1
|
Yang S, Gu X, Chen L, Zhu W. Discovery of Novel Spirocyclic MAT2A Inhibitors Demonstrating High In Vivo Efficacy in MTAP-Null Xenograft Models. J Med Chem 2025; 68:3480-3494. [PMID: 39835703 DOI: 10.1021/acs.jmedchem.4c02634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Synthetic lethality offers a robust strategy for discovering the next generation of precision medicine therapies tailored for molecularly defined patient populations. MAT2A inhibition is synthetically lethal in several cancers that exhibit a homozygous deletion of S-methyl-5'-thioadenosine phosphorylase (MTAP). Herein, we report the identification of novel MAT2A inhibitors featuring a spiral ring to circumvent the C-N atropisomeric chirality utilizing structure-based drug design. The Hit compound 9 exhibited high potency in enzymatic activity (IC50 = 7 nM) and in HCT-116 MTAP(-/-) cell potency (IC50 = 17 nM). Further optimization has led to the identification of two new lead compounds: a brain-penetrant compound, 29-1, and a potent but limited brain-penetrant compound, 39. Both of these lead compounds demonstrate increased plasma drug exposure and exhibit significant efficacy in xenograft models that are depleted of MTAP. We hope that identifying a brain-penetrant MAT2A inhibitor will create new opportunities to explore the potential therapeutic effects of S-adenosylmethionine modulation in the central nervous system.
Collapse
Affiliation(s)
- Sai Yang
- Medicinal Chemistry Department, Shanghai Haiyan Pharmaceutical Technology Co., Ltd., Pudong New Area, Shanghai 201203, China
- Yangtze River Pharmaceutical Group Co., Ltd., No. 1 South Yangtze River Road, Taizhou City, Jiangsu Province 225321, China
| | - Xiaowen Gu
- Biology Department, Shanghai Haiyan Pharmaceutical Technology Co., Ltd., Pudong New Area, Shanghai 201203, China
- Yangtze River Pharmaceutical Group Co., Ltd., No. 1 South Yangtze River Road, Taizhou City, Jiangsu Province 225321, China
| | - Lei Chen
- Medicinal Chemistry Department, Shanghai Haiyan Pharmaceutical Technology Co., Ltd., Pudong New Area, Shanghai 201203, China
- Yangtze River Pharmaceutical Group Co., Ltd., No. 1 South Yangtze River Road, Taizhou City, Jiangsu Province 225321, China
| | - Weixing Zhu
- Medicinal Chemistry Department, Shanghai Haiyan Pharmaceutical Technology Co., Ltd., Pudong New Area, Shanghai 201203, China
- Yangtze River Pharmaceutical Group Co., Ltd., No. 1 South Yangtze River Road, Taizhou City, Jiangsu Province 225321, China
| |
Collapse
|
2
|
Masui K, Onizuka H, Muragaki Y, Kawamata T, Nagashima Y, Kurata A, Komori T. Integrated assessment of malignancy in IDH-mutant astrocytoma with p16 and methylthioadenosine phosphorylase immunohistochemistry. Neuropathology 2025; 45:66-75. [PMID: 39313445 DOI: 10.1111/neup.13005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024]
Abstract
In the fifth edition of the World Health Organization's (WHO) classification of tumors of the central nervous system (CNS), molecular analysis is required for not only determining each tumor type but assessing its prognosis based on malignancy (CNS WHO grade). A notable example is the loss of tumor suppressor gene cyclin-dependent kinase inhibitor 2A (CDKN2A), and CDKN2A homozygous deletion (HD) is a novel CNS WHO grade 4 marker in isocitrate dehydrogenase gene (IDH)-mutant astrocytoma. However, incorporating molecular workup into the "routine diagnostics" of each brain tumor type remains a major challenge, especially in resource-limited settings, including low- and middle-income countries. We herein validated the usefulness of p16 and methylthioadenosine phosphorylase (MTAP) immunohistochemistry (IHC) as potential surrogates for the assessment of CDKN2A status in 20 IDH-mutant astrocytoma cases. Of note, loss or retention of p16 and MTAP could accurately predict CDKN2A HD (p16: 87.5%, MTAP: 88.9%) or non-HD (p16: 100%, MTAP: 100%) with a single marker alone. Importantly, we revealed contributing factors to gray-zone IHC results (p16: 5-20%, MTAP: mosaic), including (1) hemizygous deletion of CDKN2A, (2) degenerative findings, and (3) intratumoral CDKN2A HD heterogeneity, the detailed histologic and molecular assessment of which would be a key to achieving integrated assessment of malignancy in IDH-mutant astrocytoma. We characterized the pitfalls of each method and provided for the first time a practical flowchart of astrocytoma grading, contributing to a normalization of WHO2021-based molecular diagnostics in resource-limited settings.
