1
|
Gross AF, Nowak AP, Ventuleth M, Hollrigel DB, Vajo JJ, Graetz J, Wang X, Larson-Smith KL, Seebergh JE, Gross GM, Metting SI, Wilson ME, Dunlap DS, Robincheck J, Newcomb BA. Antimicrobial Biphasic Polymer Coatings Enabled by Fast Diffusion of Active Compounds. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26947-26955. [PMID: 39651845 DOI: 10.1021/acs.langmuir.4c03393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The recent COVID-19 pandemic and the prospect of future global pandemics highlight the long-standing need to passively eliminate viruses and bacteria on surfaces. Conventional antimicrobial surfaces and coatings are typically constrained by a trade-off between antimicrobial efficacy and physical durability. A biphasic polyurethane coating has been developed that breaks this trade-off by incorporating a durability-imparting polycarbonate (PC) discrete phase with a continuous poly(ethylene glycol) (PEG) transport phase that absorbs, stores, and releases antimicrobial active compounds for extended microbial inactivation. The biphasic polymer was shown to absorb carboxylic acid and quaternary ammonium antimicrobial active compounds, maintained their levels after five years of simulated cleaning, and inactivated up to 99.99% of Human Coronavirus 229E and Influenza A H1N1. Furthermore, the levels of antimicrobial active compounds on the biphasic coating could be augmented by cleaning the substrate with a disinfectant. The practicality of biphasic coatings for automotive and commercial aerospace environments was demonstrated by showing control of hardness and stain resistance through biphasic composition, showing environmental durability through heat, humidity, and light exposure, and passing flammability protocols.
Collapse
Affiliation(s)
- Adam F Gross
- HRL Laboratories, LLC., 3011 Malibu Canyon Rd, Malibu, California 90265, United States
| | - Andrew P Nowak
- HRL Laboratories, LLC., 3011 Malibu Canyon Rd, Malibu, California 90265, United States
| | - Michael Ventuleth
- HRL Laboratories, LLC., 3011 Malibu Canyon Rd, Malibu, California 90265, United States
| | - Dylan B Hollrigel
- HRL Laboratories, LLC., 3011 Malibu Canyon Rd, Malibu, California 90265, United States
| | - John J Vajo
- HRL Laboratories, LLC., 3011 Malibu Canyon Rd, Malibu, California 90265, United States
| | - Jason Graetz
- HRL Laboratories, LLC., 3011 Malibu Canyon Rd, Malibu, California 90265, United States
| | - Xiaoxi Wang
- The Boeing Company, P.O. Box 3707, MC 0ER-123, Seattle, Washington 98124, United States
| | | | - Jill E Seebergh
- The Boeing Company, P.O. Box 3707, MC 0ER-123, Seattle, Washington 98124, United States
| | - Gwen M Gross
- The Boeing Company, P.O. Box 3707, MC 0ER-123, Seattle, Washington 98124, United States
| | - Stephanie I Metting
- The Boeing Company, P.O. Box 3707, MC 0ER-123, Seattle, Washington 98124, United States
| | - Mark E Wilson
- The Boeing Company, P.O. Box 3707, MC 0ER-123, Seattle, Washington 98124, United States
| | - Darren S Dunlap
- The Boeing Company, P.O. Box 3707, MC 0ER-123, Seattle, Washington 98124, United States
| | - Janet Robincheck
- General Motors Research and Development Center, Warren, Michigan 48092, United States
| | - Bradley A Newcomb
- General Motors Research and Development Center, Warren, Michigan 48092, United States
| |
Collapse
|
2
|
Han J, Li W, Zhang X. An effective and rapidly degradable disinfectant from disinfection byproducts. Nat Commun 2024; 15:4888. [PMID: 38849332 PMCID: PMC11161644 DOI: 10.1038/s41467-024-48752-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
Chloroxylenol is a worldwide commonly used disinfectant. The massive consumption and relatively high chemical stability of chloroxylenol have caused eco-toxicological threats in receiving waters. We noticed that chloroxylenol has a chemical structure similar to numerous halo-phenolic disinfection byproducts. Solar detoxification of some halo-phenolic disinfection byproducts intrigued us to select a rapidly degradable chloroxylenol alternative from them. In investigating antimicrobial activities of disinfection byproducts, we found that 2,6-dichlorobenzoquinone was 9.0-22 times more efficient than chloroxylenol in inactivating the tested bacteria, fungi and viruses. Also, the developmental toxicity of 2,6-dichlorobenzoquinone to marine polychaete embryos decreased rapidly due to its rapid degradation via hydrolysis in receiving seawater, even without sunlight. Our work shows that 2,6-dichlorobenzoquinone is a promising disinfectant that well addresses human biosecurity and environmental sustainability. More importantly, our work may enlighten scientists to exploit the slightly alkaline nature of seawater and develop other industrial products that can degrade rapidly via hydrolysis in seawater.
