1
|
Tang W, Long Z, Xiao Y, Du J, Tang C, Chen J, Hou C. Dietary butyric acid intake, kidney function, and survival: The National Health and Nutrition Examination Surveys, 2005-2018. Clin Nutr ESPEN 2025; 67:453-462. [PMID: 40147762 DOI: 10.1016/j.clnesp.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 02/23/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Although preclinical data support the hypothesis that butyric acid supplementation improves kidney health, the clinical significance of dietary butyric acid intake in patients with chronic kidney disease (CKD) remains unconfirmed in large-sample studies. This study aimed to investigate the association between dietary butyric acid intake and all-cause mortality in the United States population, stratified by kidney function. METHODS We examined the relationship between dietary butyric acid intake, assessed through a 24-h dietary recall, and all-cause mortality among 23,008 consecutive adult participants from the National Health and Nutrition Examination Surveys (NHANES, 2005-2018), categorized by impaired versus normal kidney function (estimated glomerular filtration rate <60 vs ≥ 60 mL/min/1.72 m2), using multivariable Cox models. We also employed a restricted cubic spline based on Cox regression models to elucidate the nonlinear relationship between dietary butyric acid intake and mortality in patients. RESULT In participants with impaired kidney function, high dietary butyric acid intake was associated with lower mortality, while lower intake levels (reference) showed no such association: adjusted HRs (aHRs) were 0.67 (95 % CI: 0.45, 1.00), 0.65 (95 % CI: 0.45, 0.94), and 0.58 (95 % CI: 0.38, 0.89) for intake levels of the square root of butyric acid 0.25-0.45, 0.45-0.75, and >0.75 g/day, respectively. However, in participants with normal kidney function, no association between butyric acid levels and mortality was observed. Additionally, we identified an L-shaped association between the levels of the square root of dietary butyric acid intake and all-cause mortality in the CKD population, reaching a plateau at 0.52 g/day (butyric acid intake of approximately 0.27 g/day). CONCLUSION This study revealed a nonlinear association between high dietary butyric acid intake and reduced all-cause mortality in patients with chronic kidney disease. A plateau occurs after 0.27 g/day, and for individuals with CKD whose butyric acid intake is below approximately 0.27 g/day, increasing a butyrate-rich diet or supplementing with butyric acid preparations may help prevent progression to renal failure and associated adverse outcomes in CKD patients, thereby reducing mortality. Therefore, it can be considered a new therapeutic strategy for the treatment of chronic kidney disease.
Collapse
Affiliation(s)
- Wei Tang
- Hunan Key Laboratory of Kidney Disease and Blood Purification, and Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhengyi Long
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jingyun Du
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chenyuan Tang
- Hunan Key Laboratory of Kidney Disease and Blood Purification, and Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - JunXiang Chen
- Hunan Key Laboratory of Kidney Disease and Blood Purification, and Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Can Hou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Liu Z, Zhou X, Kuang L, Chen Q, Zhao J, Yin H, Zhou Z, Liu X, Liu D, Wu S, Wu L. Novel insights into immune-gut microbiota interactions in colorectal cancer: a Mendelian randomization study. Infect Agent Cancer 2025; 20:27. [PMID: 40251662 PMCID: PMC12008918 DOI: 10.1186/s13027-025-00653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/25/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND The relationship between immune cells and colorectal cancer (CRC) development has been extensively studied; however, the mediating role of gut microbiota in this relationship remains poorly understood. METHODS We utilized summary data from genome-wide association studies (GWAS) to analyze 731 immune cell phenotypes, 473 gut microbiota, and CRC-related data. A two-step mediation analysis was employed to identify mediating gut microbiota. The primary analysis method was inverse variance weighting (IVW), supplemented by MR-Egger, simple mode, weighted median, and weighted mode analyses. Robustness of the results was ensured through systematic sensitivity analyses. RESULTS Our analysis identified 13 immune cell phenotypes significantly associated with CRC, including 10 protective factors and 3 risk factors. Additionally, 13 gut microbiota showed significant associations with CRC, comprising 8 protective factors and 5 risk factors. Mediation analysis revealed that 4-gut microbiota (1 order, 1 family, 1 genus, and 1 unclassified) mediated the relationship between immune cells and CRC. For instance, unclassified CAG - 977 mediated the effects of FSC-A on NK and NKT %lymphocyte on CRC risk, with mediation proportions of 11% and 12.3%, respectively. Notably, 22.3% of the protective effect of EM CD8br %CD8br on CRC was mediated through order Francisellales. CONCLUSION This study provides evidence for a potential causal relationship between immune cells, gut microbiota, and CRC, highlighting the mediating role of specific gut microbiota. These findings offer new insights into the pathogenesis of CRC and may inform future therapeutic strategies.