Collapse
Affiliation(s)
- Kenta Masui
- Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiromi Onizuka
- Department of Pathology, Kyorin University, Tokyo, Japan
| | - Yoshihiro Muragaki
- Center for Advanced Medical Engineering Research and Development, Kobe University, Kobe, Japan
- Department of Neurosurgery, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Yoji Nagashima
- Department of Surgical Pathology, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Atsushi Kurata
- Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Takashi Komori
- Department of Laboratory Medicine and Pathology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| |
Collapse
|
3
|
Yamamoto K, Chiba M. MicroRNA‑21‑5p expression in extracellular vesicles is increased in the blood of aging mice and in vascular endothelial cells induced by ionizing radiation. Exp Ther Med 2025; 29:22. [PMID: 39650777 PMCID: PMC11621913 DOI: 10.3892/etm.2024.12772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/25/2024] [Indexed: 12/11/2024] Open
Abstract
In recent years, the Japanese population has been aging and the risk of contracting various age-related diseases has increased. Thus, there is a need to analyze components that are characteristic of aging and examine their association with diseases to detect age-related diseases at an early stage. In the present study, microRNAs (miRNAs/miRs) in serum extracellular vesicles (EVs) of 82-102-week-old mice were analyzed to identify miRNAs characteristic of aging. Increased expression of mmu-miR-21a-5p was observed. These miRNAs may be derived from senescent vascular endothelial cells, and RNA-sequencing data (GSE130727) of HUVECs induced to senesce by 4 Gy of radiation revealed that the miRNAs were involved in the cell cycle and DNA repair. Annotations to senescence-related pathways were also identified. Reduced expression of the miR-21-5p target gene, which has an identical sequence in humans and mice, was confirmed. In HUVECs induced to age under similar conditions, increased senescence-associated β-galactosidase activity and increased intracellular miR-21-5p expression were observed. A portion of the miR-21-5p was secreted extracellularly by internalizing tetraspanin-positive EVs, and miR-21-5p was secreted into the extracellular space. The present study also demonstrated that miR-21-5p expression was upregulated and extracellular secretion of miR-21-5p was enhanced during vascular endothelial cell senescence. These findings suggested that increased serum miR-21-5p represents a biomarker for vascular endothelial cell senescence.
Collapse
Affiliation(s)
- Keisuke Yamamoto
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Mitsuru Chiba
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
- Research Center for Biomedical Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| |
Collapse
|
4
|
Li C, Lan X, Li X, Fu Y, Gui G, Li X, Shen Y, Gan Z, Huang M, Zha X. Discovery of 2(1 H)-Quinoxalinone Derivatives as Potent and Selective MAT2A Inhibitors for the Treatment of MTAP-Deficient Cancers. J Med Chem 2025; 68:1222-1244. [PMID: 39760448 DOI: 10.1021/acs.jmedchem.4c01635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Methionine adenosyltransferase 2A (MAT2A) has emerged as a synthetic lethal drug target in cancers bearing homozygous methylthioadenosine phosphorylase (MTAP) gene deletion. Despite the remarkable progress in the discovery and development of MAT2A inhibitors, current understanding about the selectivity of these compounds toward MTAP-deficient cancers is relatively limited. To improve the selectivity of MAT2A inhibitors for MTAP-deficient cancers remains a significant challenge. We herein reported the discovery of a series of novel MAT2A inhibitors with a 2(1H)-quinoxalinone scaffold through structure-based drug design and systematic SAR exploration. Among them, compound 28 exhibited good inhibitory activity against the enzymatic activity of MAT2A, and the significantly improved selectivity in killing MTAP-deficient cancer cells. Compound 28 also showed favorable pharmacokinetic properties and the improved in vivo anticancer activity in MTAP-deficient tumor models. These findings suggest new directions for the discovery and development of highly selective MAT2A inhibitors.
