1
|
Djos A, Svensson J, Gaarder J, Umapathy G, Nilsson S, Ek T, Vogt H, Georgantzi K, Öra I, Träger C, Kogner P, Martinsson T, Fransson S. Loss of Chromosome Y in Neuroblastoma Is Associated With High-Risk Disease, 11q-Deletion, and Telomere Maintenance. Genes Chromosomes Cancer 2024; 63:e23260. [PMID: 39031441 DOI: 10.1002/gcc.23260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/22/2024] Open
Abstract
Neuroblastoma (NB) is a heterogeneous childhood cancer with a slightly higher incidence in boys than girls, with the reason for this gender disparity unknown. Given the growing evidence for the involvement of loss of the Y chromosome (LoY) in male diseases including cancer, we investigated Y chromosome status in NB. Male NB tumor samples from a Swedish cohort, analyzed using Cytoscan HD SNP-microarray, were selected. Seventy NB tumors were analyzed for aneuploidy of the Y chromosome, and these data were correlated with other genetic, biological, and clinical parameters. LoY was found in 21% of the male NB tumors and it was almost exclusively found in those with high-risk genomic profiles. Furthermore, LoY was associated with increased age at diagnosis and enriched in tumors with 11q-deletion and activated telomere maintenance mechanisms. In contrast, tumors with an MYCN-amplified genomic profile retained their Y chromosome. The understanding of LoY in cancer is limited, making it difficult to conclude whether LoY is a driving event in NB or function of increased genomic instability. Gene expression analysis of Y chromosome genes in male NB tumors showed low expression of certain genes correlating with worse overall survival. KDM5D, encoding a histone demethylase stands out as an interesting candidate for further studies. LoY has been shown to impact the epigenomic layer of autosomal loci in nonreproductive tissues, and KDM5D has been reported as downregulated and/or associated with poor survival in different malignancies. Further studies are needed to explore the mechanisms and functional consequences of LoY in NB.
Collapse
Affiliation(s)
- Anna Djos
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johanna Svensson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jennie Gaarder
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ganesh Umapathy
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Staffan Nilsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Torben Ek
- Children's Cancer Centre, Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hartmut Vogt
- Crown Princess Victoria Children's Hospital, Division of Children's and Women's Health, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Kleopatra Georgantzi
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Ingrid Öra
- Department of Pediatric Oncology, Skåne University Hospital, Lund, Sweden
| | - Catarina Träger
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Tommy Martinsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Susanne Fransson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Peng H, Wu X, Cui X, Liu S, Liang Y, Cai X, Shi M, Zhong R, Li C, Liu J, Wu D, Gao Z, Lu X, Luo H, He J, Liang W. Molecular and immune characterization of Chinese early-stage non-squamous non-small cell lung cancer: a multi-omics cohort study. Transl Lung Cancer Res 2024; 13:763-784. [PMID: 38736486 PMCID: PMC11082711 DOI: 10.21037/tlcr-23-800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/15/2024] [Indexed: 05/14/2024]
Abstract
Background Albeit considered with superior survival, around 30% of the early-stage non-squamous non-small cell lung cancer (Ns-NSCLC) patients relapse within 5 years, suggesting unique biology. However, the biological characteristics of early-stage Ns-NSCLC, especially in the Chinese population, are still unclear. Methods Multi-omics interrogation of early-stage Ns-NSCLC (stage I-III), paired blood samples and normal lung tissues (n=76) by whole-exome sequencing (WES), RNA sequencing, and T-cell receptor (TCR) sequencing were conducted. Results An average of 128 exonic mutations were identified, and the most frequently mutant gene was EGFR (55%), followed by TP53 (37%) and TTN (26%). Mutations in MUC17, ABCA2, PDE4DIP, and MYO18B predicted significantly unfavorable disease-free survival (DFS). Moreover, cytobands amplifications in 8q24.3, 14q13.1, 14q11.2, and deletion in 3p21.1 were highlighted in recurrent cases. Higher incidence of human leukocyte antigen loss of heterozygosity (HLA-LOH), higher tumor mutational burden (TMB) and tumor neoantigen burden (TNB) were identified in ever-smokers than never-smokers. HLA-LOH also correlated with higher TMB, TNB, intratumoral heterogeneity (ITH), and whole chromosomal instability (wCIN) scores. Interestingly, higher ITH was an independent predictor of better DFS in early-stage Ns-NSCLC. Up-regulation of immune-related genes, including CRABP2, ULBP2, IL31RA, and IL1A, independently portended a dismal prognosis. Enhanced TCR diversity of peripheral blood mononuclear cells (PBMCs) predicted better prognosis, indicative of a noninvasive method for relapse surveillance. Eventually, seven machine-learning (ML) algorithms were employed to evaluate the predictive accuracy of clinical, genomic, transcriptomic, and TCR repertoire data on DFS, showing that clinical and RNA features combination in the random forest (RF) algorithm, with area under the curve (AUC) of 97.5% and 83.3% in the training and testing cohort, respectively, significantly outperformed other methods. Conclusions This study comprehensively profiled the genomic, transcriptomic, and TCR repertoire spectrums of Chinese early-stage Ns-NSCLC, shedding light on biological underpinnings and candidate biomarkers for prognosis development.