Collapse
Affiliation(s)
- Zenghui Liu
- Department of Clinical Laboratory, The Affiliated Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Xiaohui Zhou
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Lu Kuang
- Department of Clinical Laboratory, The Affiliated Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qijun Chen
- Department of Clinical Laboratory, The Affiliated Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiaxing Zhao
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Huayu Yin
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Zeyu Zhou
- Department of Clinical Laboratory, The Affiliated Hospital of Chengde Medical College, Cengde,, Hebei,, China
| | - Xuehui Liu
- Department of Clinical Laboratory, The Affiliated Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dabin Liu
- Department of Clinical Laboratory, The Affiliated Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shaoguo Wu
- Department of Clinical Laboratory, The Affiliated Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Limei Wu
- Department of Clinical Laboratory, The Affiliated Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China.
| |
Collapse
|
3
|
Li J, Xu Y, Sun T, Zhang X, Liang H, Lin W, Yu H, Yang B, Yang H. Exploration of the pathogenesis of nephrotic syndrome and traditional Chinese medicine intervention based on gut microbiota. Front Immunol 2024; 15:1430356. [PMID: 39717782 PMCID: PMC11663840 DOI: 10.3389/fimmu.2024.1430356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024] Open
Abstract
Nephrotic syndrome (NS) represents a prevalent syndrome among various chronic kidney disease pathologies and is known for its higher severity and worse prognosis compared with chronic glomerulonephritis. Understanding its pathogenesis and identifying more effective treatment modalities have long been a concern of kidney specialists. With the introduction of the gut-kidney axis concept and the progress in omics technologies, alterations in the gut microbiota have been observed in primary and secondary NS. This link has been extensively researched in conditions such as diabetic nephropathy and immunoglobulin A (IgA) nephropathy. Thus, dysbiosis of the gut microbiota is seen as a crucial contributing factor in NS; however, there is a lack of comprehensive reviews that elucidate the changes in the gut microbiota across different NS conditions and that describe its mechanistic role in the disease. Moreover, serving as an innate regulator of the gut microbiota, traditional Chinese medicine (TCM) has the potential to exert a profound impact on the expression of inflammation-promoting agents, decreasing the levels of endotoxins and uremic toxins. In addition, it strengthens the stability of the intestinal barrier while controlling the metabolic function of the body through its efficient modulation of the gut microbiota. This intricate process yields far-reaching consequences for NS.