Collapse
Affiliation(s)
- Chunzheng Li
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xiaojing Lan
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinge Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Yixian Fu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Gang Gui
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xiaodong Li
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Yanyan Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhenjie Gan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Min Huang
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaoming Zha
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| |
Collapse
|
5
|
Elurbide J, Colyn L, Latasa MU, Uriarte I, Mariani S, Lopez-Pascual A, Valbuena E, Castello-Uribe B, Arnes-Benito R, Adan-Villaescusa E, Martinez-Perez LA, Azkargorta M, Elortza F, Wu H, Krawczyk M, Schneider KM, Sangro B, Aldrighetti L, Ratti F, Casadei Gardini A, Marin JJG, Amat I, Urman JM, Arechederra M, Martinez-Chantar ML, Trautwein C, Huch M, Cubero FJ, Berasain C, G Fernandez-Barrena M, Avila MA. Identification of PRMT5 as a therapeutic target in cholangiocarcinoma. Gut 2024; 74:116-127. [PMID: 39266051 PMCID: PMC12056590 DOI: 10.1136/gutjnl-2024-332998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/14/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a very difficult-to-treat cancer. Chemotherapies are little effective and response to immune checkpoint inhibitors is limited. Therefore, new therapeutic strategies need to be identified. OBJECTIVE We characterised the enzyme protein arginine-methyltransferase 5 (PRMT5) as a novel therapeutic target in CCA. DESIGN We evaluated the expression of PRMT5, its functional partner MEP50 and methylthioadenosine phosphorylase (MTAP)-an enzyme that modulates the sensitivity of PRMT5 to pharmacological inhibitors-in human CCA tissues. PRMT5-targeting drugs, currently tested in clinical trials for other malignancies, were assessed in human CCA cell lines and organoids, as well as in two immunocompetent CCA mouse models. Transcriptomic, proteomic and functional analyses were performed to explore the underlying antitumoural mechanisms. RESULTS PRMT5 and MEP50 proteins were correlatively overexpressed in most CCA tissues. MTAP was absent in 25% of intrahepatic CCA. PRMT5-targeting drugs markedly inhibited CCA cell proliferation, synergising with cisplatin and gemcitabine and hindered the growth of cholangiocarcinoma organoids. PRMT5 inhibition blunted the expression of oncogenic genes involved in chromatin remodelling and DNA repair, consistently inducing the formation of RNA loops and promoting DNA damage. Treatment with PRMT5-targeting drugs significantly restrained the growth of experimental CCA without adverse effects and concomitantly induced the recruitment of CD4 and CD8 T cells to shrinking tumourous lesions. CONCLUSION PRMT5 and MEP50 are frequently upregulated in human CCA, and PRMT5-targeting drugs have significant antitumoural efficacy in clinically relevant CCA models. Our findings support the evaluation of PRMT5 inhibitors in clinical trials, including their combination with cytotoxic and immune therapies.
Collapse
Affiliation(s)
- Jasmin Elurbide
- Hepatology Laboratory, CIMA-University of Navarra, Pamplona, Spain
- CIBEREHD, Madrid, Spain
| | - Leticia Colyn
- Hepatology Laboratory, CIMA-University of Navarra, Pamplona, Spain
| | - Maria U Latasa
- Hepatology and Gene Therapy, Cima. University of Navarra, Pamplona, Spain
| | - Iker Uriarte
- Hepatology Laboratory, CIMA-University of Navarra, Pamplona, Spain
- CIBEREHD, Madrid, Spain
| | - Stefano Mariani
- Hepatology Laboratory, CIMA-University of Navarra, Pamplona, Spain
- Oncology, University Hospital of Cagliari Department of Medicine, Cagliari, Italy
| | - Amaya Lopez-Pascual
- Hepatology Laboratory, CIMA-University of Navarra, Pamplona, Spain
- IdiSNA, Pamplona, Spain
| | | | | | - Robert Arnes-Benito
- Max-Plank Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Luz A Martinez-Perez
- Hepatology Laboratory, CIMA-University of Navarra, Pamplona, Spain
- Universidad de Guadalajara Centro Universitario de Ciencias de la Salud, Guadalajara, Mexico
| | - Mikel Azkargorta
- Proteomics Platform, Bizkaia Science and Technology Park, Derio, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, ProteoRed-ISCIII, Bizkaia Science and Technology Park, CIC bioGUNE, Bizkaia, Spain
| | - Hanghang Wu
- Immunology, Ophthalmology and ENT, Complutense University of Madrid Faculty of Medicine, Madrid, Spain
| | - Marcin Krawczyk
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
