1
|
Gjorgjevikj D, Kumar N, Wang B, Hilal T, Said N, Loll B, Artsimovitch I, Sen R, Wahl MC. The Psu protein of phage satellite P4 inhibits transcription termination factor ρ by forced hyper-oligomerization. Nat Commun 2025; 16:550. [PMID: 39788982 PMCID: PMC11718236 DOI: 10.1038/s41467-025-55897-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
Many bacteriophages modulate host transcription to favor expression of their own genomes. Phage satellite P4 polarity suppression protein, Psu, a building block of the viral capsid, inhibits hexameric transcription termination factor, ρ, by presently unknown mechanisms. Our cryogenic electron microscopy structures of ρ-Psu complexes show that Psu dimers clamp two inactive, open ρ rings and promote their expansion to higher-oligomeric states. ATPase, nucleotide binding and nucleic acid binding studies revealed that Psu hinders ρ ring closure and traps nucleotides in their binding pockets on ρ. Structure-guided mutagenesis in combination with growth, pull-down, and termination assays further delineated the functional ρ-Psu interfaces in vivo. Bioinformatic analyses revealed that Psu is associated with a wide variety of phage defense systems across Enterobacteriaceae, suggesting that Psu may regulate expression of anti-phage genes. Our findings show that modulation of the ρ oligomeric state via diverse strategies is a pervasive gene regulatory principle in bacteria.
Collapse
Affiliation(s)
- Daniela Gjorgjevikj
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Department of Medicine, Molecular Immunity Unit, MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
| | - Naveen Kumar
- Laboratory of Transcription, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Bing Wang
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Tarek Hilal
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Research Center of Electron Microscopy and Core Facility BioSupraMol, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Nelly Said
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Bernhard Loll
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Irina Artsimovitch
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Ranjan Sen
- Laboratory of Transcription, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Markus C Wahl
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany.
| |
Collapse
|
2
|
Bui DT, Kitova EN, Kitov PI, Han L, Mahal LK, Klassen JS. Deciphering Pathways and Thermodynamics of Protein Assembly Using Native Mass Spectrometry. J Am Chem Soc 2024; 146:28809-28821. [PMID: 39387708 DOI: 10.1021/jacs.4c08455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Protein oligomerization regulates many critical physiological processes, and its dysregulation can contribute to dysfunction and diseases. Elucidating the assembly pathways and quantifying their underlying thermodynamic and kinetic parameters are crucial for a comprehensive understanding of biological processes and for advancing therapeutics targeting abnormal protein oligomerization. Established binding assays, with limited mass precision, often rely on simplified models for data interpretation. In contrast, high-resolution native mass spectrometry (nMS) can directly determine the stoichiometry of biomolecular complexes in vitro. However, quantification is hindered by the fact that the relative abundances of gas-phase ions generally do not reflect solution concentrations due to nonuniform response factors. Recently, slow mixing mode (SLOMO)-nMS, which can quantify the relative response factors of interacting species, has been demonstrated to reliably measure the affinity (Kd) of binary biomolecular complexes. Here, we introduce an extended form of SLOMO-nMS that enables simultaneous quantification of the thermodynamics in multistep association reactions. Application of this method to homo-oligomerization of concanavalin A and insulin confirmed the reliability of the assay and uncovered details about the assembly processes that had previously resisted elucidation. Results acquired using SLOMO-nMS implemented with charge detection shed new light on the binding of recombinant human angiotensin-converting enzyme 2 and the SARS-CoV-2 spike protein. Importantly, new assembly pathways were uncovered, and the affinities of these interactions, which regulate host cell infection, were quantified. Together, these findings highlight the tremendous potential of SLOMO-nMS to accelerate the characterization of protein assembly pathways and thermodynamics and, in so doing, enhance fundamental biological understanding and facilitate therapeutic development. https://orcid.org/0000-0002-3389-7112.
Collapse
Affiliation(s)
- Duong T Bui
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Elena N Kitova
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Pavel I Kitov
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Ling Han
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Lara K Mahal
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - John S Klassen
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|
3
|
Nekulová M, Wyszkowska M, Friedlová N, Uhrík L, Zavadil Kokáš F, Hrabal V, Hernychová L, Vojtěšek B, Hupp TR, Szymański MR. Biochemical evidence for conformational variants in the anti-viral and pro-metastatic protein IFITM1. Biol Chem 2024; 405:311-324. [PMID: 38379409 DOI: 10.1515/hsz-2023-0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
Interferon induced transmembrane proteins (IFITMs) play a dual role in the restriction of RNA viruses and in cancer progression, yet the mechanism of their action remains unknown. Currently, there is no data about the basic biochemical features or biophysical properties of the IFITM1 protein. In this work, we report on description and biochemical characterization of three conformational variants/oligomeric species of recombinant IFITM1 protein derived from an Escherichia coli expression system. The protein was extracted from the membrane fraction, affinity purified, and separated by size exclusion chromatography where two distinct oligomeric species were observed in addition to the expected monomer. These species remained stable upon re-chromatography and were designated as "dimer" and "oligomer" according to their estimated molecular weight. The dimer was found to be less stable compared to the oligomer using circular dichroism thermal denaturation and incubation with a reducing agent. A two-site ELISA and HDX mass spectrometry suggested the existence of structural motif within the N-terminal part of IFITM1 which might be significant in oligomer formation. Together, these data show the unusual propensity of recombinant IFITM1 to naturally assemble into very stable oligomeric species whose study might shed light on IFITM1 anti-viral and pro-oncogenic functions in cells.