Collapse
Affiliation(s)
- Jing Li
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yupei Xu
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Tianhao Sun
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaotian Zhang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Huimin Liang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Wei Lin
- Department of Nephrology, Traditional Chinese Hospital of Xiamen, Xiamen, China
| | - Hangxing Yu
- Department of Nephrology, Chongqing City Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Bo Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
4
|
Pourafshar S, Sharma B, Allen J, Hoang M, Lee H, Dressman H, Tyson CC, Mallawaarachchi I, Kumar P, Ma JZ, Lin PH, Scialla JJ. Longitudinal Pilot Evaluation of the Gut Microbiota Comparing Patients With and Without Chronic Kidney Disease. J Ren Nutr 2024; 34:302-312. [PMID: 38286361 DOI: 10.1053/j.jrn.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/15/2023] [Accepted: 01/07/2024] [Indexed: 01/31/2024] Open
Abstract
OBJECTIVE The gut microbiota contributes to metabolic diseases, such as diabetes and hypertension, but is poorly characterized in chronic kidney disease (CKD). DESIGN AND METHODS We enrolled 24 adults within household pairs, in which at least one member had self-reported kidney disease, diabetes, or hypertension. CKD was classified based on estimated glomerular filtration rate < 60 mL/min/1.73 m2 or urine-albumin-to-creatinine ratio of ≥ 30 mg/g. Participants collected stool and dietary recalls seasonally over a year. Gut microbiota was characterized using 16s rRNA and metagenomic sequencing. RESULTS Ten participants had CKD (42%) with a median (interquartile range) estimated glomerular filtration rate of 49 (44, 54) mL/min/1.73 m2. By 16s rRNA sequencing, there was moderate to high intraclass correlation (ICC = 0.63) for seasonal alpha diversity (Shannon index) within individuals and modest differences by season (P < .01). ICC was lower with metagenomics, which has resolution at the species level (ICC = 0.26). There were no differences in alpha or beta diversity by CKD with either method. Among 79 genera, Frisingicoccus, Tuzzerella, Faecalitalea, and Lachnoclostridium had lower abundance in CKD, while Collinsella, Lachnospiraceae_ND3007, Veillonella, and Erysipelotrichaceae_UCG_003 were more abundant in CKD (each nominal P < .05) using 16s rRNA sequencing. Higher Collinsella and Veillonella and lower Lachnoclostridium in CKD were also identified by metagenomics. By metagenomics, Coprococcus catus and Bacteroides stercoris were more and less abundant in CKD, respectively, at false discovery rate corrected P = .02. CONCLUSIONS We identified candidate taxa in the gut microbiota associated with CKD. High ICC in individuals with modest seasonal impacts implies that follow-up studies may use less frequent sampling.
Collapse
Affiliation(s)
- Shirin Pourafshar
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Binu Sharma
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Jenifer Allen
- Duke Clinical & Translational Science Institute, TransPop Group, Kannapolis, North Carolina
| | - Madeleine Hoang
- School of Engineering and Applied Sciences, University of Virginia, Charlottesville, Virginia
| | - Hannah Lee
- College of Arts and Sciences, University of Virginia, Charlottesville, Virginia
| | - Holly Dressman
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina
| | - Crystal C Tyson
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Indika Mallawaarachchi
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Pankaj Kumar
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Jennie Z Ma
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Pao-Hwa Lin
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Julia J Scialla
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia; Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia.
| |
Collapse
|
5
|
Yan H, Zhang Y, Lin X, Huang J, Zhang F, Chen C, Ren H, Zheng S, Yang J, Hui S. Resveratrol improves diabetic kidney disease by modulating the gut microbiota-short chain fatty acids axis in db/db mice. Int J Food Sci Nutr 2024; 75:264-276. [PMID: 38238900 DOI: 10.1080/09637486.2024.2303041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/03/2024] [Indexed: 05/09/2024]
Abstract
Diabetic kidney disease is associated with the dysbiosis of the gut microbiota and its metabolites. db/db mice were fed chow diet with or without 0.4% resveratrol for 12 weeks, after which the gut microbiota, faecal short-chain fatty acids (SCFAs), and renal fibrosis were analysed. Resveratrol ameliorated the progression of diabetic kidney disease and alleviated tubulointerstitial fibrosis. Further studies showed that gut microbiota dysbiosis was modulated by resveratrol, characterised by the expansion of SCFAs-producing bacteria Faecalibaculum and Lactobacillus, which increased the concentrations of SCFAs (especially acetic acid) in the faeces. Moreover, microbiota transplantation experiments found that alteration of the gut microbiota contributed to the prevention of diabetic kidney disease. Acetate treatment ameliorated proteinuria, glomerulosclerosis and tubulointerstitial fibrosis in db/db mice. Overall, resveratrol improved the progression of diabetic kidney disease by suppressing tubulointerstitial fibrosis, which may be involved, at least in part, in the regulation of the gut microbiota-SCFAs axis.