Collapse
Affiliation(s)
- Jiarui Han
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Wanxin Li
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| |
Collapse
|
3
|
Xiao M, Banu A, Jia Y, Chang M, Wang G, An J, Huang Y, Hu X, Tang C, Li Z, Niu Y, Tian X, Deng W, Tang C, Du J, Cui X, Chan JFW, Peng R, Yin F. Circulation pattern and genetic variation of rhinovirus infection among hospitalized children on Hainan Island, before and after the dynamic zero-COVID policy, from 2021 to 2023. J Med Virol 2024; 96:e29755. [PMID: 38922896 DOI: 10.1002/jmv.29755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/17/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Throughout the COVID-19 pandemic, rhinovirus (RV) remained notable persistence, maintaining its presence while other seasonal respiratory viruses were largely suppressed by pandemic restrictions during national lockdowns. This research explores the epidemiological dynamics of RV infections among pediatric populations on Hainan Island, China, specifically focusing on the impact before and after the zero-COVID policy was lifted. From January 2021 to December 2023, 19 680 samples were collected from pediatric patients hospitalized with acute lower respiratory tract infections (ARTIs) at the Hainan Maternal and Child Health Hospital. The infection of RV was detected by tNGS. RV species and subtypes were identified in 32 RV-positive samples representing diverse time points by analyzing the VP4/VP2 partial regions. Among the 19 680 pediatric inpatients with ARTIs analyzed, 21.55% were found to be positive for RV infection, with notable peaks observed in April 2021 and November 2022. A gradual annual decline in RV infections was observed, alongside a seasonal pattern of higher prevalence during the colder months. The highest proportion of RV infections was observed in the 0-1-year age group. Phylogenetic analysis on 32 samples indicated a trend from RV-A to RV-C in 2022. This observation suggests potential evolving dynamics within the RV species although further studies are needed due to the limited sample size. The research emphasizes the necessity for ongoing surveillance and targeted management, particularly for populations highly susceptible to severe illnesses caused by RV infections.
Collapse
Affiliation(s)
- Meifang Xiao
- Department of Clinical Laboratory, Center for Laboratory Medicine, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
- Department of Microbiology, Faculty of Medicine, Lincoln University College, Petaling Jaya, Malaysia
| | - Afreen Banu
- Department of Microbiology, Faculty of Medicine, Lincoln University College, Petaling Jaya, Malaysia
| | - Yibo Jia
- Medical Administration Division, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
- International School of Public Health and One Health, Hainan Medical College, Haikou, Hainan, China
| | - Meng Chang
- Department of Clinical Laboratory, Center for Laboratory Medicine, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Gaoyu Wang
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Jing An
- Department of Clinical Laboratory, Center for Laboratory Medicine, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
| | - Yi Huang
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Xiaoyuan Hu
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Chuanning Tang
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Zihan Li
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Yi Niu
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Xiuying Tian
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Wanxin Deng
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Cheng Tang
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Jiang Du
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiuji Cui
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
- Department of Pathogen Biology, Hainan Medical University, Haikou, Hainan, China
| | - Jasper Fuk-Woo Chan
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Ruoyan Peng
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Feifei Yin
- Department of Clinical Laboratory, Center for Laboratory Medicine, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
- Department of Pathogen Biology, Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
4
|
Schutte-Smith M, Erasmus E, Mogale R, Marogoa N, Jayiya A, Visser HG. Using visible light to activate antiviral and antimicrobial properties of TiO 2 nanoparticles in paints and coatings: focus on new developments for frequent-touch surfaces in hospitals. JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH 2023; 20:789-817. [PMID: 36777289 PMCID: PMC9904533 DOI: 10.1007/s11998-022-00733-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 05/05/2023]