Collapse
Affiliation(s)
- Haoxin Peng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Xiangrong Wu
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Nanshan School, Guangzhou Medical University, Guangzhou, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoli Cui
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd., Shenzhen, China
| | - Shaopeng Liu
- Department of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, China
- Department of Artificial Intelligence Research, Pazhou Lab, Guangzhou, China
| | - Yueting Liang
- Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiuyu Cai
- Department of General Internal Medicine, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Cener for Cancer Medicine, Guangzhou, China
| | - Mengping Shi
- Department of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, China
| | - Ran Zhong
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Caichen Li
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun Liu
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dongfang Wu
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd., Shenzhen, China
| | - Zhibo Gao
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd., Shenzhen, China
| | - Xu Lu
- Department of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, China
- Department of Artificial Intelligence Research, Pazhou Lab, Guangzhou, China
| | - Haitao Luo
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd., Shenzhen, China
| | - Jianxing He
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenhua Liang
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Medical Oncology, The First People’s Hospital of Zhaoqing, Zhaoqing, China
| |
Collapse
|
3
|
Li L, Zhu G, Gong C, Hu M, Tan K, Jiang L, Li Y, Zhu X, Xie P, Chen X, Yang X. Histone demethylase KDM5D represses the proliferation, migration and invasion of hepatocellular carcinoma through the E2F1/TNNC1 axis. Antioxid Redox Signal 2024. [PMID: 38504588 DOI: 10.1089/ars.2023.0448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
OBJECTIVE This study focused on investigating the mechanism in which the KDM5D/E2F1/TNNC1 axis affected hepatocellular carcinoma (HCC) development. METHODS At first, we determined HCC cell proliferation, migration, invasion, and apoptosis, as well as SOD activity, MDA content, and ROS level. ChIP assay was subsequently conducted to examine H3K4me3 modification in the E2F1 promoter region and the binding of E2F1 to the TNNC1 promoter region after KDM5D overexpression. Meanwhile, we performed western blot for testing KDM5D, H3K4me3, and E2F1 expression after KDM5D overexpression in Huh-7 cells. The binding of transcription factor E2F1 to the TNNC1 promoter region was assessed by dual luciferase reporter gene assay. We further observed the tumor growth ability in nude mice transplanted tumor models. RESULTS Overexpressed KDM5D suppressed HCC proliferation, migration, and invasion, promoted the apoptosis, suppressed SOD activity, elevated MDA content and ROS level, and promoted ferroptosis. KDM5D suppressed H3K4me3 modification in the E2F1 promoter region and suppressed E2F1 expression in HCC cells. Reduced KDM5D, H3K4me3, and E2F1 expression was found after KDM5D overexpression in Huh-7 cells. Overexpressing E2F1 reversed the inhibitory effects of KDM5D on HCC cell proliferative, migratory, and invasive behaviors. KDM5D repressed TNNC1 transcription by inhibiting E2F1 binding to the TNNC1 promoter. In vivo KDM5D overexpression inhibited HCC development via the E2F1/TNNC1 axis. CONCLUSION KDM5D inhibits E2F1 expression by suppressing H3K4me3 modification in the E2F1 promoter region, which in turn suppresses the binding of E2F1 to the TNNC1 promoter region, thus leading to the inhibition of HCC development.
