degradation to apoptotic dormancy and therapeutic resistance in PDAC. Cancer Lett 2025:217790. [PMID: 40354992 DOI: 10.1016/j.canlet.2025.217790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/06/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
DNA damage-based drugs are widely used in cancer therapy, yet resistance remains a significant challenge. In this study, we uncovered a non-DNA repair mechanism contributing to resistance in cancer cells. We found that in gemcitabine-resistant pancreatic ductal adenocarcinoma (PDAC) cells, CIP2A degradation via ubiquitination enhanced PP2A phosphatase activity, leading to the dephosphorylation of ATR at Ser428 in the cytoplasm. This dephosphorylation promoted the formation of the prolyl cis-isomeric form of ATR at its Ser428-Pro429 motif, a mitochondria-targeted antiapoptotic protein (mtATR). Surprisingly, the resistant PDAC cells paradoxically accumulated both mtATR and proapoptotic tBid at mitochondria, forming the mtATR-tBid complex. This complex silenced tBid, inducing apoptotic dormancy. Antagonizing mtATR, either through the PP2A inhibitor LB-100 or a cytoplasmic ATR-specific antibody, reactivated the pre-accumulated mitochondrial tBid and induced apoptosis in resistant PDAC cells. In an orthotopic PDAC mouse model, LB-100 alone significantly suppressed resistant tumor growth by disrupting the mtATR-tBid complex. These findings reveal a novel mechanism of resistance to DNA damage-based cancer drugs and introduce a new action mechanism of LB-100, which works through mtATR-tBid complex-mediated apoptotic dormancy triggered by CIP2A degradation-mediated PP2A activation. Disrupting the mtATR-tBid complex may represent a promising strategy to restore or sensitize resistant cancer cells to apoptosis.
Collapse
Affiliation(s)
- Yibo Luo
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, USA
| | - Himadri Biswas
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, USA
| | - Yetunde Makinwa
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, USA
| | - Shi-He Liu
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, USA
| | - Zizheng Dong
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, USA
| | - Jing-Yuan Liu
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, USA
| | - Jian-Ting Zhang
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, USA
| | - Yue Zou
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, USA.
| |
Collapse
|
3
|
Tangudu NK, Grumet AN, Fang R, Buj R, Cole AR, Uboveja A, Amalric A, Yang B, Huang Z, Happe C, Sun M, Gelhaus SL, MacDonald ML, Hempel N, Snyder NW, Kedziora KM, Valvezan AJ, Aird KM. ATR promotes mTORC1 activity via de novo cholesterol synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.27.564195. [PMID: 37961201 PMCID: PMC10634888 DOI: 10.1101/2023.10.27.564195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
DNA damage and cellular metabolism exhibit a complex interplay characterized by bidirectional feedback mechanisms. Key mediators of the DNA damage response and cellular metabolic regulation include Ataxia Telangiectasia and Rad3-related protein (ATR) and the mechanistic Target of Rapamycin Complex 1 (mTORC1), respectively. Previous studies have established ATR as a regulatory upstream factor of mTORC1 during replication stress; however, the precise mechanisms by which mTORC1 is activated in this context remain poorly defined. Additionally, the activity of this signaling axis in unperturbed cells has not been extensively investigated. Here, we demonstrate that ATR promotes mTORC1 activity across various cellular models under basal conditions. This effect is particularly enhanced in cells following the loss of p16, which we have previously associated with hyperactivation of mTORC1 signaling and here found have increased ATR activity. Mechanistically, we found that ATR promotes de novo cholesterol synthesis and mTORC1 activation through the upregulation of lanosterol synthase (LSS), independently of both CHK1 and the TSC complex. Furthermore, the attenuation of mTORC1 activity resulting from ATR inhibition was rescued by supplementation with lanosterol or cholesterol in multiple cellular contexts. This restoration corresponded with enhanced localization of mTOR to the lysosome. Collectively, our findings demonstrate a novel connection linking ATR and mTORC1 signaling through the modulation of cholesterol metabolism.