Collapse
Affiliation(s)
- Marta Nekulová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Marta Wyszkowska
- Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, 80-307 Gdansk, Poland
| | - Nela Friedlová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Lukáš Uhrík
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Filip Zavadil Kokáš
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Václav Hrabal
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Lenka Hernychová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Bořivoj Vojtěšek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Ted R Hupp
- Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XR Edinburgh, UK
| | - Michał R Szymański
- Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, 80-307 Gdansk, Poland
| |
Collapse
|
4
|
Ni C, Hong M. Oligomerization of drug transporters: Forms, functions, and mechanisms. Acta Pharm Sin B 2024; 14:1924-1938. [PMID: 38799641 PMCID: PMC11119549 DOI: 10.1016/j.apsb.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/07/2023] [Accepted: 01/05/2024] [Indexed: 05/29/2024] Open
Abstract
Drug transporters are essential players in the transmembrane transport of a wide variety of clinical drugs. The broad substrate spectra and versatile distribution pattern of these membrane proteins infer their pharmacological and clinical significance. With our accumulating knowledge on the three-dimensional structure of drug transporters, their oligomerization status has become a topic of intense study due to the possible functional roles carried out by such kind of post-translational modification (PTM). In-depth studies of oligomeric complexes formed among drug transporters as well as their interactions with other regulatory proteins can help us better understand the regulatory mechanisms of these membrane proteins, provide clues for the development of novel drugs, and improve the therapeutic efficacy. In this review, we describe different oligomerization forms as well as their structural basis of major drug transporters in the ATP-binding cassette and solute carrier superfamilies, summarize our current knowledge on the influence of oligomerization for protein expression level and transport function of these membrane proteins, and discuss the regulatory mechanisms of oligomerization. Finally, we highlight the challenges associated with the current oligomerization studies and propose some thoughts on the pharmaceutical application of this important drug transporter PTM.
Collapse
Affiliation(s)
- Chunxu Ni
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Mei Hong
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Qing X, Wang Q, Xu H, Liu P, Lai L. Designing Cyclic-Constrained Peptides to Inhibit Human Phosphoglycerate Dehydrogenase. Molecules 2023; 28:6430. [PMID: 37687259 PMCID: PMC10563079 DOI: 10.3390/molecules28176430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Although loop epitopes at protein-protein binding interfaces often play key roles in mediating oligomer formation and interaction specificity, their binding sites are underexplored as drug targets owing to their high flexibility, relatively few hot spots, and solvent accessibility. Prior attempts to develop molecules that mimic loop epitopes to disrupt protein oligomers have had limited success. In this study, we used structure-based approaches to design and optimize cyclic-constrained peptides based on loop epitopes at the human phosphoglycerate dehydrogenase (PHGDH) dimer interface, which is an obligate homo-dimer with activity strongly dependent on the oligomeric state. The experimental validations showed that these cyclic peptides inhibit PHGDH activity by directly binding to the dimer interface and disrupting the obligate homo-oligomer formation. Our results demonstrate that loop epitope derived cyclic peptides with rationally designed affinity-enhancing substitutions can modulate obligate protein homo-oligomers, which can be used to design peptide inhibitors for other seemingly intractable oligomeric proteins.
Collapse
Affiliation(s)
- Xiaoyu Qing
- BNLMS, Peking-Tsinghua Center for Life Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; (X.Q.); (H.X.); (P.L.)
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China;
| | - Hanyu Xu
- BNLMS, Peking-Tsinghua Center for Life Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; (X.Q.); (H.X.); (P.L.)
| | - Pei Liu
- BNLMS, Peking-Tsinghua Center for Life Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; (X.Q.); (H.X.); (P.L.)
| | - Luhua Lai
- BNLMS, Peking-Tsinghua Center for Life Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; (X.Q.); (H.X.); (P.L.)
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Shin G, Lim SI. Unveiling the biological interface of protein complexes by mass spectrometry-coupled methods. Proteins 2022; 91:593-607. [PMID: 36573681 DOI: 10.1002/prot.26459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/28/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Most biomolecules become functional and bioactive by forming protein complexes through interaction with ligands that are diverse in size, shape, and physicochemical properties. In the complex biological milieu, the interaction is ligand-specific, driven by molecular sensing, and involves the recognition of a binding interface localized within a protein structure. Mapping interfaces of protein complexes is a highly sought area of research as it delivers fundamental insights into proteomes and pathology and hence strategies for therapeutics. While X-ray crystallography and electron microscopy remain the gold standard for structural elucidation of protein complexes, their artificial and static analytic nature often produces a non-native interface that otherwise might be negligible or non-existent in a biological environment. Recently, the mass spectrometry-coupled approaches, chemical crosslinking (CLMS) and hydrogen-deuterium exchange (HDMS) have become valuable analytic complements to the traditional techniques. These methods explicitly identify hot residues and motifs embedded in binding interfaces, especially when the interaction is predominantly dynamic, transient, and/or caused by an intrinsically disordered domain. Here, we review the principal role of CLMS and HDMS in protein structural biology with a particular emphasis on the contribution of recent examples to exploring biological interfaces. Additionally, we describe recent studies that utilized these methods to expand our understanding of protein complex formation and the related biological processes, to increase the probability of structure-based drug design.
Collapse
Affiliation(s)
- Goeun Shin
- Department of Chemical Engineering, Pukyong National University, Busan, South Korea
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Busan, South Korea
| |
Collapse
|
7
|
Esperante S, Alvarez-Paggi D, Salgueiro M, Desimone M, de Oliveira G, Arán M, García-Pardo J, Aptekmann A, Ventura S, Alonso L, de Prat-Gay G. A finely tuned interplay between calcium binding, ionic strength and pH modulates conformational and oligomerization equilibria in the Respiratory Syncytial Virus Matrix (M) protein. Arch Biochem Biophys 2022; 731:109424. [DOI: 10.1016/j.abb.2022.109424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022]
|
8
|
Bleffert F, Granzin J, Caliskan M, Schott-Verdugo SN, Siebers M, Thiele B, Rahme L, Felgner S, Dörmann P, Gohlke H, Batra-Safferling R, Jaeger KE, Kovacic F. Structural, mechanistic, and physiological insights into phospholipase A-mediated membrane phospholipid degradation in Pseudomonas aeruginosa. eLife 2022; 11:e72824. [PMID: 35536643 PMCID: PMC9132575 DOI: 10.7554/elife.72824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 05/10/2022] [Indexed: 11/18/2022] Open
Abstract
Cells steadily adapt their membrane glycerophospholipid (GPL) composition to changing environmental and developmental conditions. While the regulation of membrane homeostasis via GPL synthesis in bacteria has been studied in detail, the mechanisms underlying the controlled degradation of endogenous GPLs remain unknown. Thus far, the function of intracellular phospholipases A (PLAs) in GPL remodeling (Lands cycle) in bacteria is not clearly established. Here, we identified the first cytoplasmic membrane-bound phospholipase A1 (PlaF) from Pseudomonas aeruginosa, which might be involved in the Lands cycle. PlaF is an important virulence factor, as the P. aeruginosa ΔplaF mutant showed strongly attenuated virulence in Galleria mellonella and macrophages. We present a 2.0-Å-resolution crystal structure of PlaF, the first structure that reveals homodimerization of a single-pass transmembrane (TM) full-length protein. PlaF dimerization, mediated solely through the intermolecular interactions of TM and juxtamembrane regions, inhibits its activity. The dimerization site and the catalytic sites are linked by an intricate ligand-mediated interaction network, which might explain the product (fatty acid) feedback inhibition observed with the purified PlaF protein. We used molecular dynamics simulations and configurational free energy computations to suggest a model of PlaF activation through a coupled monomerization and tilting of the monomer in the membrane, which constrains the active site cavity into contact with the GPL substrates. Thus, these data show the importance of the PlaF-mediated GPL remodeling pathway for virulence and could pave the way for the development of novel therapeutics targeting PlaF.