Collapse
Affiliation(s)
- Lili Li
- Anhui Wanbei Coal Electricity Group General Hospital, 645365, Suzhou, Jiangsu, China;
| | - Genbao Zhu
- Anhui Wanbei Coal Electricity Group General Hospital, 645365, Suzhou, Jiangsu, China;
| | - Chen Gong
- Anhui Wanbei Coal Electricity Group General Hospital, 645365, Suzhou, Jiangsu, China;
| | - Mengxue Hu
- Anhui Wanbei Coal Electricity Group General Hospital, 645365, Suzhou, Jiangsu, China;
| | - Kemeng Tan
- Anhui Wanbei Coal Electricity Group General Hospital, 645365, Suzhou, Jiangsu, China;
| | - La Jiang
- Anhui Wanbei Coal Electricity Group General Hospital, 645365, Suzhou, Jiangsu, China;
| | - Yafen Li
- Anhui Wanbei Coal Electricity Group General Hospital, 645365, Suzhou, Jiangsu, China;
| | - Xiaohong Zhu
- Anhui Wanbei Coal Electricity Group General Hospital, 645365, Suzhou, Jiangsu, China;
| | - Peng Xie
- Anhui Wanbei Coal Electricity Group General Hospital, 645365, Suzhou, Jiangsu, China;
| | - Xilan Chen
- Anhui Wanbei Coal Electricity Group General Hospital, 645365, 125 Huaihe West Road. Yongqiao District, Suzhou, China, 234000;
| | - Xianfen Yang
- Anhui Wanbei Coal Electricity Group General Hospital, 645365, Suzhou, Jiangsu, China;
| |
Collapse
|
4
|
Wang D, Zhang Y, Liao Z, Ge H, Güngör C, Li Y. KDM5 family of demethylases promotes CD44-mediated chemoresistance in pancreatic adenocarcinomas. Sci Rep 2023; 13:18250. [PMID: 37880235 PMCID: PMC10600175 DOI: 10.1038/s41598-023-44536-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023] Open
Abstract
A growing body of evidence suggests that the histone demethylase-lysine demethylase 5 (KDM5) family is associated with drug resistance in cancer cells. However, it is still not clear whether KDM5 family members promote chemotherapy resistance in pancreatic ductal adenocarcinomas (PDAC). Comprehensive bioinformatics analysis was performed to investigate the prognostic value, and functional mechanisms of KDM5 family members in PDAC. The effects of KDM5 family members on drug resistance in PDAC cells and the relationship with CD44, as a stem cell marker, were explored by gene knockout and overexpression strategies. Finally, our findings were validated by functional experiments such as cell viability, colony formation and invasion assays. We found that the expression of KDM5A/C was significantly higher in gemcitabine-resistant cells than in sensitive cells, consistent with the analysis of the GSCALite database. The knockdown of KDM5A/C in PDAC cells resulted in diminished drug resistance, less cell colonies and reduced invasiveness, while KDM5A/C overexpression showed the opposite effect. Of note, the expression of KDM5A/C changed accordingly with the knockdown of CD44. In addition, members of the KDM5 family function in a variety of oncogenic pathways, including PI3K/AKT and Epithelial-Mesenchymal Transition. In conclusion, KDM5 family members play an important role in drug resistance and may serve as new biomarkers or potential therapeutic targets in PDAC patients.
Collapse
Affiliation(s)
- Dan Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yingjun Zhang
- Hunan Engineering and Technology Research Center for Agricultural Big Data Analysis and Decision-Making, Hunan Agricultural University, Changsha, China
| | - Zhouning Liao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- Division of Translational Immunology, III, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Heming Ge
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cenap Güngör
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yuqiang Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- NHC Key Laboratory of Cancer Proteomics and Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
5
|
Fazazi MR, Ruda GF, Brennan PE, Rangachari M. The X-linked histone demethylases KDM5C and KDM6A as regulators of T cell-driven autoimmunity in the central nervous system. Brain Res Bull 2023; 202:110748. [PMID: 37657612 DOI: 10.1016/j.brainresbull.2023.110748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023]
Abstract
T cell-driven autoimmune responses are subject to striking sex-dependent effects. While the contributions of sex hormones are well-understood, those of sex chromosomes are meeting with increased appreciation. Here, we outline what is known about the contribution of sex chromosome-linked factors to experimental autoimmune encephalomyelitis (EAE), a mouse model that recapitulates many of the T cell-driven mechanisms of multiple sclerosis (MS) pathology. Particular attention is paid to the KDM family of histone demethylases, several of which - KDM5C, KDM5D and KDM6A - are sex chromosome encoded. Finally, we provide evidence that functional inhibition of KDM5 molecules can suppress interferon (IFN)γ production from murine male effector T cells, and that an increased ratio of inflammatory Kdm6a to immunomodulatory Kdm5c transcript is observed in T helper 17 (Th17) cells from women with the autoimmune disorder ankylosing spondylitis (AS). Histone lysine demethlyases thus represent intriguing targets for the treatment of T cell-driven autoimmune disorders.