Collapse
Affiliation(s)
- Naveen Kumar Tangudu
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Alexandra N. Grumet
- Center for Advanced Biotechnology and Medicine, Department of Pharmacology, and Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ
| | - Richard Fang
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Raquel Buj
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Aidan R. Cole
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Apoorva Uboveja
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Amandine Amalric
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Baixue Yang
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Tsinghua University School of Medicine, Beijing, P.R. China
| | - Zhentai Huang
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Cassandra Happe
- Health Sciences Mass Spectrometry Core, University of Pittsburgh School of Medicine, PA
| | - Mai Sun
- Health Sciences Mass Spectrometry Core, University of Pittsburgh School of Medicine, PA
| | - Stacy L. Gelhaus
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Health Sciences Mass Spectrometry Core, University of Pittsburgh School of Medicine, PA
| | - Matthew L. MacDonald
- Health Sciences Mass Spectrometry Core, University of Pittsburgh School of Medicine, PA
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nadine Hempel
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Division of Malignant Hematology & Medical Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Nathaniel W. Snyder
- Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Katarzyna M. Kedziora
- Department of Cell Biology, Center for Biologic Imaging (CBI), University of Pittsburgh, Pittsburgh, PA
| | - Alexander J. Valvezan
- Center for Advanced Biotechnology and Medicine, Department of Pharmacology, and Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ
| | - Katherine M. Aird
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
4
|
Makinwa Y, Luo Y, Musich PR, Zou Y. Canonical and Noncanonical Functions of the BH3 Domain Protein Bid in Apoptosis, Oncogenesis, Cancer Therapeutics, and Aging. Cancers (Basel) 2024; 16:2199. [PMID: 38927905 PMCID: PMC11202167 DOI: 10.3390/cancers16122199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Effective cancer therapy with limited adverse effects is a major challenge in the medical field. This is especially complicated by the development of acquired chemoresistance. Understanding the mechanisms that underlie these processes remains a major effort in cancer research. In this review, we focus on the dual role that Bid protein plays in apoptotic cell death via the mitochondrial pathway, in oncogenesis and in cancer therapeutics. The BH3 domain in Bid and the anti-apoptotic mitochondrial proteins (Bcl-2, Bcl-XL, mitochondrial ATR) it associates with at the outer mitochondrial membrane provides us with a viable target in cancer therapy. We will discuss the roles of Bid, mitochondrial ATR, and other anti-apoptotic proteins in intrinsic apoptosis, exploring how their interaction sustains cellular viability despite the initiation of upstream death signals. The unexpected upregulation of this Bid protein in cancer cells can also be instrumental in explaining the mechanisms behind acquired chemoresistance. The stable protein associations at the mitochondria between tBid and anti-apoptotic mitochondrial ATR play a crucial role in maintaining the viability of cancer cells, suggesting a novel mechanism to induce cancer cell apoptosis by freeing tBid from the ATR associations at mitochondria.
Collapse
Affiliation(s)
- Yetunde Makinwa
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (Y.M.); (Y.L.)
| | - Yibo Luo
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (Y.M.); (Y.L.)
| | - Phillip R. Musich
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA;
| | - Yue Zou
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (Y.M.); (Y.L.)
| |
Collapse
|
5
|
Lu H, Peng Z, Zheng Z, Li C, Wang Y, Liang L, Chen Y, Zeng K. Blocking the ATR-SerRS-VEGFA pathway targets angiogenesis for UV-induced cutaneous squamous cell carcinoma. Mol Carcinog 2024; 63:1160-1173. [PMID: 38695641 DOI: 10.1002/mc.23716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 05/16/2024]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most prevalent form of skin cancer, with an escalating incidence rate and a notable potential (up to 5%) for metastasis. Ultraviolet radiation (UVA and UVB) exposure is the primary risk factor for cSCC carcinogenesis, with literature suggesting ultraviolet radiation (UVR) promotes vascular endothelial growth factor A (VEGFA) expression. This study aims to investigate UVR-induced upregulation of VEGFA and explore combination therapeutic strategies. The skin squamous cell carcinoma cell line A431 was exposed to specific durations of ultraviolet radiation. The effect of emodin on ATR/SerRS/VEGFA pathway was observed. The cell masses were also transplanted subcutaneously into mice (n = 8). ATR inhibitor combined with emodin was used to observe the growth and angiogenesis of the xenografts. The results showed that UV treatment significantly enhanced the phosphorylation of SerRS and the expression level of VEGFA in A431 cells (p < 0.05). Treatment with emodin significantly inhibited this expression (p < 0.05), and the combination of emodin and ATR inhibitor further enhanced the inhibitory effect (p < 0.05). This phenomenon was further confirmed in the xenograft model, which showed that the combination of ATR inhibitor and emodin significantly inhibited the expression of VEGFA to inhibit angiogenesis (p < 0.05), thus showing an inhibitory effect on cSCC. This study innovatively reveals the molecular mechanism of UV-induced angiogenesis in cSCC and confirms SerRS as a novel target to inhibit cSCC angiogenesis and progression in vitro and in vivo studies.