Collapse
Affiliation(s)
- Hongjia Yan
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Zhang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoqian Lin
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Huang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fuwei Zhang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Shuo Zheng
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Suocheng Hui
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Cicchinelli S, Gemma S, Pignataro G, Piccioni A, Ojetti V, Gasbarrini A, Franceschi F, Candelli M. Intestinal Fibrogenesis in Inflammatory Bowel Diseases: Exploring the Potential Role of Gut Microbiota Metabolites as Modulators. Pharmaceuticals (Basel) 2024; 17:490. [PMID: 38675450 PMCID: PMC11053610 DOI: 10.3390/ph17040490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Fibrosis, sustained by the transformation of intestinal epithelial cells into fibroblasts (epithelial-to-mesenchymal transition, EMT), has been extensively studied in recent decades, with the molecular basis well-documented in various diseases, including inflammatory bowel diseases (IBDs). However, the factors influencing these pathways remain unclear. In recent years, the role of the gut microbiota in health and disease has garnered significant attention. Evidence suggests that an imbalanced or dysregulated microbiota, along with environmental and genetic factors, may contribute to the development of IBDs. Notably, microbes produce various metabolites that interact with host receptors and associated signaling pathways, influencing physiological and pathological changes. This review aims to present recent evidence highlighting the emerging role of the most studied metabolites as potential modulators of molecular pathways implicated in intestinal fibrosis and EMT in IBDs. These studies provide a deeper understanding of intestinal inflammation and fibrosis, elucidating the molecular basis of the microbiota role in IBDs, paving the way for future treatments.
Collapse
Affiliation(s)
- Sara Cicchinelli
- Department of Emergency, S.S. Filippo e Nicola Hospital, 67051 Avezzano, Italy;
| | - Stefania Gemma
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giulia Pignataro
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Andrea Piccioni
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Veronica Ojetti
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Francesco Franceschi
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Marcello Candelli
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| |
Collapse
|
7
|
Jia XH, Wang SY, Sun AQ. Dietary fiber intake and its association with diabetic kidney disease in American adults with diabetes: A cross-sectional study. World J Diabetes 2024; 15:475-487. [PMID: 38591085 PMCID: PMC10999041 DOI: 10.4239/wjd.v15.i3.475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/05/2024] [Accepted: 02/18/2024] [Indexed: 03/15/2024] Open
Abstract
BACKGROUND Dietary fiber (DF) intake may have a protective effect against type 2 diabetes (T2D); however, its relationship with diabetic kidney disease (DKD) remains unclear. AIM To investigate the potential association between DF intake and the prevalence of DKD in individuals diagnosed with T2D. METHODS This cross-sectional study used data from the National Health and Nutrition Examination Survey collected between 2005 and 2018. DF intake was assessed through 24-h dietary recall interviews, and DKD diagnosis in individuals with T2D was based on predefined criteria, including albuminuria, impaired glomerular filtration rate, or a combination of both. Logistic regression analysis was used to assess the association between DF intake and DKD, and comprehensive subgroup and sensitivity analyses were performed. RESULTS Among the 6032 participants, 38.4% had DKD. With lower DF intake-T1 (≤ 6.4 g/1000 kcal/day)-as a reference, the adjusted odds ratio for DF and DKD for levels T2 (6.5-10.0 g/1000 kcal/day) and T3 (≥ 10.1 g/1000 kcal/day) were 0.97 (95%CI: 0.84-1.12, P = 0.674) and 0.79 (95%CI: 0.68-0.92, P = 0.002), respectively. The subgroup analysis yielded consistent results across various demographic and health-related subgroups, with no statistically significant interactions (all P > 0.05). CONCLUSION In United States adults with T2D, increased DF intake may be related to reduced DKD incidence. Further research is required to confirm these findings.
