1
|
Zhang W, Xu Y, Fang Y, Li M, Li D, Guo H, Li H, He J, Miao L. Ubiquitination in lipid metabolism reprogramming: implications for pediatric solid tumors. Front Immunol 2025; 16:1554311. [PMID: 40370434 PMCID: PMC12075147 DOI: 10.3389/fimmu.2025.1554311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Pediatric solid tumors represent a significant subset of childhood cancers, accounting for approximately 60% of new diagnoses. Despite advancements in therapeutic strategies, survival rates remain markedly disparate between high-income and resource-limited settings, underscoring the urgent need for novel and effective treatments. Lipid metabolic reprogramming is a fundamental hallmark of cancer, driving tumor progression, therapeutic resistance, and immune evasion through enhanced fatty acid uptake, increased de novo lipid synthesis, and activated fatty acid β-oxidation (FAO). Ubiquitination, a dynamic post-translational modification mediated by the ubiquitin-proteasome system (UPS), plays a crucial role in regulating lipid metabolism by modulating the stability and activity of key metabolic enzymes and transporters involved in cholesterol and fatty acid pathways. This review comprehensively examines the complex interplay between ubiquitination and lipid metabolic reprogramming in pediatric solid tumors. It delineates the mechanisms by which ubiquitination influences cholesterol biosynthesis, uptake, efflux, and fatty acid synthesis and oxidation, thereby facilitating tumor growth and survival. Furthermore, the review identifies potential UPS-mediated therapeutic targets and explores the feasibility of integrating ubiquitination-based strategies with existing treatments. By targeting the UPS to disrupt lipid metabolism pathways, novel therapeutic avenues may emerge to enhance treatment efficacy and overcome resistance in pediatric oncology. This synthesis of current knowledge aims to provide a foundation for the development of innovative, precision medicine approaches to improve clinical outcomes for children afflicted with solid tumors.
Collapse
Affiliation(s)
- Weixin Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Yile Xu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Yingjin Fang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, China
| | - Meng Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Di Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Huiqin Guo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Hang Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Chen Y, Fan Z, Luo Z, Kang X, Wan R, Li F, Lin W, Han Z, Qi B, Lin J, Sun Y, Huang J, Xu Y, Chen S. Impacts of Nutlin-3a and exercise on murine double minute 2-enriched glioma treatment. Neural Regen Res 2025; 20:1135-1152. [PMID: 38989952 PMCID: PMC11438351 DOI: 10.4103/nrr.nrr-d-23-00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 12/21/2023] [Indexed: 07/12/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202504000-00029/figure1/v/2024-07-06T104127Z/r/image-tiff Recent research has demonstrated the impact of physical activity on the prognosis of glioma patients, with evidence suggesting exercise may reduce mortality risks and aid neural regeneration. The role of the small ubiquitin-like modifier (SUMO) protein, especially post-exercise, in cancer progression, is gaining attention, as are the potential anti-cancer effects of SUMOylation. We used machine learning to create the exercise and SUMO-related gene signature (ESLRS). This signature shows how physical activity might help improve the outlook for low-grade glioma and other cancers. We demonstrated the prognostic and immunotherapeutic significance of ESLRS markers, specifically highlighting how murine double minute 2 (MDM2), a component of the ESLRS, can be targeted by nutlin-3. This underscores the intricate relationship between natural compounds such as nutlin-3 and immune regulation. Using comprehensive CRISPR screening, we validated the effects of specific ESLRS genes on low-grade glioma progression. We also revealed insights into the effectiveness of Nutlin-3a as a potent MDM2 inhibitor through molecular docking and dynamic simulation. Nutlin-3a inhibited glioma cell proliferation and activated the p53 pathway. Its efficacy decreased with MDM2 overexpression, and this was reversed by Nutlin-3a or exercise. Experiments using a low-grade glioma mouse model highlighted the effect of physical activity on oxidative stress and molecular pathway regulation. Notably, both physical exercise and Nutlin-3a administration improved physical function in mice bearing tumors derived from MDM2-overexpressing cells. These results suggest the potential for Nutlin-3a, an MDM2 inhibitor, with physical exercise as a therapeutic approach for glioma management. Our research also supports the use of natural products for therapy and sheds light on the interaction of exercise, natural products, and immune regulation in cancer treatment.