Collapse
Affiliation(s)
- Florian Bleffert
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbHJülichGermany
| | - Joachim Granzin
- Institute of Biological Information Processing - Structural Biochemistry (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbHJülichGermany
| | - Muttalip Caliskan
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbHJülichGermany
| | - Stephan N Schott-Verdugo
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University DüsseldorfDuesseldorfGermany
- Centro de Bioinformática y Simulación Molecular (CBSM), Faculty of Engineering, University of TalcaTalcaChile
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbHJülichGermany
| | - Meike Siebers
- Institute of Molecular Physiology, and Biotechnology of Plants (IMBIO), University of BonnBonnGermany
- Institute for Plant Genetics, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Björn Thiele
- Institute of Bio- and Geosciences, Plant Sciences (IBG-2), and Agrosphere (IBG-3), Forschungszentrum Jülich GmbHJülichGermany
| | - Laurence Rahme
- Department of Microbiology, and Immunobiology, Harvard Medical SchoolBostonUnited States
| | - Sebastian Felgner
- Department of Molecular Bacteriology, Helmholtz Centre for Infection ResearchBraunschweigGermany
| | - Peter Dörmann
- Institute of Molecular Physiology, and Biotechnology of Plants (IMBIO), University of BonnBonnGermany
| | - Holger Gohlke
- Institute of Biological Information Processing - Structural Biochemistry (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbHJülichGermany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University DüsseldorfDuesseldorfGermany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbHJülichGermany
| | - Renu Batra-Safferling
- Institute of Biological Information Processing - Structural Biochemistry (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbHJülichGermany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbHJülichGermany
- Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbHJülichGermany
| | - Filip Kovacic
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbHJülichGermany
| |
Collapse
|
9
|
Seflova J, Habibi NR, Yap JQ, Cleary SR, Fang X, Kekenes-Huskey PM, Espinoza-Fonseca LM, Bossuyt JB, Robia SL. Fluorescence lifetime imaging microscopy reveals sodium pump dimers in live cells. J Biol Chem 2022; 298:101865. [PMID: 35339486 PMCID: PMC9048134 DOI: 10.1016/j.jbc.2022.101865] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/30/2022] Open
Abstract
The sodium-potassium ATPase (Na/K-ATPase, NKA) establishes ion gradients that facilitate many physiological functions including action potentials and secondary transport processes. NKA comprises a catalytic subunit (alpha) that interacts closely with an essential subunit (beta) and regulatory transmembrane micropeptides called FXYD proteins. In the heart, a key modulatory partner is the FXYD protein phospholemman (PLM, FXYD1), but the stoichiometry of the alpha-beta-PLM regulatory complex is unknown. Here, we used fluorescence lifetime imaging and spectroscopy to investigate the structure, stoichiometry, and affinity of the NKA-regulatory complex. We observed a concentration-dependent binding of the subunits of NKA-PLM regulatory complex, with avid association of the alpha subunit with the essential beta subunit as well as lower affinity alpha-alpha and alpha-PLM interactions. These data provide the first evidence that, in intact live cells, the regulatory complex is composed of two alpha subunits associated with two beta subunits, decorated with two PLM regulatory subunits. Docking and molecular dynamics (MD) simulations generated a structural model of the complex that is consistent with our experimental observations. We propose that alpha-alpha subunit interactions support conformational coupling of the catalytic subunits, which may enhance NKA turnover rate. These observations provide insight into the pathophysiology of heart failure, wherein low NKA expression may be insufficient to support formation of the complete regulatory complex with the stoichiometry (alpha-beta-PLM)2.
Collapse
Affiliation(s)
- Jaroslava Seflova
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
| | - Nima R Habibi
- Department of Pharmacology, University of California Davis, Davis, California, USA
| | - John Q Yap
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
| | - Sean R Cleary
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
| | - Xuan Fang
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
| | - Peter M Kekenes-Huskey
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
| | - L Michel Espinoza-Fonseca
- Division of Cardiovascular Medicine, Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Julie B Bossuyt
- Department of Pharmacology, University of California Davis, Davis, California, USA.
| | - Seth L Robia
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA.
| |
Collapse
|
10
|
Yu Y, Dong X, Tang Y, Li L, Wei G. Mechanistic insight into the destabilization of p53TD tetramer by cancer-related R337H mutation: a molecular dynamics study. Phys Chem Chem Phys 2022; 24:5199-5210. [PMID: 35166747 DOI: 10.1039/d1cp05670k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The p53 protein is a tumor suppressor crucial for cell cycle and genome integrity. In a very large proportion of human cancers, p53 is frequently inactivated by mutations located in its DNA-binding domain (DBD). Some experimental studies reported that the inherited R337H mutation located in the p53 tetramerization domain (p53TD) can also result in destabilization of the p53 protein, and consequently lead to an organism prone to cancer setup. However, the underlying R337H mutation-induced structural destabilization mechanism is not well understood. Herein, we investigate the structural stability and dynamic property of the wild type p53TD tetramer and its cancer-related R337H mutant by performing multiple microsecond molecular dynamics simulations. It is found that R337H mutation destroys the R337-D352 hydrogen bonds, weakens the F341-F341 π-π stacking interaction and the hydrophobic interaction between aliphatic hydrocarbons of R337 and M340, leading to more solvent exposure of all the hydrophobic cores, and thus disrupting the structural integrity of the tetramer. Importantly, our simulations show for the first time that R337H mutation results in unfolding of the α-helix starting from the N-terminal region (residues 335RER(H)FEM340). Consistently, community network analyses reveal that R337H mutation reduces dynamical correlation and global connectivity of p53TD tetramer, which destabilizes the structure of the p53TD tetramer. This study provides the atomistic mechanism of R337H mutation-induced destabilization of p53TD tetramer, which might be helpful for in-depth understanding of the p53 loss-of-function mechanism.