Collapse
Affiliation(s)
- Hongyan Lu
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhangsong Peng
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhaohui Zheng
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Changxing Li
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youyi Wang
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liuping Liang
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuxiang Chen
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kang Zeng
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Zhang Q, Xiong K. Editorial: Novel strategies to target cell death signaling in cancer and neurodegenerative diseases: new findings and mechanistic studies. Front Cell Dev Biol 2024; 12:1383301. [PMID: 38469180 PMCID: PMC10925791 DOI: 10.3389/fcell.2024.1383301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/13/2024] Open
Affiliation(s)
- Qi Zhang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
| |
Collapse
|
7
|
Biswas H, Makinwa Y, Zou Y. Novel Cellular Functions of ATR for Therapeutic Targeting: Embryogenesis to Tumorigenesis. Int J Mol Sci 2023; 24:11684. [PMID: 37511442 PMCID: PMC10380702 DOI: 10.3390/ijms241411684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The DNA damage response (DDR) is recognized as having an important role in cancer growth and treatment. ATR (ataxia telangiectasia mutated and Rad3-related) kinase, a major regulator of DDR, has shown significant therapeutic potential in cancer treatment. ATR inhibitors have shown anti-tumor effectiveness, not just as monotherapies but also in enhancing the effects of standard chemotherapy, radiation, and immunotherapy. The biological basis of ATR is examined in this review, as well as its functional significance in the development and therapy of cancer, and the justification for inhibiting this target as a therapeutic approach, including an assessment of the progress and status of previous decades' development of effective and selective ATR inhibitors. The current applications of these inhibitors in preclinical and clinical investigations as single medicines or in combination with chemotherapy, radiation, and immunotherapy are also fully reviewed. This review concludes with some insights into the many concerns highlighted or identified with ATR inhibitors in both the preclinical and clinical contexts, as well as potential remedies proposed.
Collapse
Affiliation(s)
| | | | - Yue Zou
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (H.B.); (Y.M.)
| |
Collapse
|
8
|
Gurung D, Danielson JA, Tasnim A, Zhang JT, Zou Y, Liu JY. Proline Isomerization: From the Chemistry and Biology to Therapeutic Opportunities. BIOLOGY 2023; 12:1008. [PMID: 37508437 PMCID: PMC10376262 DOI: 10.3390/biology12071008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Proline isomerization, the process of interconversion between the cis- and trans-forms of proline, is an important and unique post-translational modification that can affect protein folding and conformations, and ultimately regulate protein functions and biological pathways. Although impactful, the importance and prevalence of proline isomerization as a regulation mechanism in biological systems have not been fully understood or recognized. Aiming to fill gaps and bring new awareness, we attempt to provide a wholistic review on proline isomerization that firstly covers what proline isomerization is and the basic chemistry behind it. In this section, we vividly show that the cause of the unique ability of proline to adopt both cis- and trans-conformations in significant abundance is rooted from the steric hindrance of these two forms being similar, which is different from that in linear residues. We then discuss how proline isomerization was discovered historically followed by an introduction to all three types of proline isomerases and how proline isomerization plays a role in various cellular responses, such as cell cycle regulation, DNA damage repair, T-cell activation, and ion channel gating. We then explore various human diseases that have been linked to the dysregulation of proline isomerization. Finally, we wrap up with the current stage of various inhibitors developed to target proline isomerases as a strategy for therapeutic development.
Collapse
Affiliation(s)
- Deepti Gurung
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Jacob A Danielson
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Afsara Tasnim
- Department of Bioengineering, University of Toledo College of Engineering, Toledo, OH 43606, USA
| | - Jian-Ting Zhang
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Yue Zou
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Jing-Yuan Liu
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Bioengineering, University of Toledo College of Engineering, Toledo, OH 43606, USA
| |
Collapse
|