Collapse
Affiliation(s)
- Yisheng Chen
- Department of Sport Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhongcheng Fan
- Department of Orthopedic Surgery, Hainan Province Clinical Medical Center, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan Province, China
| | - Zhiwen Luo
- Department of Sport Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xueran Kang
- Department of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Renwen Wan
- Department of Sport Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Fangqi Li
- Department of Sport Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Weiwei Lin
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Zhihua Han
- Department of Orthopedics, Shanghai General Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Beijie Qi
- Department of Sport Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinrong Lin
- Department of Sport Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaying Sun
- Department of Sport Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiebin Huang
- Department of Infectious Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Shiyi Chen
- Department of Sport Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Aden D, Sureka N, Zaheer S, Chaurasia JK, Zaheer S. Metabolic Reprogramming in Cancer: Implications for Immunosuppressive Microenvironment. Immunology 2025; 174:30-72. [PMID: 39462179 DOI: 10.1111/imm.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
Cancer is a complex and heterogeneous disease characterised by uncontrolled cell growth and proliferation. One hallmark of cancer cells is their ability to undergo metabolic reprogramming, which allows them to sustain their rapid growth and survival. This metabolic reprogramming creates an immunosuppressive microenvironment that facilitates tumour progression and evasion of the immune system. In this article, we review the mechanisms underlying metabolic reprogramming in cancer cells and discuss how these metabolic alterations contribute to the establishment of an immunosuppressive microenvironment. We also explore potential therapeutic strategies targeting metabolic vulnerabilities in cancer cells to enhance immune-mediated anti-tumour responses. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02044861, NCT03163667, NCT04265534, NCT02071927, NCT02903914, NCT03314935, NCT03361228, NCT03048500, NCT03311308, NCT03800602, NCT04414540, NCT02771626, NCT03994744, NCT03229278, NCT04899921.
Collapse
Affiliation(s)
- Durre Aden
- Department of Pathology, Hamdard Institute of Medical Science and Research, New Delhi, India
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India
| | | | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
4
|
Youssef E, Zhao S, Purcell C, Olson GL, El-Deiry WS. Targeting the SMURF2-HIF1α axis: a new frontier in cancer therapy. Front Oncol 2024; 14:1484515. [PMID: 39697237 PMCID: PMC11652374 DOI: 10.3389/fonc.2024.1484515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
The SMAD-specific E3 ubiquitin protein ligase 2 (SMURF2) has emerged as a critical regulator in cancer biology, modulating the stability of Hypoxia-Inducible Factor 1-alpha (HIF1α) and influencing a network of hypoxia-driven pathways within the tumor microenvironment (TME). SMURF2 targets HIF1α for ubiquitination and subsequent proteasomal degradation, disrupting hypoxic responses that promote cancer cell survival, metabolic reprogramming, angiogenesis, and resistance to therapy. Beyond its role in HIF1α regulation, SMURF2 exerts extensive control over cellular processes central to tumor progression, including chromatin remodeling, DNA damage repair, ferroptosis, and cellular stress responses. Notably, SMURF2's ability to promote ferroptotic cell death through GSTP1 degradation offers an alternative pathway to overcome apoptosis resistance, expanding therapeutic options for refractory cancers. This review delves into the multifaceted interactions between SMURF2 and HIF1α, emphasizing how their interplay impacts metabolic adaptations like the Warburg effect, immune evasion, and therapeutic resistance. We discuss SMURF2's dual functionality as both a tumor suppressor and, in certain contexts, an oncogenic factor, underscoring its potential as a highly versatile therapeutic target. Furthermore, modulating the SMURF2-HIF1α axis presents an innovative approach to destabilize hypoxia-dependent pathways, sensitizing tumors to chemotherapy, radiotherapy, and immune-based treatments. However, the complexity of SMURF2's interactions necessitate a thorough assessment of potential off-target effects and challenges in specificity, which must be addressed to optimize its clinical application. This review concludes by proposing future directions for research into the SMURF2-HIF1α pathway, aiming to refine targeted strategies that exploit this axis and address the adaptive mechanisms of aggressive tumors, ultimately advancing the landscape of precision oncology.