- Laboratory of Metabolic Liver Diseases, Medical University of Warsaw, Warszawa, Poland
| | - Kai Markus Schneider
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Bruno Sangro
- Liver Unit, Dept. of Internal Medicine, Clinica Universitaria de Navarra, Pamplona, Spain
| | | | - Francesca Ratti
- Hepatobiliary surgery division, San Raffaele Hospital, Milano, Italy
| | | | - Jose J G Marin
- CIBEREHD, Madrid, Spain
- HEVEFARM, Physiology and Pharmacology, IBSAL, CIBERehd, University of Salamanca, Salamanca, Spain
| | - Irene Amat
- Department of Pathology, Navarra University Hospital Complex, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Jesus M Urman
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, Pamplona, Spain
| | | | - Maria Luz Martinez-Chantar
- CIBEREHD, Madrid, Spain
- Liver Disease Lab, BRTA CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), CICbioGUNE, Derio, Spain
| | | | - Meritxell Huch
- Max-Plank Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Francisco Javier Cubero
- CIBEREHD, Madrid, Spain
- Immunology, Ophthalmology and ENT. Health Research Institute Gregorio Marañón (IiSGM), Complutense University of Madrid Faculty of Medicine, Madrid, Spain
| | - Carmen Berasain
- Division of Hepatology and Gene Therapy, CIMA University of Navarra, Pamplona, Spain
| | | | | |
Collapse
|
6
|
Luo J, Li Y, Zhang Y, Wu D, Ren Y, Liu J, Wang C, Zhang J. An update on small molecule compounds targeting synthetic lethality for cancer therapy. Eur J Med Chem 2024; 278:116804. [PMID: 39241482 DOI: 10.1016/j.ejmech.2024.116804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Targeting cancer-specific vulnerabilities through synthetic lethality (SL) is an emerging paradigm in precision oncology. A SL strategy based on PARP inhibitors has demonstrated clinical efficacy. Advances in DNA damage response (DDR) uncover novel SL gene pairs. Beyond BRCA-PARP, emerging SL targets like ATR, ATM, DNA-PK, CHK1, WEE1, CDK12, RAD51, and RAD52 show clinical promise. Selective and bioavailable small molecule inhibitors have been developed to induce SL, but optimization for potency, specificity, and drug-like properties remains challenging. This article illuminated recent progress in the field of medicinal chemistry centered on the rational design of agents capable of eliciting SL specifically in neoplastic cells. It is envisioned that innovative strategies harnessing SL for small molecule design may unlock novel prospects for targeted cancer therapeutics going forward.
Collapse
Affiliation(s)
- Jiaxiang Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yang Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yiwen Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Defa Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yijiu Ren
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Jie Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Chengdi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
7
|
Chen Y, Yan Y, Tian R, Sheng Z, Li L, Chen J, Liao Y, Wen Y, Lu J, Liu X, Sun W, Wu H, Liao Y, Zhang X, Chen X, An C, Zhao K, Liu W, Gao J, Hay DC, Ouyang H. Chemically programmed metabolism drives a superior cell fitness for cartilage regeneration. SCIENCE ADVANCES 2024; 10:eadp4408. [PMID: 39259800 PMCID: PMC11389791 DOI: 10.1126/sciadv.adp4408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/02/2024] [Indexed: 09/13/2024]
Abstract
The rapid advancement of cell therapies underscores the importance of understanding fundamental cellular attributes. Among these, cell fitness-how transplanted cells adapt to new microenvironments and maintain functional stability in vivo-is crucial. This study identifies a chemical compound, FPH2, that enhances the fitness of human chondrocytes and the repair of articular cartilage, which is typically nonregenerative. Through drug screening, FPH2 was shown to broadly improve cell performance, especially in maintaining chondrocyte phenotype and enhancing migration. Single-cell transcriptomics indicated that FPH2 induced a super-fit cell state. The mechanism primarily involves the inhibition of carnitine palmitoyl transferase I and the optimization of metabolic homeostasis. In animal models, FPH2-treated human chondrocytes substantially improved cartilage regeneration, demonstrating well-integrated tissue interfaces in rats. In addition, an acellular FPH2-loaded hydrogel proved effective in preventing the onset of osteoarthritis. This research provides a viable and safe method to enhance chondrocyte fitness, offering insights into the self-regulatory mechanisms of cell fitness.