Collapse
Affiliation(s)
- Yawei Yu
- Department of physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Xuewei Dong
- Department of physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Yiming Tang
- Department of physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Le Li
- Department of physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Guanghong Wei
- Department of physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| |
Collapse
|
11
|
Tehlan A, Bhowmick K, Kumar A, Subbarao N, Dhar SK. The tetrameric structure of Plasmodium falciparum phosphoglycerate mutase is critical for optimal enzymatic activity. J Biol Chem 2022; 298:101713. [PMID: 35150741 PMCID: PMC8913309 DOI: 10.1016/j.jbc.2022.101713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/29/2022] Open
Abstract
The glycolytic enzyme phosphoglycerate mutase (PGM) is of utmost importance for overall cellular metabolism and has emerged as a novel therapeutic target in cancer cells. This enzyme is also conserved in the rapidly proliferating malarial parasite Plasmodium falciparum, which have a similar metabolic framework as cancer cells and rely on glycolysis as the sole energy-yielding process during intraerythrocytic development. There is no redundancy among the annotated PGM enzymes in Plasmodium, and PfPGM1 is absolutely required for the parasite survival as evidenced by conditional knockdown in our study. A detailed comparison of PfPGM1 with its counterparts followed by in-depth structure-function analysis revealed unique attributes of this parasitic protein. Here, we report for the first time the importance of oligomerization for the optimal functioning of the enzyme in vivo, as earlier studies in eukaryotes only focused on the effects in vitro. We show that single point mutation of the amino acid residue W68 led to complete loss of tetramerization and diminished catalytic activity in vitro. Additionally, ectopic expression of the WT PfPGM1 protein enhanced parasite growth, whereas the monomeric form of PfPGM1 failed to provide growth advantage. Furthermore, mutation of the evolutionarily conserved residue K100 led to a drastic reduction in enzymatic activity. The indispensable nature of this parasite enzyme highlights the potential of PfPGM1 as a therapeutic target against malaria, and targeting the interfacial residues critical for oligomerization can serve as a focal point for promising drug development strategies that may not be restricted to malaria only.
Collapse
Affiliation(s)
- Ankita Tehlan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067
| | - Krishanu Bhowmick
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067
| | - Amarjeet Kumar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Suman Kumar Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067.
| |
Collapse
|
12
|
Bennett JL, Nguyen GTH, Donald WA. Protein-Small Molecule Interactions in Native Mass Spectrometry. Chem Rev 2021; 122:7327-7385. [PMID: 34449207 DOI: 10.1021/acs.chemrev.1c00293] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Small molecule drug discovery has been propelled by the continual development of novel scientific methodologies to occasion therapeutic advances. Although established biophysical methods can be used to obtain information regarding the molecular mechanisms underlying drug action, these approaches are often inefficient, low throughput, and ineffective in the analysis of heterogeneous systems including dynamic oligomeric assemblies and proteins that have undergone extensive post-translational modification. Native mass spectrometry can be used to probe protein-small molecule interactions with unprecedented speed and sensitivity, providing unique insights into polydisperse biomolecular systems that are commonly encountered during the drug discovery process. In this review, we describe potential and proven applications of native MS in the study of interactions between small, drug-like molecules and proteins, including large multiprotein complexes and membrane proteins. Approaches to quantify the thermodynamic and kinetic properties of ligand binding are discussed, alongside a summary of gas-phase ion activation techniques that have been used to interrogate the structure of protein-small molecule complexes. We additionally highlight some of the key areas in modern drug design for which native mass spectrometry has elicited significant advances. Future developments and applications of native mass spectrometry in drug discovery workflows are identified, including potential pathways toward studying protein-small molecule interactions on a whole-proteome scale.
Collapse
Affiliation(s)
- Jack L Bennett
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Giang T H Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
13
|
Déri S, Borbás J, Hartai T, Hategan L, Csányi B, Visnyovszki Á, Madácsy T, Maléth J, Hegedűs Z, Nagy I, Arora R, Labro AJ, Környei L, Varró A, Sepp R, Ördög B. Impaired cytoplasmic domain interactions cause co-assembly defect and loss of function in the p.Glu293Lys KNCJ2 variant isolated from an Andersen-Tawil syndrome patient. Cardiovasc Res 2021; 117:1923-1934. [PMID: 32810216 DOI: 10.1093/cvr/cvaa249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/16/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
AIMS Subunit interactions at the cytoplasmic domain interface (CD-I) have recently been shown to control gating in inward rectifier potassium channels. Here we report the novel KCNJ2 variant p.Glu293Lys that has been found in a patient with Andersen-Tawil syndrome type 1 (ATS1), causing amino acid substitution at the CD-I of the inward rectifier potassium channel subunit Kir2.1. Neither has the role of Glu293 in gating control been investigated nor has a pathogenic variant been described at this position. This study aimed to assess the involvement of Glu293 in CD-I subunit interactions and to establish the pathogenic role of the p.Glu293Lys variant in ATS1. METHODS AND RESULTS The p.Glu293Lys variant produced no current in homomeric form and showed dominant-negative effect over wild-type (WT) subunits. Immunocytochemical labelling showed the p.Glu293Lys subunits to distribute in the subsarcolemmal space. Salt bridge prediction indicated the presence of an intersubunit salt bridge network at the CD-I of Kir2.1, with the involvement of Glu293. Subunit interactions were studied by the NanoLuc® Binary Technology (NanoBiT) split reporter assay. Reporter constructs carrying NanoBiT tags on the intracellular termini produced no bioluminescent signal above background with the p.Glu293Lys variant in homomeric configuration and significantly reduced signals in cells co-expressing WT and p.Glu293Lys subunits simultaneously. Extracellularly presented reporter tags, however, generated comparable bioluminescent signals with heteromeric WT and p.Glu293Lys subunits and with homomeric WT channels. CONCLUSIONS Loss of function and dominant-negative effect confirm the causative role of p.Glu293Lys in ATS1. Co-assembly of Kir2.1 subunits is impaired in homomeric channels consisting of p.Glu293Lys subunits and is partially rescued in heteromeric complexes of WT and p.Glu293Lys Kir2.1 variants. These data point to an important role of Glu293 in mediating subunit assembly, as well as in gating of Kir2.1 channels.