Collapse
Affiliation(s)
- Emile Youssef
- Research & Development, SMURF-Therapeutics, Inc., Providence, RI, United States
- Medical & Pharmacovigilance, Kapadi, Inc., Raleigh, NC, United States
| | - Shuai Zhao
- Department of Pathology & Laboratory Medicine, Legorreta Cancer Center at Brown University, Providence, RI, United States
| | - Connor Purcell
- Department of Pathology & Laboratory Medicine, Legorreta Cancer Center at Brown University, Providence, RI, United States
| | - Gary L. Olson
- Medicinal Chemistry & Drug Discovery, Provid Pharmaceuticals, Inc., Monmouth Junction, NJ, United States
| | - Wafik S. El-Deiry
- Research & Development, SMURF-Therapeutics, Inc., Providence, RI, United States
- Department of Pathology & Laboratory Medicine, Legorreta Cancer Center at Brown University, Providence, RI, United States
| |
Collapse
|
5
|
Zhang Y, Bai J, Xiao B, Li C. BMSC-derived exosomes promote osteoporosis alleviation via M2 macrophage polarization. Mol Med 2024; 30:220. [PMID: 39563244 PMCID: PMC11577737 DOI: 10.1186/s10020-024-00904-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/20/2024] [Indexed: 11/21/2024] Open
Abstract
Osteoporosis is characterized by reduced bone mass due to imbalanced bone metabolism. Exosomes derived from bone mesenchymal stem cells (BMSCs) have been shown to play roles in various diseases. This study aimed to clarify the regulatory function and molecular mechanism of BMSCs-derived exosomes in osteogenic differentiation and their potential therapeutic effects on osteoporosis. Exosomes were extracted from BMSCs. Bone marrow-derived macrophages (BMDMs) were cultured and internalized with BMSCs-derived exosomes. Real-time quantitative PCR was used to detect the expression of macrophage surface markers and tripartite motif (TRIM) family genes. BMDMs were co-cultured with human osteoblasts to assess osteogenic differentiation. Western blot was performed to analyze the ubiquitination of triggering receptor expressed on myeloid cell 1 (TREM1) mediated by TRIM25. An ovariectomized mice model was established to evaluate the role of TRIM25 and exosomes in osteoporosis. Exosomes were successfully isolated from BMSCs. BMSCs-derived exosomes upregulated TRIM25 expression, promoting M2 macrophage polarization and osteogenic differentiation. TRIM25 facilitated the ubiquitination and degradation of TREM1. Overexpression of TREM1 reversed the enhanced M2 macrophage polarization and osteogenic differentiation caused by TRIM25 overexpression. TRIM25 enhanced the protective effect of BMSCs-derived exosomes against bone loss in mice. These findings suggested that BMSCs-derived exosomes promoted osteogenic differentiation by regulating M2 macrophage polarization through TRIM25-mediated ubiquitination and degradation of TREM1. This mechanism might provide a novel approach for treating osteoporosis.
Collapse
Affiliation(s)
- Yanbin Zhang
- Department of Spine Surgery, National Center for Orthopaedics, Capital Medical University Affiliated Beijing Jishuitan Hospital, Beijing, 100035, People's Republic of China
| | - Jing Bai
- Department of Trauma and Joint, The Third Affiliated Hospital of Beijing University of Traditional Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Bin Xiao
- Department of Spine Surgery, National Center for Orthopaedics, Capital Medical University Affiliated Beijing Jishuitan Hospital, Beijing, 100035, People's Republic of China
| | - Chunyan Li
- Department of Clinial Laboratory, Capital Medical University Affiliated Beijing Jishuitan Hospital, Xinjiekou No. 31 East Street, Xicheng District, Beijing, 100035, People's Republic of China.
| |
Collapse
|
6
|
Jiaerken B, Liu W, Zheng J, Qu W, Wu Q, Ai Z. The SUMO Family: Mechanisms and Implications in Thyroid Cancer Pathogenesis and Therapy. Biomedicines 2024; 12:2408. [PMID: 39457720 PMCID: PMC11505470 DOI: 10.3390/biomedicines12102408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
(1) Background: Small ubiquitin-like modifiers (SUMOs) are pivotal in post-translational modifications, influencing various cellular processes, such as protein localization, stability, and genome integrity. (2) Methods: This review explores the SUMO family, including its isoforms and catalytic cycle, highlighting their significance in regulating key biological functions in thyroid cancer. We discuss the multifaceted roles of SUMOylation in DNA repair mechanisms, protein stability, and the modulation of receptor activities, particularly in the context of thyroid cancer. (3) Results: The aberrant SUMOylation machinery contributes to tumorigenesis through altered gene expression and immune evasion mechanisms. Furthermore, we examine the therapeutic potential of targeting SUMOylation pathways in thyroid cancer treatment, emphasizing the need for further research to develop effective SUMOylation inhibitors. (4) Conclusions: By understanding the intricate roles of SUMOylation in cancer biology, we can pave the way for innovative therapeutic strategies to improve outcomes for patients with advanced tumors.