Collapse
Affiliation(s)
- Yishan Chen
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Yiyang Yan
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Ruonan Tian
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Zixuan Sheng
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Liming Li
- Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Jiachen Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yuan Liao
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ya Wen
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Junting Lu
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Xinyu Liu
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Wei Sun
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Haoyu Wu
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Youguo Liao
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianzhu Zhang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuri Chen
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengrui An
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Zhao
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Wanlu Liu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - David C Hay
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Hongwei Ouyang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| |
Collapse
|
8
|
Broggi G, Massimino M, Failla M, Filetti V, Rapisarda V, Ledda C, Lombardo C, Loreto C, Vigneri P, Caltabiano R. Concordance between CDKN2A homozygous deletion and MTAP immunohistochemical loss in fluoroedenite-induced pleural mesothelioma: An immunohistochemical and molecular study on a single-institution series. Pathol Res Pract 2024; 259:155350. [PMID: 38781764 DOI: 10.1016/j.prp.2024.155350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/14/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Fluoroedenite-induced pleural mesothelioma (FE-induced-PM) is a rare and small subset of PM that shares with its asbestos-induced counterpart the same aggressive biological behavior and poor prognosis, but that differs from it from a pathogenetic point of view as it is associated with exposure to fluoroedenite, a carcinogenic agent that shows similarities with tremolite amphibolic asbestos fibers. Although it has been demonstrated that asbestos-induced PMs frequently harbor CDKN2A homozygous deletion and that the immunohistochemical loss of MTAP may represent a cheap and reliable surrogate marker for this molecular alteration, little is known about the molecular landscape and the reliability of MTAP immunohistochemistry in this peculiar subset of PM. The study herein presented investigated the prevalence of CDKN2A homozygous deletion and its concordance with MTAP immunohistochemical status on a cohort of 10 cases of FE-induced-PM from patients with environmental exposure to FE fibers, who were residents in the small town of Biancavilla (Sicily, Italy) or nearby areas. CDKN2A homozygous deletions were found in 3 out of 10 cases (30%) and all these cases showed concomitant cytoplasmic loss of MTAP with a concordance rate of 100%. Despite the relatively low number of cases included in our series, MTAP immunohistochemistry seemed to represent a reliable immunohistochemical surrogate marker of CDKNA homozygous deletion even in this subset of PMs.
Collapse
Affiliation(s)
- Giuseppe Broggi
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy.
| | - Michele Massimino
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy; Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-S. Marco", Catania, Italy
| | - Maria Failla
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| | - Veronica Filetti
- Department of Clinical and Experimental Medicine, Section of Occupational Medicine, University of Catania, Catania, Italy
| | - Venerando Rapisarda
- Department of Clinical and Experimental Medicine, Section of Occupational Medicine, University of Catania, Catania, Italy
| | - Caterina Ledda
- Department of Clinical and Experimental Medicine, Section of Occupational Medicine, University of Catania, Catania, Italy
| | - Claudia Lombardo
- Human Anatomy and Histology, Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Carla Loreto
- Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Paolo Vigneri
- Medical Oncology Unit, Humanitas istituto Clinico Catanese, Catania, Italy; Department of Clinical and Experimental Medicine, University of Catania, Catania 95123, Italy
| | - Rosario Caltabiano
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| |
Collapse
|
9
|
Buckley CW, O’Reilly EM. Next-generation therapies for pancreatic cancer. Expert Rev Gastroenterol Hepatol 2024; 18:55-72. [PMID: 38415709 PMCID: PMC10960610 DOI: 10.1080/17474124.2024.2322648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
INTRODUCTION Pancreas ductal adenocarcinoma (PDAC) is a frequently lethal malignancy that poses unique therapeutic challenges. The current mainstay of therapy for metastatic PDAC (mPDAC) is cytotoxic chemotherapy. NALIRIFOX (liposomal irinotecan, fluorouracil, leucovorin, oxaliplatin) is an emerging standard of care in the metastatic setting. An evolving understanding of PDAC pathogenesis is driving a shift toward targeted therapy. Olaparib, a poly-ADP-ribose polymerase (PARP) inhibitor, has regulatory approval for maintenance therapy in BRCA-mutated mPDAC along with other targeted agents receiving disease-agnostic approvals including for PDAC with rare fusions and mismatch repair deficiency. Ongoing research continues to identify and evaluate an expanding array of targeted therapies for PDAC. AREAS COVERED This review provides a brief overview of standard therapies for PDAC and an emphasis on current and emerging targeted therapies. EXPERT OPINION There is notable potential for targeted therapies for KRAS-mutated PDAC with opportunity for meaningful benefit for a sizable portion of patients with this disease. Further, emerging approaches are focused on novel immune, tumor microenvironment, and synthetic lethality strategies.