Collapse
Affiliation(s)
- Szilvia Déri
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Dóm tér 12, PO Box 427, Szeged 6720, Hungary
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 12, 6720 Szeged, Hungary
| | - János Borbás
- 2nd Department of Internal Medicine and Cardiology Centre, University of Szeged, Semmelweis u. 8, 6725 Szeged, Hungary
| | - Teodóra Hartai
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Dóm tér 12, PO Box 427, Szeged 6720, Hungary
| | - Lidia Hategan
- 2nd Department of Internal Medicine and Cardiology Centre, University of Szeged, Semmelweis u. 8, 6725 Szeged, Hungary
| | - Beáta Csányi
- 2nd Department of Internal Medicine and Cardiology Centre, University of Szeged, Semmelweis u. 8, 6725 Szeged, Hungary
| | - Ádám Visnyovszki
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Dóm tér 12, PO Box 427, Szeged 6720, Hungary
| | - Tamara Madácsy
- 1st Department of Internal Medicine, University of Szeged, Korányi fasor 8-10, 6720 Szeged, Hungary, Hungary
| | - József Maléth
- 1st Department of Internal Medicine, University of Szeged, Korányi fasor 8-10, 6720 Szeged, Hungary, Hungary
| | - Zoltán Hegedűs
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, 6726 Szeged, Hungary
- Department of Biochemistry and Medical Chemistry, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - István Nagy
- Institute of Biochemistry, Biological Research Centre the Hungarian Academy of Sciences, Temesvári krt. 62, 6726 Szeged, Hungary
- Seqomics Biotechnology Ltd, Vállalkozók útja 7, 6782 Mórahalom, Hungary
| | - Rohit Arora
- Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Alain J Labro
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
- Department of Basic Medical Sciences, University of Ghent, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - László Környei
- Gottsegen György National Institute of Cardiology, Haller u. 9, 1096 Budapest, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Dóm tér 12, PO Box 427, Szeged 6720, Hungary
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 12, 6720 Szeged, Hungary
- MTA-SZTE Research Group for Cardiovascular Pharmacology, Hungarian Academy of Sciences, Dóm tér 12, 6720 Szeged, Hungary
| | - Róbert Sepp
- 2nd Department of Internal Medicine and Cardiology Centre, University of Szeged, Semmelweis u. 8, 6725 Szeged, Hungary
| | - Balázs Ördög
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Dóm tér 12, PO Box 427, Szeged 6720, Hungary
| |
Collapse
|
14
|
Gencel-Augusto J, Lozano G. p53 tetramerization: at the center of the dominant-negative effect of mutant p53. Genes Dev 2021; 34:1128-1146. [PMID: 32873579 PMCID: PMC7462067 DOI: 10.1101/gad.340976.120] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this review, Gencel-Augusto and Lozano summarize the data on p53 mutants with a functional tetramerization domain that form mixed tetramers and in some cases have dominant-negative effects (DNE) that inactivate wild-type p53. They conclude that the DNE is mostly observed after DNA damage but fails in other contexts. The p53 tumor suppressor functions as a tetrameric transcription factor to regulate hundreds of genes—many in a tissue-specific manner. Missense mutations in cancers in the p53 DNA-binding and tetramerization domains cement the importance of these domains in tumor suppression. p53 mutants with a functional tetramerization domain form mixed tetramers, which in some cases have dominant-negative effects (DNE) that inactivate wild-type p53. DNA damage appears necessary but not sufficient for DNE, indicating that upstream signals impact DNE. Posttranslational modifications and protein–protein interactions alter p53 tetramerization affecting transcription, stability, and localization. These regulatory components limit the dominant-negative effects of mutant p53 on wild-type p53 activity. A deeper understanding of the molecular basis for DNE may drive development of drugs that release WT p53 and allow tumor suppression.
Collapse
Affiliation(s)
- Jovanka Gencel-Augusto
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA.,Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Guillermina Lozano
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA.,Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
15
|
Targeting protein self-association in drug design. Drug Discov Today 2021; 26:1148-1163. [PMID: 33548462 DOI: 10.1016/j.drudis.2021.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/24/2020] [Accepted: 01/26/2021] [Indexed: 01/05/2023]
Abstract
Protein self-association is a universal phenomenon essential for stability and molecular recognition. Disrupting constitutive homomers constitutes an original and emerging strategy in drug design. Inhibition of homomeric proteins can be achieved through direct complex disruption, subunit intercalation, or by promoting inactive oligomeric states. Targeting self-interaction grants several advantages over active site inhibition because of the stimulation of protein degradation, the enhancement of selectivity, substoichiometric inhibition, and by-pass of compensatory mechanisms. This new landscape in protein inhibition is driven by the development of biophysical and biochemical tools suited for the study of homomeric proteins, such as differential scanning fluorimetry (DSF), native mass spectrometry (MS), Förster resonance energy transfer (FRET) spectroscopy, 2D nuclear magnetic resonance (NMR), and X-ray crystallography. In this review, we discuss the different aspects of this new paradigm in drug design.