Abstract
The COVID-19 pandemic refocused scientists the world over to produce technologies that will be able to prevent the spread of such diseases in the future. One area that deservedly receives much attention is the disinfection of health facilities like hospitals, public areas like bathrooms and train stations, and cleaning areas in the food industry. Microorganisms and viruses can attach to and survive on surfaces for a long time in most cases, increasing the risk for infection. One of the most attractive disinfection methods is paints and coatings containing nanoparticles that act as photocatalysts. Of these, titanium dioxide is appealing due to its low cost and photoreactivity. However, on its own, it can only be activated under high-energy UV light due to the high band gap and fast recombination of photogenerated species. The ideal material or coating should be activated under artificial light conditions to impact indoor areas, especially considering wall paints or frequent-touch areas like door handles and elevator buttons. By introducing dopants to TiO2 NPs, the bandgap can be lowered to a state of visible-light photocatalysis occurring. Naturally, many researchers are exploring this property now. This review article highlights the most recent advancements and research on visible-light activation of TiO2-doped NPs in coatings and paints. The progress in fighting air pollution and personal protective equipment is also briefly discussed. Graphical Abstract Indoor visible-light photocatalytic activation of reactive oxygen species (ROS) over TiO2 nanoparticles in paint to kill bacteria and coat frequently touched surfaces in the medical and food industries.
Collapse
Affiliation(s)
- M. Schutte-Smith
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300 South Africa
| | - E. Erasmus
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300 South Africa
| | - R. Mogale
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300 South Africa
| | - N. Marogoa
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300 South Africa
| | - A. Jayiya
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300 South Africa
| | - H. G. Visser
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300 South Africa
| |
Collapse
|
5
|
Iqbal R, Khan S, Ali HM, Khan M, Wahab S, Khan T. Application of nanomaterials against SARS-CoV-2: An emphasis on their usefulness against emerging variants of concern. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1060756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Researchers are now looking to nanomaterials to fight serious infectious diseases that cause outbreaks and even pandemics. SARS-CoV-2 brought chaos to almost every walk of life in the past 2 years and has challenged every available treatment method. Although vaccines were developed in no time against it, the most pressing issue was the emergence of variants of concern arising because of the rapidly evolving viral strains. The higher pathogenicity and, in turn, the higher mortality rate of infections caused by these variants renders the existing vaccines less effective and the effort to produce further vaccines a costly endeavor. While several techniques, such as immunotherapy and repurposed pharmaceutical research, are being studied to minimize viral infection, the fundamentals of nanotechnology must also be considered to enhance the anti-SARS-CoV-2 efforts. For instance, silver nanoparticles (AgNPs) have been applied against SARS-CoV-2 effectively. Similarly, nanomaterials have been tested in masks, gloves, and disinfectants to aid in controlling SARS-CoV-2. Nanotechnology has also contributed to diagnoses such as rapid and accurate detection and treatment such as the delivery of mRNA vaccines and other antiviral agents into the body. The development of polymeric nanoparticles has been dubbed a strategy of choice over traditional drugs because of their tunable release kinetics, specificity, and multimodal drug composition. Our article explores the potential of nanomaterials in managing the variants of concern. This will be achieved by highlighting the inherent ability of nanomaterials to act against the virus on fronts such as inhibition of SARS-CoV-2 entry, inhibition of RNA replication in SARS-CoV-2, and finally, inhibition of their release. In this review, a detailed discussion on the potential of nanomaterials in these areas will be tallied with their potential against the current and emerging future variants of concern.