Collapse
Affiliation(s)
- Bahejuan Jiaerken
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
- School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wei Liu
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiaojiao Zheng
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Weifeng Qu
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qiao Wu
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhilong Ai
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
7
|
Ma XN, Li MY, Qi GQ, Wei LN, Zhang DK. SUMOylation at the crossroads of gut health: insights into physiology and pathology. Cell Commun Signal 2024; 22:404. [PMID: 39160548 PMCID: PMC11331756 DOI: 10.1186/s12964-024-01786-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024] Open
Abstract
SUMOylation, a post-translational modification involving the covalent attachment of small ubiquitin-like modifier (SUMO) proteins to target substrates, plays a pivotal role at the intersection of gut health and disease, influencing various aspects of intestinal physiology and pathology. This review provides a comprehensive examination of SUMOylation's diverse roles within the gut microenvironment. We examine its critical roles in maintaining epithelial barrier integrity, regulating immune responses, and mediating host-microbe interactions, thereby highlighting the complex molecular mechanisms that underpin gut homeostasis. Furthermore, we explore the impact of SUMOylation dysregulation in various intestinal disorders, including inflammatory bowel diseases and colorectal cancer, highlighting its implications as a potential diagnostic biomarker and therapeutic target. By integrating current research findings, this review offers valuable insights into the dynamic interplay between SUMOylation and gut health, paving the way for novel therapeutic strategies aimed at restoring intestinal equilibrium and combating associated pathologies.
Collapse
Affiliation(s)
- Xue-Ni Ma
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Mu-Yang Li
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Guo-Qing Qi
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Li-Na Wei
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - De-Kui Zhang
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, 730030, China.
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|
8
|
Xiong J, Chen P, He L, Chai X, Zhang Y, Sun S. Functional mechanism of hypoxia-like conditions mediating resistance to ferroptosis in cervical cancer cells by regulating KDM4A SUMOylation and the SLC7A11/GPX4 pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:4207-4220. [PMID: 38727079 DOI: 10.1002/tox.24304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/24/2024] [Accepted: 04/22/2024] [Indexed: 07/14/2024]
Abstract
The discovery of ferroptosis has unveiled new perspectives for cervical cancer (CC) management. We elucidated the functional mechanism of hypoxia-like conditions in CC cell ferroptosis resistance. CC cells were subjected to normoxia or hypoxia-like conditions, followed by erastin treatment to induce ferroptosis. The assessment of cell viability/ferroptosis resistance was performed by MTT assay/Fe2+, MDA, and glutathione measurement by colorimetry. KDM4A/SUMO1/Ubc9/SENP1 protein levels were determined by Western blot. Interaction and binding sites between KDM4A and SUMO1 were analyzed and predicted by immunofluorescence/co-immunoprecipitation and GPS-SUMO 1.0 software, with the target relationship verified by mutation experiment. SLC7A11/GPX4/H3K9me3 protein levels, and H3K9me3 level in the SLC7A11 gene promoter region were determined by RT-qPCR and Western blot/chromatin immunoprecipitation. H3H9me3/SLC7A11/GPX4 level alterations, and ferroptosis resistance after KDM4A silencing or KDM4A K471 mutation were assessed. Hypoxia-like conditions increased CC cell ferroptosis resistance and KDM4A, SUMO1, and Ubc9 protein levels, while it decreased SENP1 protein level. KDM4A and SUMO1 were co-localized in the nucleus, and hypoxia-like conditions promoted their interaction. Specifically, the K471 locus of KDM4A was the main locus for SUMO1ylation. Hypoxia-like conditions up-regulated SLC7A11 and GPX4 expression levels and decreased H3K9me3 protein level and H3K9me3 abundance in the SLC7A11 promoter region. KDM4A silencing or K471 locus mutation resulted in weakened interaction between KDM4A and SUMO1, elevated H3K9me3 levels, decreased SLC7A11 expression, ultimately, a reduced CC cell ferroptosis resistance. CoCl2-stimulated hypoxia-like conditions enhanced SUMO1 modification of KDM4A at the K471 locus specifically, repressed H3K9me3 levels, and up-regulated SLC7A11/GPX4 to enhance CC cell ferroptosis resistance.