Collapse
Affiliation(s)
- Mohamed Reda Fazazi
- axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Gian Filippo Ruda
- Centre for Medicines Discovery and NIHR, Oxford Biomedical Research Centre, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Paul E Brennan
- Centre for Medicines Discovery and NIHR, Oxford Biomedical Research Centre, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; Alzheimer's Research UK, Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Manu Rangachari
- axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
6
|
Zhang Y, Chen J, Liu H, Mi R, Huang R, Li X, Fan F, Xie X, Ding J. The role of histone methylase and demethylase in antitumor immunity: A new direction for immunotherapy. Front Immunol 2023; 13:1099892. [PMID: 36713412 PMCID: PMC9874864 DOI: 10.3389/fimmu.2022.1099892] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Epigenetic modifications may alter the proliferation and differentiation of normal cells, leading to malignant transformation. They can also affect normal stimulation, activation, and abnormal function of immune cells in the tissue microenvironment. Histone methylation, coordinated by histone methylase and histone demethylase to stabilize transcription levels in the promoter area, is one of the most common types of epigenetic alteration, which gained increasing interest. It can modify gene transcription through chromatin structure and affect cell fate, at the transcriptome or protein level. According to recent research, histone methylation modification can regulate tumor and immune cells affecting anti-tumor immune response. Consequently, it is critical to have a thorough grasp of the role of methylation function in cancer treatment. In this review, we discussed recent data on the mechanisms of histone methylation on factors associated with immune resistance of tumor cells and regulation of immune cell function.
Collapse
Affiliation(s)
- Yuanling Zhang
- School of Medicine, Guizhou University, Guiyang, China,Department of Gastrointestinal Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Junhao Chen
- Graduate School of Zunyi Medical University, Zunyi, China
| | - Hang Liu
- Department of Medical Cosmetology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Rui Mi
- Department of General Surgery, Zhijin County People’s Hospital, Bijie, China
| | - Rui Huang
- Department of Gastrointestinal Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Xian Li
- Orthopedics Department, Dongguan Songshan Lake Tungwah Hospital, DongGuan, China
| | - Fei Fan
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Panzhihua University, Panzhihua, China
| | - Xueqing Xie
- School of Medicine, Guizhou University, Guiyang, China
| | - Jie Ding
- Department of Gastrointestinal Surgery, Guizhou Provincial People’s Hospital, Guiyang, China,*Correspondence: Jie Ding,
| |
Collapse
|
7
|
Duan Y, Du Y, Mu Y, Gu Z, Wang C. Prognostic value, immune signature and molecular mechanisms of the SUMO family in pancreatic adenocarcinoma. Front Mol Biosci 2022; 9:1096679. [PMID: 36589239 PMCID: PMC9798011 DOI: 10.3389/fmolb.2022.1096679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Background: Pancreatic adenocarcinoma (PAAD) has a high degree of malignancy and a very poor prognosis, and the 5-year overall survival rate of patients is approximately 7%. To improve the prognosis of patients with PAAD, a more comprehensive and in-depth study of the pathogenesis of PAAD and the identification of new diagnostic markers and treatment targets are urgently needed. Increasing evidence supports that the small ubiquitin-like modifier (SUMO) family is closely related to the occurrence and development of a variety of cancers. However, the function of the SUMO family in PAAD is not clear, and related research is very scarce. Methods: R, Cytoscape, cBioPortal, and other software and online databases were used to comprehensively analyze the expression characteristics, prognostic value, and oncogenic mechanism of the SUMO family in PAAD. Results: SUMO family members are highly expressed in PAAD, and high expression of SUMO family members is significantly associated with poor clinicopathological features and poor prognosis in PAAD patients. In addition, SUMO family members are significantly coexpressed with M6A methylation regulators and various oncogenes and play an activating role in various oncogenic pathways, including EMT. Furthermore, it is worth noting that the close association between SUMO family members and TP53 mutation status and the negative regulatory effect of SUMO1/2 on PAAD immunity may represent the potential mechanism by which SUMO family members promote the development of PAAD. Moreover, the coexpression characteristics of SUMO family members and a variety of cancer-promoting immune checkpoint genes, as well as the positive correlation between SUMO4 expression level and the sensitivity of various targeted or chemotherapeutic drugs, including gemcitabine, paclitaxel, and doxorubicin, suggest future clinical directions of this study. Conclusion: The SUMO family is closely related to the occurrence and development of PAAD and can be used as a new biomarker and therapeutic target for patients with PAAD.