Collapse
|
6
|
Kovács RJ, Kovács JZ, Szolga LA. Device for Identifying the UV Emission Spectrum. SENSORS 2022; 22:s22134852. [PMID: 35808349 PMCID: PMC9269273 DOI: 10.3390/s22134852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023]
Abstract
Nowadays, the disinfection of classrooms, shopping malls, and offices has become an important part of our lives. One of the most effective disinfection methods is ultraviolet (UV) radiation. To ensure the disinfection device has the required wavelength spectrum, we need to measure it with dedicated equipment. Thus, in this work, we present the development of a UV spectrum detector capable of identifying UV wavelength spectrums, with a wide range of probes and the ability to transmit data to a PC for later evaluation of the results. The device was developed with four UV sensors: one for UV-A, one for UV-B, one for UV-C, and one with a wide range of detection of UVA, with a built-in transimpedance amplifier. An Arduino Nano development board processes all the acquired data. We developed a custom light source containing seven UV LEDs with different central wavelengths to calibrate the device. For easy visualization of the results, custom PC software was developed in the Processing programming medium. For the two pieces of electronics—the UV detector and calibration device—3D-printed housings were created to be ergonomic for the end-user. From the price point of view, this device is affordable compared to what we can find on the market.
Collapse
|
7
|
Reguera J, Zheng F, Shalan AE, Lizundia E. Upcycling discarded cellulosic surgical masks into catalytically active freestanding materials. CELLULOSE (LONDON, ENGLAND) 2022; 29:2223-2240. [PMID: 35125686 PMCID: PMC8805669 DOI: 10.1007/s10570-022-04441-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/14/2022] [Indexed: 05/14/2023]
Abstract
ABSTRACT The COVID-19 pandemic outbreak has resulted in the massive fabrication of disposable surgical masks. As the accumulation of discarded face masks represents a booming threat to the environment, here we propose a solution to reuse and upcycle surgical masks according to one of the cornerstones of the circular economy. Specifically, the non-woven cellulosic layer of the masks is used as an environmentally sustainable and highly porous solid support for the controlled deposition of catalytically active metal-oxide nanoparticles. The native cellulosic fibers from the surgical masks are decorated by titanium dioxide (TiO2), iron oxide (FexOy), and cobalt oxide (CoOx) nanoparticles following a simple and scalable approach. The abundant surface -OH groups of cellulose enable the controlled deposition of metal-oxide nanoparticles that are photocatalytically active or shown enzyme-mimetic activities. Importantly, the hydrophilic highly porous character of the cellulosic non-woven offers higher accessibility of the pollutant to the catalytically active surfaces and high retention in its interior. As a result, good catalytic activities with long-term stability and reusability are achieved. Additionally, developed free-standing hybrids avoid undesired media contamination effects originating from the release of nanoscale particles. The upcycling of discarded cellulosic materials, such as the ones of masks, into high-added-value catalytic materials, results an efficient approach to lessen the waste´s hazards of plastics while enhancing their functionality. Interestingly, this procedure can be extended to the upcycling of other systems (cellulosic or not), opening the path to greener manufacturing approaches of catalytic materials. GRAPHICAL ABSTRACT A novel approach to upcycle discarded cellulosic surgical masks is proposed, providing a solution to reduce the undesired accumulation of discarded face masks originating from the COVID-19 pandemic. The non-woven cellulosic layer formed by fibers is used as solid support for the controlled deposition of catalytically active titanium dioxide (TiO2), iron oxide (FexOy), and cobalt oxide (CoOx) nanoparticles. Cellulosic porous materials are proven useful for the photocatalytic decomposition of organic dyes, while their peroxidase-like activity opens the door to advanced applications such as electrochemical sensors. The upcycling of cellulose nonwoven fabrics into value-added catalytic materials lessens the waste´s hazards of discarded materials while enhancing their functionality. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10570-022-04441-9.
Collapse
Affiliation(s)
- Javier Reguera
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Fangyuan Zheng
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Ahmed Esmail Shalan
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan, Cairo, Egypt
| | - Erlantz Lizundia
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU), 48013 Bilbao, Spain
| |
Collapse
|