Collapse
Affiliation(s)
- Jing Xiong
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Puxiang Chen
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ling He
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoshan Chai
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yongjing Zhang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shujuan Sun
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Zhou H, Deng N, Li Y, Hu X, Yu X, Jia S, Zheng C, Gao S, Wu H, Li K. Distinctive tumorigenic significance and innovative oncology targets of SUMOylation. Theranostics 2024; 14:3127-3149. [PMID: 38855173 PMCID: PMC11155398 DOI: 10.7150/thno.97162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024] Open
Abstract
Protein SUMOylation, a post-translational modification, intricately regulates diverse biological processes including gene expression, cell cycle progression, signaling pathway transduction, DNA damage response, and RNA metabolism. This modification contributes to the acquisition of tumorigenicity and the maintenance of cancer hallmarks. In malignancies, protein SUMOylation is triggered by various cellular stresses, promoting tumor initiation and progression. This augmentation is orchestrated through its specific regulatory mechanisms and characteristic biological functions. This review focuses on elucidating the fundamental regulatory mechanisms and pathological functions of the SUMO pathway in tumor pathogenesis and malignant evolution, with particular emphasis on the tumorigenic potential of SUMOylation. Furthermore, we underscore the potential therapeutic benefits of targeting the SUMO pathway, paving the way for innovative anti-tumor strategies by perturbing this dynamic and reversible modifying process.
Collapse
Affiliation(s)
- Heng Zhou
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China; Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Na Deng
- Department of Hematology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yanshu Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiaoyun Hu
- Scientific Experimental Center, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Xue Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China; Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| | - Shiheng Jia
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China; Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| | - Chen Zheng
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China; Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Shan Gao
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation; Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning 110122, China
- Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Liaoning Province, China
| | - Kai Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China; Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| |
Collapse
|
10
|
Swain S, Sahu A, Singh P, Rout S, Parida GK, Mishra PR, Agarwal K. Potential of Liver Serum Enzymes and SUVmax in Primary Tumors as Predictive Biomarkers With Correlational Evidence. Cureus 2024; 16:e58532. [PMID: 38957833 PMCID: PMC11218504 DOI: 10.7759/cureus.58532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 07/04/2024] Open
Abstract
Introduction Cancer exerts a substantial influence on the body's metabolism through varied mechanisms, instigating a metabolic reprogramming that maintains the unchecked growth and survival of cancer cells, consequently perturbing diverse metabolic parameters. The introduction of positron emission tomography-computed tomography (PET/CT), delivering detailed insights into both metabolic and morphological aspects, has brought about a revolutionary shift in modern cancer detection. Exploring the potential connection between PET-CT metabolic features and the metabolic parameters of liver enzymes in an individual can unveil novel avenues for cancer diagnosis and prognosis. Materials and methods This study conducted a retrospective analysis of patient records from our institution, covering the period from January 2021 to September 2023, focusing on individuals with various malignancies. The data included information on gender, age, clinical history, and liver serum parameters, which were compiled into tables. Additionally, inflammatory indicators such as ALT (alanine transaminase), ALP (alkaline phosphatase), total protein (TP), ALT/AST ratio, and SUVmax were collected and plotted. The study used Pearson correlation analysis to assess the relationship between each inflammatory variable and SUV (max) as determined by PET-CT. Results In breast cancer, there was a statistically significant positive correlation (R2=0.0651) between serum ALP levels and SUVmax as determined by regression analysis. Hodgkin lymphoma, on the other hand, showed a statistically significant negative correlation between the ALT-to-AST ratio (ALT/AST) and SUVmax (r = -0.45, R2 = 0.204). In non-Hodgkin lymphoma patients, total protein (TP) was negatively correlated with SUVmax (R2=-0.081, r= -0.28), while in lung cancer patients, there was a significant positive correlation with regression correlation coefficients (R2 = 0.026, 0.024, 0.024, and 0.018 for ALT/AST, TP, ALP, albumin, and ALT, respectively). Conclusion Aligning with these results, it can be a recent addition to acknowledge that both the tumor metabolic parameter (SUVmax) and the levels of liver serum enzymes exhibit a potential for predicting patient prognosis in various cancers.