Collapse
|
16
|
Malcolm TR, Belousoff MJ, Venugopal H, Borg NA, Drinkwater N, Atkinson SC, McGowan S. Active site metals mediate an oligomeric equilibrium in Plasmodium M17 aminopeptidases. J Biol Chem 2020; 296:100173. [PMID: 33303633 PMCID: PMC7948507 DOI: 10.1074/jbc.ra120.016313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 01/14/2023] Open
Abstract
M17 leucyl aminopeptidases are metal-dependent exopeptidases that rely on oligomerization to diversify their functional roles. The M17 aminopeptidases from Plasmodium falciparum (PfA-M17) and Plasmodium vivax (Pv-M17) function as catalytically active hexamers to generate free amino acids from human hemoglobin and are drug targets for the design of novel antimalarial agents. However, the molecular basis for oligomeric assembly is not fully understood. In this study, we found that the active site metal ions essential for catalytic activity have a secondary structural role mediating the formation of active hexamers. We found that PfA-M17 and Pv-M17 exist in a metal-dependent dynamic equilibrium between active hexameric species and smaller inactive species that can be controlled by manipulating the identity and concentration of metals available. Mutation of residues involved in metal ion binding impaired catalytic activity and the formation of active hexamers. Structural resolution of Pv-M17 by cryoelectron microscopy and X-ray crystallography together with solution studies revealed that PfA-M17 and Pv-M17 bind metal ions and substrates in a conserved fashion, although Pv-M17 forms the active hexamer more readily and processes substrates faster than PfA-M17. On the basis of these studies, we propose a dynamic equilibrium between monomer ↔ dimer ↔ tetramer ↔ hexamer, which becomes directional toward the large oligomeric states with the addition of metal ions. This sophisticated metal-dependent dynamic equilibrium may apply to other M17 aminopeptidases and underpin the moonlighting capabilities of this enzyme family.
Collapse
Affiliation(s)
- Tess R Malcolm
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Matthew J Belousoff
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Hariprasad Venugopal
- Ramacciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Natalie A Borg
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; Immunity and Immune Evasion Laboratory, Chronic Infectious and Inflammatory Diseases Research, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Nyssa Drinkwater
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Sarah C Atkinson
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; Immunity and Immune Evasion Laboratory, Chronic Infectious and Inflammatory Diseases Research, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Sheena McGowan
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
17
|
Concentration- and pH-Dependent Oligomerization of the Thrombin-Derived C-Terminal Peptide TCP-25. Biomolecules 2020; 10:biom10111572. [PMID: 33228042 PMCID: PMC7699335 DOI: 10.3390/biom10111572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
Peptide oligomerization dynamics affects peptide structure, activity, and pharmacodynamic properties. The thrombin C-terminal peptide, TCP-25 (GKYGFYTHVFRLKKWIQKVIDQFGE), is currently in preclinical development for improved wound healing and infection prevention. It exhibits turbidity when formulated at pH 7.4, particularly at concentrations of 0.3 mM or more. We used biochemical and biophysical approaches to explore whether the peptide self-associates and forms oligomers. The peptide showed a dose-dependent increase in turbidity as well as α-helical structure at pH 7.4, a phenomenon not observed at pH 5.0. By analyzing the intrinsic tryptophan fluorescence, we demonstrate that TCP-25 is more stable at high concentrations (0.3 mM) when exposed to high temperatures or a high concentration of denaturant agents, which is compatible with oligomer formation. The denaturation process was reversible above 100 µM of peptide. Dynamic light scattering demonstrated that TCP-25 oligomerization is sensitive to changes in pH, time, and temperature. Computational modeling with an active 18-mer region of TCP-25 showed that the peptide can form pH-dependent higher-order end-to-end oligomers and micelle-like structures, which is in agreement with the experimental data. Thus, TCP-25 exhibits pH- and temperature-dependent dynamic changes involving helical induction and reversible oligomerization, which explains the observed turbidity of the pharmacologically developed formulation.
Collapse
|
18
|
Giampà M, Sgobba E. Insight to Functional Conformation and Noncovalent Interactions of Protein-Protein Assembly Using MALDI Mass Spectrometry. Molecules 2020; 25:E4979. [PMID: 33126406 PMCID: PMC7662314 DOI: 10.3390/molecules25214979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 11/16/2022] Open
Abstract
Noncovalent interactions are the keys to the structural organization of biomolecule e.g., proteins, glycans, lipids in the process of molecular recognition processes e.g., enzyme-substrate, antigen-antibody. Protein interactions lead to conformational changes, which dictate the functionality of that protein-protein complex. Besides biophysics techniques, noncovalent interaction and conformational dynamics, can be studied via mass spectrometry (MS), which represents a powerful tool, due to its low sample consumption, high sensitivity, and label-free sample. In this review, the focus will be placed on Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS) and its role in the analysis of protein-protein noncovalent assemblies exploring the relationship within noncovalent interaction, conformation, and biological function.
Collapse
Affiliation(s)
- Marco Giampà
- MR Cancer Group, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Elvira Sgobba
- Genetics and Plant Physiology, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden;
| |
Collapse
|
19
|
Larsen AH, Pedersen JS, Arleth L. Assessment of structure factors for analysis of small-angle scattering data from desired or undesired aggregates. J Appl Crystallogr 2020. [DOI: 10.1107/s1600576720006500] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aggregation processes are central features of many systems ranging from colloids and polymers to inorganic nanoparticles and biological systems. Some aggregated structures are controlled and desirable, e.g. in the design of size-controlled clustered nanoparticles or some protein-based drugs. In other cases, the aggregates are undesirable, e.g. protein aggregation involved in neurodegenerative diseases or in vitro studies of single protein structures. In either case, experimental and analytical tools are needed to cast light on the aggregation processes. Aggregation processes can be studied with small-angle scattering, but analytical descriptions of the aggregates are needed for detailed structural analysis. This paper presents a list of useful small-angle scattering structure factors, including a novel structure factor for a spherical cluster with local correlations between the constituent particles. Several of the structure factors were renormalized to get correct limit values in both the high-q and low-q limit, where q is the modulus of the scattering vector. The structure factors were critically evaluated against simulated data. Structure factors describing fractal aggregates provided approximate descriptions of the simulated data for all tested structures, from linear to globular aggregates. The addition of a correlation hole for the constituent particles in the fractal structure factors significantly improved the fits in all cases. Linear aggregates were best described by a linear structure factor and globular aggregates by the newly derived spherical cluster structure factor. As a central point, it is shown that the structure factors could be used to take aggregation contributions into account for samples of monomeric protein containing a minor fraction of aggregated protein. After applying structure factors in the analysis, the correct structure and oligomeric state of the protein were determined. Thus, by careful use of the presented structure factors, important structural information can be retrieved from small-angle scattering data, both when aggregates are desired and when they are undesired.