Collapse
Affiliation(s)
- Conor W. Buckley
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Eileen M. O’Reilly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
- Weill Cornell Medicine, New York, USA
| |
Collapse
|
10
|
Ghelani GH, Zerdan MB, Jacob J, Spiess PE, Li R, Necchi A, Grivas P, Kamat A, Danziger N, Lin D, Huang R, Decker B, Sokol ES, Cheng L, Pavlick D, Ross JS, Bratslavsky G, Basnet A. HPV-positive clinically advanced squamous cell carcinoma of the urinary bladder (aBSCC): A comprehensive genomic profiling (CGP) study. Urol Oncol 2023; 41:486.e15-486.e23. [PMID: 37821306 DOI: 10.1016/j.urolonc.2023.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Advanced bladder squamous cell carcinoma (aBSCC) is an uncommon form of urinary bladder malignancy when compared with the much higher urothelial carcinoma incidence. We studied the genomic alteration (GA) landscape in a series of aBSCC based on the association with human papilloma virus (HPV) to determine if differences in GA would be observed between the positive and negative groups. METHODS Using a hybrid capture-based FDA-approved CGP assay, a series of 171 aBSCC were sequenced to evaluate all classes of GA. Tumor mutational burden (TMB) was determined on up to 1.1 Mbp of sequenced DNA and microsatellite instability (MSI) was determined on up to 114 loci. Programmed cell death ligand -1 (PD-L1) expression was determined by IHC (Dako 22C3) with negative expression when PD-L1 was 0, lower expression of positivity set at 1 to 49%, and higher expression set at ≥50% expression. RESULTS Overall, 11 (6.4%) of the aBSCC were found to harbor HPV sequences (10 HPV16 and 1 HPV 11). HPV+ status was identified slightly more often in women (NS) and in younger patients (P = 0.04); 2 female patients with aBSCC had a prior history of SCC including 1 anal SCC and 1 vaginal SCC. HPV+ aBSCC had fewer GA/tumor (P < 0.0001), more inactivating mutations in RB1 (P = 0.032), and fewer inactivating GA in CDKN2A (P < 0.0001), CDKN2B (P = 0.05), TERT promoter (P = 0.0004) and TP53 (P < 0.0001). GA in genes associated with urothelial carcinoma including FGFR2 and FGFR3 were similar in both HPV+ and HPV- aBSCC groups. MTAP loss (homozygous deletion) which has emerged as a biomarker for PRMT5 inhibitor-based clinical trials was not identified in any of the 11 HPV+ aBSCC cases, which was significantly lower than the 28% positive frequency of MTAP loss in the HPV- aBSCC group (P < 0.0001). MTOR and PIK3CA pathway GA were not significantly different in the 2 groups. Putative biomarkers associated with immunotherapy (IO) response, including MSI and TMB status, were also similar in the 2 groups. PD-L1 expression data was available for a subset of both HPV+ and HPV- cases and showed high frequencies of positive staining which was not different in the 2 groups. CONCLUSIONS HPV+ aBSCC tends to occur more often in younger patients. As reported in other HPV-associated squamous cell carcinomas, HPV+ aBSCC demonstrates significantly reduced frequencies of inactivating mutations in cell cycle regulatory genes with similar GA in MTOR and PIK3CA pathways. The implication of HPV in the pathogenesis of bladder cancer remains unknown but warrants further exploration and clinical validation.
Collapse
Affiliation(s)
| | | | - J Jacob
- Upstate Medical University, Syracuse, NY
| | - P E Spiess
- Department of GU Oncology, Moffitt Cancer Center, Tampa, FL
| | - R Li
- Department of GU Oncology, Moffitt Cancer Center, Tampa, FL
| | - A Necchi
- IRCCS San Raffaele Hospital and Scientific Institute, Milan, Italy
| | - P Grivas
- University of Washington, Seattle, WA
| | - A Kamat
- University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - D Lin
- Foundation Medicine, Cambridge, MA
| | - R Huang
- Foundation Medicine, Cambridge, MA
| | - B Decker
- Foundation Medicine, Cambridge, MA
| | | | - L Cheng
- Department of Pathology and Laboratory Medicine, Brown University Warren Alpert Medical School, Lifespan Academic Medical Center, and the Legorreta Cancer Center at Brown University, Providence, RI
| | | | - J S Ross
- Upstate Medical University, Syracuse, NY
| | | | - A Basnet
- Upstate Medical University, Syracuse, NY
| |
Collapse
|