Collapse
Affiliation(s)
- Sashikanta Swain
- Anatomy, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Abhijit Sahu
- Anatomy, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Parneet Singh
- Nuclear Medicine, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Sipra Rout
- Anatomy, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Girish K Parida
- Nuclear Medicine, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Pravash R Mishra
- Anatomy, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Kanhayalal Agarwal
- Nuclear Medicine, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| |
Collapse
|
11
|
Yang YH, Wen R, Yang N, Zhang TN, Liu CF. Roles of protein post-translational modifications in glucose and lipid metabolism: mechanisms and perspectives. Mol Med 2023; 29:93. [PMID: 37415097 DOI: 10.1186/s10020-023-00684-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023] Open
Abstract
The metabolism of glucose and lipids is essential for energy production in the body, and dysregulation of the metabolic pathways of these molecules is implicated in various acute and chronic diseases, such as type 2 diabetes, Alzheimer's disease, atherosclerosis (AS), obesity, tumor, and sepsis. Post-translational modifications (PTMs) of proteins, which involve the addition or removal of covalent functional groups, play a crucial role in regulating protein structure, localization function, and activity. Common PTMs include phosphorylation, acetylation, ubiquitination, methylation, and glycosylation. Emerging evidence indicates that PTMs are significant in modulating glucose and lipid metabolism by modifying key enzymes or proteins. In this review, we summarize the current understanding of the role and regulatory mechanisms of PTMs in glucose and lipid metabolism, with a focus on their involvement in disease progression associated with aberrant metabolism. Furthermore, we discuss the future prospects of PTMs, highlighting their potential for gaining deeper insights into glucose and lipid metabolism and related diseases.
Collapse
Affiliation(s)
- Yu-Hang Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China
| | - Ri Wen
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China.
| | - Chun-Feng Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China.
| |
Collapse
|
12
|
Wu S, Fang L, Li Y, Wang HB, Zhang H. A Fluorescence Turn On-off-on Method for Sensitive Detection of Sn 2+ and Glycine Using Waste Eggshell Membrane Derived Carbon Nanodots as Probe. J Fluoresc 2023; 33:1505-1513. [PMID: 36763295 DOI: 10.1007/s10895-022-03133-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/19/2022] [Indexed: 02/11/2023]
Abstract
Changes in Sn2+ and glycine levels are relevant to many important physiological procedures in human health. However, investigation of their physiological functions is limited because few versatile methods towards Sn2+ and glycine detection have been developed. In this work, a fluorescence turn on-off-on strategy was firstly constructed for rapid and sensitive detection of Sn2+ and glycine through the specific binding between Sn2+ and glycine. Carbon nanodots (CDs) with a quantum yield of 19.5% were synthesized by utilizing inner film of waste eggshell as carbon source and employed as fluorescent probe. In the presence of Sn2+, the fluorescence of CDs was quenched by Sn2+ via the primary inner filter effect (IFE). However, the binding between Sn2+ and glycine prevented the IFE between Sn2+ and CDs, resulting in fluorescence recovery of CDs. Under optimized conditions, the fluorescent response of CDs displayed good linear relationships with the concentrations of Sn2+ in the range of 10-200 µM and 200-5000 µM, and the limit of detection (LOD) was 2.4 µM. For glycine detection, a good linear relationship was obtained in the concentration range of 5-1000 µM with a low LOD down to 0.76 µM. Moreover, the practicability of the assay was also demonstrated by measuring glycine content in human serum samples. This work provides an economical, green and fast method for biological analysis of Sn2+ and glycine.
Collapse
Affiliation(s)
- Sifei Wu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Linxia Fang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, People's Republic of China.
| | - Yihan Li
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Hongding Zhang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, People's Republic of China.
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, People's Republic of China.
| |
Collapse
|
13
|
Lett KE, McLaurin DM, Tucker SK, Hebert MD. The Cajal body marker protein coilin is SUMOylated and possesses SUMO E3 ligase-like activity. FRONTIERS IN RNA RESEARCH 2023; 1:1197990. [PMID: 39703804 PMCID: PMC11656447 DOI: 10.3389/frnar.2023.1197990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Cajal bodies (CBs) are subnuclear domains that contribute to the biogenesis of several different classes of ribonucleoproteins (RNPs) including small nuclear RNPs. Only some cell types contain abundant CBs, such as neuronal cells and skeletal muscle, but CBs are invariant features of transformed cells. In contrast, coilin, the CB marker protein, is a ubiquitously expressed nuclear protein but the function of coilin in cell types that lack CBs is not well understood. We have previously shown that coilin promotes microRNA biogenesis by promoting phosphorylation of DGCR8, a component of the Microprocessor. Here we identify 7 additional residues of DGCR8 with decreased phosphorylation upon coilin knockdown. In addition to phosphorylation, the addition of a small ubiquitin-like modifier (SUMO) to DGCR8 also increases its stability. Because of coilin's role in the promotion of DGCR8 phosphorylation, we investigated whether coilin is involved in DGCR8 SUMOylation. We show that coilin knockdown results in global decrease of protein SUMOylation, including decreased DGCR8 and Sp100 (a PML body client protein) SUMOylation and decreased SMN expression. Alternatively, we found that coilin expression rescued Sp100 SUMOylation and increased DGCR8 and SMN levels in a coilin knockout cell line. Furthermore, we found that coilin facilitates RanGAP1 SUMOylation, interacts directly with components of the SUMOylation machinery (Ubc9 and SUMO2), and itself is SUMOylated in vitro and in vivo. In summary, we have identified coilin as a regulator of DGCR8 phosphorylation and a promotor of protein SUMOylation with SUMO E3 ligase-like activity.