Collapse
|
20
|
Neumann A, Müller CE, Namasivayam V. P2Y
1
‐like nucleotide receptors—Structures, molecular modeling, mutagenesis, and oligomerization. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alexander Neumann
- Department of Pharmaceutical and Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB) University of Bonn Bonn Germany
- Research Training Group 1873, University of Bonn Bonn Germany
| | - Christa E. Müller
- Department of Pharmaceutical and Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB) University of Bonn Bonn Germany
- Research Training Group 1873, University of Bonn Bonn Germany
| | - Vigneshwaran Namasivayam
- Department of Pharmaceutical and Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB) University of Bonn Bonn Germany
| |
Collapse
|
21
|
Diewald B, Socher E, Söldner CA, Sticht H. Conformational Dynamics of Herpesviral NEC Proteins in Different Oligomerization States. Int J Mol Sci 2018; 19:ijms19102908. [PMID: 30257461 PMCID: PMC6213152 DOI: 10.3390/ijms19102908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/14/2018] [Accepted: 09/21/2018] [Indexed: 12/19/2022] Open
Abstract
All herpesviruses use a heterodimeric nuclear egress complex (NEC) to transport capsids out of host cell nuclei. Despite their overall similar structure, NECs may differ significantly in sequence between different viruses. Up to now, structural information is limited to isolated NEC heterodimers and to large hexagonal lattices made up of hexagonal ring-like structures ("Hexagons"). The present study aimed to expand the existing structural knowledge with information on the dynamics of NECs from different viruses and in different oligomerization states. For this task, comparative molecular dynamics simulations were performed of the free NEC heterodimers from three different viruses (HCMV (human cytomegalovirus), HSV-1 (herpes simplex virus 1), and PRV (pseudorabies virus)). In addition, higher oligomerization states comprising two or six NEC heterodimers were characterized for HCMV and HSV-1. The study revealed that the isolated NEC heterodimers from α- (HSV-1, PRV) and β-herpesviruses (HCMV) differ significantly in their dynamics, which can be attributed to a poorly conserved interface region between the NEC subdomains. These differences become smaller for higher oligomerization states, and both HCMV and HSV-1 individual Hexagons exhibit a common region of enhanced dynamics, which might be of functional relevance for the formation of curved vesicle structures or the recognition of hexameric capsid proteins.
Collapse
Affiliation(s)
- Benedikt Diewald
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054 Erlangen, Germany.
| | - Eileen Socher
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054 Erlangen, Germany.
| | - Christian A Söldner
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054 Erlangen, Germany.
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054 Erlangen, Germany.
| |
Collapse
|
22
|
Yu M, Ma X, Cao H, Chong B, Lai L, Liu Z. Singular value decomposition for the correlation of atomic fluctuations with arbitrary angle. Proteins 2018; 86:1075-1087. [PMID: 30019778 DOI: 10.1002/prot.25586] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/22/2018] [Accepted: 07/04/2018] [Indexed: 01/21/2023]
Abstract
Many proteins exhibit a critical property called allostery, which enables intra-molecular transmission of information between distal sites. Microscopically, allosteric response is closely related to correlated atomic fluctuations. Conventional correlation analysis correlates the atomic fluctuations at two sites by taking the dot product (DP) between the fluctuations, which accounts only for the parallel and antiparallel components. Here, we present a singular value decomposition (SVD) method that analyzes the correlation coefficient of fluctuation dynamics with an arbitrary angle between the correlated directions. In a model allosteric system, the second PDZ domain (PDZ2) in the human PTP1E protein, approximately one third of the strong correlations have near-perpendicular directions, which are underestimated in the conventional method. The discrimination becomes more prominent for residue pairs with larger separation. The results of the proposed SVD method are more consistent with the experimentally determined PDZ2 dynamics than those of conventional method. In addition, the SVD method improved the prediction accuracy of the allosteric sites in a dataset of 23 known allosteric monomer proteins. The proposed method may inspire extended investigation not only into allostery, but also into protein dynamics and drug design.
Collapse
Affiliation(s)
- Miao Yu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xiaomin Ma
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Huaiqing Cao
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Bin Chong
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Luhua Lai
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Center for Quantitative Biology, and BNLMS, Peking University, Beijing, China.,State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Peking University, Beijing, China
| | - Zhirong Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Center for Quantitative Biology, and BNLMS, Peking University, Beijing, China.,State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Peking University, Beijing, China
| |
Collapse
|
23
|
Looking for Novel Capsid Protein Multimerization Inhibitors of Feline Immunodeficiency Virus. Pharmaceuticals (Basel) 2018; 11:ph11030067. [PMID: 29996481 PMCID: PMC6161179 DOI: 10.3390/ph11030067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 12/25/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is a member of the retroviridae family of viruses. It causes acquired immunodeficiency syndrome (AIDS) in worldwide domestic and non-domestic cats and is a cause of an important veterinary issue. The genome organization of FIV and the clinical characteristics of the disease caused by FIV are similar to human immunodeficiency virus (HIV). Both viruses infect T lymphocytes, monocytes, and macrophages, with a similar replication cycle in infected cells. Thus, the infection of cats with FIV is also a useful tool for the study and development of novel drugs and vaccines against HIV. Anti-retroviral drugs studied extensively with regards to HIV infection have targeted different steps of the virus replication cycle: (1) disruption of the interaction with host cell surface receptors and co-receptors; (2) inhibition of fusion of the virus and cell membranes; (3) blocking of the reverse transcription of viral genomic RNA; (4) interruption of nuclear translocation and integration of viral DNA into host genomes; (5) prevention of viral transcript processing and nuclear export; and (6) inhibition of virion assembly and maturation. Despite the great success of anti-retroviral therapy in slowing HIV progression in humans, a similar therapy has not been thoroughly investigated for FIV infection in cats, mostly because of the little structural information available for FIV proteins. The FIV capsid protein (CA) drives the assembly of the viral particle, which is a critical step in the viral replication cycle. During this step, the CA protein oligomerizes to form a protective coat that surrounds the viral genome. In this work, we perform a large-scale screening of four hundred molecules from our in-house library using an in vitro assembly assay of p24, combined with microscale thermophoresis, to estimate binding affinity. This screening led to the discovery of around four novel hits that inhibited capsid assembly in vitro. These may provide new antiviral drugs against FIV.