Collapse
Affiliation(s)
- Xin-Hua Jia
- Department of Critical Care Medicine, Dezhou People’s Hospital, Dezhou 253000, Shandong Province, China
| | - Sheng-Yan Wang
- Department of Critical Care Medicine, Dezhou People’s Hospital, Dezhou 253000, Shandong Province, China
| | - Ai-Qin Sun
- Emergency Intensive Care Unit, Dezhou People’s Hospital, Dezhou 253000, Shandong Province, China
| |
Collapse
|
8
|
Ghosh A, Muley A, Ainapure AS, Deshmane AR, Mahajan A. Exploring the Impact of Optimized Probiotic Supplementation Techniques on Diabetic Nephropathy: Mechanisms and Therapeutic Potential. Cureus 2024; 16:e55149. [PMID: 38558739 PMCID: PMC10979819 DOI: 10.7759/cureus.55149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Worldwide, diabetic nephropathy (DN) is a significant contributor to end-stage renal failure and chronic kidney disease. Probiotic supplementation has recently gained popularity as a potential nutritional therapy in several clinical trials aimed at improving renal function, inflammation, oxidative stress, dyslipidemia, glycemic control, and inflammation. However, they still need to undergo a thorough assessment of DN. It is crucial that the optimal dosage, duration, and combination of probiotic strains administered for the purpose of slowing down the advancement of DN be assessed. Based on the available publications, including relevant randomized controlled trials, systematic reviews, and meta-analysis from 2013-2023 from search engines like MEDLINE (PubMed), Scopus, and Web of Science, a literature review was generated using the keywords "gut microbiota," "gut microbiome," "diabetic kidney disease," "diabetic nephropathy," "probiotic," and "prebiotic." Multiple clinical trials focusing on probiotic administration techniques revealed changes in renal, glucose, and lipid biomarkers. Probiotic supplementation using Bifidobacterium bifidum, Lactobacillus acidophilus, and Streptococcus thermophilus for 12 weeks indicated a reduction in glycosylated hemoglobin, fasting blood glucose, and the microalbuminuria/creatinine ratio. Multispecies as well as single-species probiotic administration containing Lactobacillus, Bifidobacterium, and Streptococcus thermophilus spp. greater than 4*109 colony forming units (CFU)/day for 8-12 weeks in DN patients improves renal metabolic markers and reduces the progression of disease patterns. Optimal supplementation techniques of probiotics in conjunction with prebiotics and synbiotics in DN benefit glycaemic control, renal function, blood lipid profile, inflammation, and oxidative stress. Future randomized controlled trials supplementing specific probiotics coupled with prebiotics and synbiotics, with larger sample sizes and longer follow-up times, will generate more reliable findings for the impact of probiotic supplementation on DN.