Collapse
Affiliation(s)
- Katheryn E. Lett
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Douglas M. McLaurin
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Sara K. Tucker
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Michael D. Hebert
- Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| |
Collapse
|
14
|
Koo SY, Park EJ, Noh HJ, Jo SM, Ko BK, Shin HJ, Lee CW. Ubiquitination Links DNA Damage and Repair Signaling to Cancer Metabolism. Int J Mol Sci 2023; 24:ijms24098441. [PMID: 37176148 PMCID: PMC10179089 DOI: 10.3390/ijms24098441] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Changes in the DNA damage response (DDR) and cellular metabolism are two important factors that allow cancer cells to proliferate. DDR is a set of events in which DNA damage is recognized, DNA repair factors are recruited to the site of damage, the lesion is repaired, and cellular responses associated with the damage are processed. In cancer, DDR is commonly dysregulated, and the enzymes associated with DDR are prone to changes in ubiquitination. Additionally, cellular metabolism, especially glycolysis, is upregulated in cancer cells, and enzymes in this metabolic pathway are modulated by ubiquitination. The ubiquitin-proteasome system (UPS), particularly E3 ligases, act as a bridge between cellular metabolism and DDR since they regulate the enzymes associated with the two processes. Hence, the E3 ligases with high substrate specificity are considered potential therapeutic targets for treating cancer. A number of small molecule inhibitors designed to target different components of the UPS have been developed, and several have been tested in clinical trials for human use. In this review, we discuss the role of ubiquitination on overall cellular metabolism and DDR and confirm the link between them through the E3 ligases NEDD4, APC/CCDH1, FBXW7, and Pellino1. In addition, we present an overview of the clinically important small molecule inhibitors and implications for their practical use.
Collapse
Affiliation(s)
- Seo-Young Koo
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Eun-Ji Park
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Hyun-Ji Noh
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Su-Mi Jo
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Bo-Kyoung Ko
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Hyun-Jin Shin
- Team of Radiation Convergence Research, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
- SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
15
|
Dai Q, Zhang H, Tang S, Wu X, Wang J, Yi B, Liu J, Li Z, Liao Q, Li A, Liu Y, Zhang W. Vitamin D- VDR (vitamin D receptor) alleviates glucose metabolism reprogramming in lipopolysaccharide-induced acute kidney injury. Front Physiol 2023; 14:1083643. [PMID: 36909229 PMCID: PMC9998528 DOI: 10.3389/fphys.2023.1083643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
Background: Our previous study showed that vitamin D (VD)-vitamin D receptor (VDR) plays a nephroprotective role in lipopolysaccharide (LPS)-induced acute kidney injury (AKI). Recently, glucose metabolism reprogramming was reported to be involved in the pathogenesis of AKI. Objective: To investigate the role of VD-VDR in glucose metabolism reprogramming in LPS-induced AKI. Methods: We established a model of LPS-induced AKI in VDR knockout (VDR-KO) mice, renal proximal tubular-specific VDR-overexpressing (VDR-OE) mice and wild-type C57BL/6 mice. In vitro, human proximal tubular epithelial cells (HK-2 cells), VDR knockout and VDR overexpression HK-2 cell lines were used. Results: Paricalcitol (an active vitamin D analog) or VDR-OE reduced lactate concentration, hexokinase activity and PDHA1 phosphorylation (a key step in inhibiting aerobic oxidation) and simultaneously ameliorated renal inflammation, apoptosis and kidney injury in LPS-induced AKI mice, which were more severe in VDR-KO mice. In in vitro experiments, glucose metabolism reprogramming, inflammation and apoptosis induced by LPS were alleviated by treatment with paricalcitol or dichloroacetate (DCA, an inhibitor of p-PDHA1). Moreover, paricalcitol activated the phosphorylation of AMP-activated protein kinase (AMPK), and an AMPK inhibitor partially abolished the protective effect of paricalcitol in LPS-treated HK-2 cells. Conclusion: VD-VDR alleviated LPS-induced metabolic reprogramming in the kidneys of AKI mice, which may be attributed to the inactivation of PDHA1 phosphorylation via the AMPK pathway.