Collapse
Affiliation(s)
- Yunjie Duan
- State Key Lab of Molecular Oncology and Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongxing Du
- State Key Lab of Molecular Oncology and Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongrun Mu
- State Key Lab of Molecular Oncology and Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zongting Gu
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chengfeng Wang
- State Key Lab of Molecular Oncology and Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China,*Correspondence: Chengfeng Wang,
| |
Collapse
|
8
|
Yang Y, Zhang J, Li JY, Xu L, Wang SN, Zhang JQ, Xun Z, Xia Y, Cao JB, Liu Y, Shi LY, Li W, Shi YL, He YG, Gu DJ, Yu ZY, Chen K, Lan J. The ctDNA-based postoperative molecular residual disease status in different subtypes of early-stage breast cancer. Gland Surg 2022; 11:1924-1935. [PMID: 36654951 PMCID: PMC9840987 DOI: 10.21037/gs-22-634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022]
Abstract
Background Breast cancer is a highly heterogeneous disease. Early-stage, non-metastatic breast cancer is considered curable after definitive treatment. Early detection of tumor recurrence and metastasis through sensitive biomarkers is helpful for guiding clinical decision-making and early intervention in second-line treatment, which could improve patient prognosis and survival. Methods In this real-world study, we retrospectively analyzed 82 patients with stages I to III breast cancer who had been analyzed by molecular residual disease (MRD) assay. A total of 82 tumor tissues and 224 peripheral blood samples were collected and detected by next-generation sequencing (NGS) based on a 1,021-gene panel in this study. Results MRD positivity was detected in 18 of 82 patients (22.0%). The hormone receptor-/human epidermal growth factor receptor 2+ (HR-/HER2+) subgroup had the highest postoperative MRD detection rate at 30.8% (4/13). The BRCA2 and SLX4 genes were significantly enriched in all patients in the MRD positive group and FGFR1 amplification was significantly enriched in the MRD negative group with HR+/HER2-. The number of single nucleotide variants (SNVs) in tissue samples of MRD-positive patients was higher than that of MRD-negative patients (11.94 vs. 8.50 SNVs/sample). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that there was a similar biological function of the tumor-mutated genes in the 2 MRD status groups. Conclusions This real-world study confirmed that patient samples of primary tumor tissue with different MRD status and molecular subtypes had differential genetic features, which may be used to predict patients at high risk for recurrence.
Collapse
Affiliation(s)
- Yang Yang
- Medical College of Soochow University, Suzhou, China
| | - Jie Zhang
- Department of Gynecology & Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiao-Yang Li
- Department of Ultrasound, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lu Xu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Si-Ning Wang
- Medical College of Soochow University, Suzhou, China
| | - Jun-Qi Zhang
- Medical College of Soochow University, Suzhou, China
| | - Zhou Xun
- Medical College of Soochow University, Suzhou, China
| | - Yu Xia
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian-Bo Cao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang Liu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Li-Yan Shi
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | | | - Yuan-Ge He
- Geneplus-Beijing Institute, Beijing, China
| | - De-Jian Gu
- Geneplus-Beijing Institute, Beijing, China
| | - Zheng-Yuan Yu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kai Chen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jing Lan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
Kawakubo K, Castillo CFD, Liss AS. Epigenetic regulation of pancreatic adenocarcinoma in the era of cancer immunotherapy. J Gastroenterol 2022; 57:819-826. [PMID: 36048239 PMCID: PMC9596544 DOI: 10.1007/s00535-022-01915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/16/2022] [Indexed: 02/04/2023]
Abstract
Pancreatic adenocarcinoma is a lethal cancer with poor response to chemotherapy and immune checkpoint inhibitors. Recent studies suggest that epigenetic alterations contribute to its aggressive biology and the tumor microenvironment which render it unresponsive to immune checkpoint blockade. Here, we review our current understandings of epigenetic dysregulation in pancreatic adenocarcinoma, its effect on the tumor immune microenvironment, and the potential for epigenetic therapy to be combined with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Kazumichi Kawakubo
- Department of Gastroenterology and Hepatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | | | - Andrew Scott Liss
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|