Collapse
Affiliation(s)
- Anindita Ghosh
- Nutrition and Dietetics, Symbiosis Institute of Health Sciences, Symbiosis International (Deemed University), Pune, IND
- Beauty Wellness and Nutrition, Symbiosis Skills and Professional University, Pune, IND
| | - Arti Muley
- Nutrition and Dietetics, Symbiosis Institute of Health Sciences, Symbiosis International (Deemed University), Pune, IND
| | - Archana S Ainapure
- Beauty Wellness and Nutrition, Symbiosis Skills and Professional University, Pune, IND
| | - Aditi R Deshmane
- Clinical Nutrition, Indian Institute of Food Science and Technology, Aurangabad, IND
- Nutrition and Dietetics, Symbiosis Institute of Health Sciences, Symbiosis International (Deemed University), Pune, IND
| | - Anu Mahajan
- Nutrition and Dietetics, Symbiosis Institute of Health Sciences, Symbiosis International (Deemed University), Pune, IND
| |
Collapse
|
9
|
Tian X, Zeng Y, Tu Q, Jiao Y, Yao S, Chen Y, Sun L, Xia Q, Luo Y, Yuan L, Jiang Q. Butyrate alleviates renal fibrosis in CKD by regulating NLRP3-mediated pyroptosis via the STING/NF-κB/p65 pathway. Int Immunopharmacol 2023; 124:111010. [PMID: 37852118 DOI: 10.1016/j.intimp.2023.111010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
Chronic kidney disease (CKD) is a serious and irreversible disease primarily characterized by chronic inflammation and renal fibrosis. Recent studies have suggested that gut microbiota-related metabolites, particularly short-chain fatty acids (SCFAs) are significantly associated with kidney diseases. Notably, butyrate, a type of SCFAs, plays a crucial role in this correlation. However, the effect of butyrate on renal fibrosis in patients with CKD and its potential mechanisms remain unclear. In this study, we demonstrated that butyrate levels are reduced as CKD progresses using a CKD C57BL/6 mouse model established by a 0.2% adenine diet. Exogenous supplementation of butyrate effectively alleviated renal fibrosis and repressed the levels of proteins associated with NLRP3-mediated pyroptosis (NLRP3, IL-1β, caspase-1, and GSDMD). Additionally, we conducted an in vitro experiment using HK-2 cells, which also confirmed that the elevated levels of NLRP3-mediated pyroptosis proteins in TGF-β1-stimulated HK-2 cells are reversed by butyrate intervention. Further, butyrate mitigated the activity of the STING/NF-κB/p65 pathway, and STING overexpression impaired the protective function of butyrate in CKD. Hence, we suggest that butyrate may have a renoprotective role in CKD, alleviating renal fibrosis possibly by regulating NLRP3-mediated pyroptosis via the STING/NF-κB/p65 pathway.
Collapse
Affiliation(s)
- Xiaofang Tian
- Medical College of Soochow University, 215123 Suzhou, Jiangsu, China; The First People's Hospital of Zunyi (the Third Affiliated Hospital of Zunyi Medical University), 563000 Zunyi, Guizhou, China
| | - Yizhou Zeng
- The First People's Hospital of Zunyi (the Third Affiliated Hospital of Zunyi Medical University), 563000 Zunyi, Guizhou, China
| | - Qingxian Tu
- The First People's Hospital of Zunyi (the Third Affiliated Hospital of Zunyi Medical University), 563000 Zunyi, Guizhou, China
| | - Yang Jiao
- The First People's Hospital of Zunyi (the Third Affiliated Hospital of Zunyi Medical University), 563000 Zunyi, Guizhou, China
| | - Song Yao
- The First People's Hospital of Zunyi (the Third Affiliated Hospital of Zunyi Medical University), 563000 Zunyi, Guizhou, China
| | - Ying Chen
- The First People's Hospital of Zunyi (the Third Affiliated Hospital of Zunyi Medical University), 563000 Zunyi, Guizhou, China
| | - Li Sun
- The First People's Hospital of Zunyi (the Third Affiliated Hospital of Zunyi Medical University), 563000 Zunyi, Guizhou, China
| | - Qianhang Xia
- The First People's Hospital of Zunyi (the Third Affiliated Hospital of Zunyi Medical University), 563000 Zunyi, Guizhou, China
| | - Yadan Luo
- The First People's Hospital of Zunyi (the Third Affiliated Hospital of Zunyi Medical University), 563000 Zunyi, Guizhou, China
| | - Liying Yuan
- The First People's Hospital of Zunyi (the Third Affiliated Hospital of Zunyi Medical University), 563000 Zunyi, Guizhou, China
| | - Qianfeng Jiang
- Medical College of Soochow University, 215123 Suzhou, Jiangsu, China; The First People's Hospital of Zunyi (the Third Affiliated Hospital of Zunyi Medical University), 563000 Zunyi, Guizhou, China; Guizhou Aerospace Hospital, 563000 Zunyi, Guizhou, China.
| |
Collapse
|