Collapse
Affiliation(s)
- Qing Dai
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Shiqi Tang
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xueqin Wu
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jianwen Wang
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Bin Yi
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jishi Liu
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Li
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Qin Liao
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Aimei Li
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yan Liu
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhang
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Mandel N, Agarwal N. Role of SUMOylation in Neurodegenerative Diseases. Cells 2022; 11:3395. [PMID: 36359791 PMCID: PMC9654019 DOI: 10.3390/cells11213395] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 09/26/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are irreversible, progressive diseases with no effective treatment. The hallmark of NDDs is the aggregation of misfolded, modified proteins, which impair neuronal vulnerability and cause brain damage. The loss of synaptic connection and the progressive loss of neurons result in cognitive defects. Several dysregulated proteins and overlapping molecular mechanisms contribute to the pathophysiology of NDDs. Post-translational modifications (PTMs) are essential regulators of protein function, trafficking, and maintaining neuronal hemostasis. The conjugation of a small ubiquitin-like modifier (SUMO) is a reversible, dynamic PTM required for synaptic and cognitive function. The onset and progression of neurodegenerative diseases are associated with aberrant SUMOylation. In this review, we have summarized the role of SUMOylation in regulating critical proteins involved in the onset and progression of several NDDs.
Collapse
Affiliation(s)
| | - Nitin Agarwal
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
17
|
Yang ML, Kibbey RG, Mamula MJ. Biomarkers of autoimmunity and beta cell metabolism in type 1 diabetes. Front Immunol 2022; 13:1028130. [PMID: 36389721 PMCID: PMC9647083 DOI: 10.3389/fimmu.2022.1028130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/13/2022] [Indexed: 09/10/2023] Open
Abstract
Posttranslational protein modifications (PTMs) are an inherent response to physiological changes causing altered protein structure and potentially modulating important biological functions of the modified protein. Besides cellular metabolic pathways that may be dictated by PTMs, the subtle change of proteins also may provoke immune attack in numerous autoimmune diseases. Type 1 diabetes (T1D) is a chronic autoimmune disease destroying insulin-producing beta cells within the pancreatic islets, a result of tissue inflammation to specific autoantigens. This review summarizes how PTMs arise and the potential pathological consequence of PTMs, with particular focus on specific autoimmunity to pancreatic beta cells and cellular metabolic dysfunction in T1D. Moreover, we review PTM-associated biomarkers in the prediction, diagnosis and in monitoring disease activity in T1D. Finally, we will discuss potential preventive and therapeutic approaches of targeting PTMs in repairing or restoring normal metabolic pathways in pancreatic islets.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Richard G. Kibbey
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Mark J. Mamula
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
18
|
TRAF4 Promotes the Proliferation of Glioblastoma by Stabilizing SETDB1 to Activate the AKT Pathway. Int J Mol Sci 2022; 23:ijms231710161. [PMID: 36077559 PMCID: PMC9456363 DOI: 10.3390/ijms231710161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022] Open
Abstract
The process of ubiquitination regulates the degradation, transport, interaction, and stabilization of substrate proteins, and is crucial for cell signal transduction and function. TNF receptor-associated factor 4, TRAF4, is a member of the TRAF family and is involved in the process of ubiquitination as an E3 ubiquitin protein ligase. Here, we found that TRAF4 expression correlates with glioma subtype and grade, and that TRAF4 is significantly overexpressed in glioblastoma and predicts poor prognosis. Knockdown of TRAF4 significantly inhibited the growth, proliferation, migration, and invasion of glioblastoma cells. Mechanistically, we found that TRAF4 only interacts with the Tudor domain of the AKT pathway activator SETDB1. TRAF4 mediates the atypical ubiquitination of SETDB1 to maintain its stability and function, thereby promoting the activation of the AKT pathway. Restoring SETDB1 expression in TRAF4 knockdown glioblastoma cells partially restored cell growth and proliferation. Collectively, our findings reveal a novel mechanism by which TRAF4 mediates AKT pathway activation, suggesting that TRAF4 may serve as a biomarker and promising therapeutic target for glioblastoma.
Collapse
|