Collapse
|
24
|
St-Pierre Y, Doucet N, Chatenet D. A New Approach to Inhibit Prototypic Galectins. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1730.1se] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yves St-Pierre
- Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, Université du Québec
| | - Nicolas Doucet
- Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, Université du Québec
| | - David Chatenet
- Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, Université du Québec
| |
Collapse
|
25
|
Domain swapping between FabGs deciphers the structural determinant for in-solution oligomerization and substrate binding. Biophys Chem 2018; 237:9-21. [PMID: 29625337 DOI: 10.1016/j.bpc.2018.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 01/02/2023]
|
26
|
Katz C, Low-Calle AM, Choe JH, Laptenko O, Tong D, Joseph-Chowdhury JSN, Garofalo F, Zhu Y, Friedler A, Prives C. Wild-type and cancer-related p53 proteins are preferentially degraded by MDM2 as dimers rather than tetramers. Genes Dev 2018; 32:430-447. [PMID: 29549180 PMCID: PMC5900715 DOI: 10.1101/gad.304071.117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 02/16/2018] [Indexed: 12/26/2022]
Abstract
The p53 tumor suppressor protein is the most well studied as a regulator of transcription in the nucleus, where it exists primarily as a tetramer. However, there are other oligomeric states of p53 that are relevant to its regulation and activities. In unstressed cells, p53 is normally held in check by MDM2 that targets p53 for transcriptional repression, proteasomal degradation, and cytoplasmic localization. Here we discovered a hydrophobic region within the MDM2 N-terminal domain that binds exclusively to the dimeric form of the p53 C-terminal domain in vitro. In cell-based assays, MDM2 exhibits superior binding to, hyperdegradation of, and increased nuclear exclusion of dimeric p53 when compared with tetrameric wild-type p53. Correspondingly, impairing the hydrophobicity of the newly identified N-terminal MDM2 region leads to p53 stabilization. Interestingly, we found that dimeric mutant p53 is partially unfolded and is a target for ubiquitin-independent degradation by the 20S proteasome. Finally, forcing certain tumor-derived mutant forms of p53 into dimer configuration results in hyperdegradation of mutant p53 and inhibition of p53-mediated cancer cell migration. Gaining insight into different oligomeric forms of p53 may provide novel approaches to cancer therapy.
Collapse
Affiliation(s)
- Chen Katz
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Ana Maria Low-Calle
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Joshua H Choe
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Oleg Laptenko
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - David Tong
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | - Francesca Garofalo
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | - Assaf Friedler
- Institute of Chemistry, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
27
|
Verma D, Gupta S, Kaur KJ, Gupta V. Is perturbation in the quaternary structure of bacterial CysE, another regulatory mechanism for cysteine synthesis? Int J Biol Macromol 2018; 111:1010-1018. [PMID: 29366889 DOI: 10.1016/j.ijbiomac.2018.01.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 10/18/2022]
Abstract
Drug resistance to almost all antibiotics of Shigella flexneri, a major cause of shigellosis in developing countries, necessitates continuous discovery of novel therapeutics. This study reports a structure-function analysis of a potential drug target serine acetyltransferase (CysE), an enzyme of de novo cysteine biosynthesis pathway that is absent in humans. Analysis of CysE sequences of S. flexneri species and serotypes displayed only two variants that differed by a single amino acid substitution at position 241. Structural inspection of the available crystal structure disclosed this site to be distinct from the substrate/cofactor binding pockets or dimer/trimer interfaces. This study discovers that V241 variant of S. flexneri CysE has nearly null enzymatic activity. The observation is explained by molecular dynamic studies which reveal that the disorder generated by A241V substitution is the basis of dissociation of the quaternary assembly of S. flexneri CysE leading to loss of enzymatic activity and stability. The study provides the first evidence that position 241 of CysE, affects the catalytic efficiency of enzyme and suggests this locus as a 'hot spot' for the propagation of conformational changes. It may be postulated that transient quaternary structure of CysE maybe another mechanism for regulating the intracellular level of cysteine.
Collapse
Affiliation(s)
- Deepali Verma
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201309, India
| | - Sunita Gupta
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201309, India
| | - Kanwal J Kaur
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Vibha Gupta
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201309, India.
| |
Collapse
|
28
|
Carrington B, Myers WK, Horanyi P, Calmiano M, Lawson ADG. Natural Conformational Sampling of Human TNFα Visualized by Double Electron-Electron Resonance. Biophys J 2017; 113:371-380. [PMID: 28746848 PMCID: PMC5529296 DOI: 10.1016/j.bpj.2017.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/05/2017] [Accepted: 06/06/2017] [Indexed: 12/20/2022] Open
Abstract
Double electron-electron resonance in conjunction with site-directed spin labeling has been used to probe natural conformational sampling of the human tumor necrosis factor α trimer. We suggest a previously unreported, predeoligomerization conformation of the trimer that has been shown to be sampled at low frequency. A model of this trimeric state has been constructed based on crystal structures using the double-electron-electron-resonance distances. The model shows one of the protomers to be rotated and tilted outward at the tip end, leading to a breaking of the trimerous symmetry and distortion at a receptor-binding interface. The new structure offers opportunities to modulate the biological activity of tumor necrosis factor α through stabilization of the distorted trimer with small molecules.
Collapse
Affiliation(s)
| | - William K Myers
- Department of Inorganic Chemistry, University of Oxford, Oxford, United Kingdom
| | | | | | | |
Collapse
|
29
|
Chen L, Aleshin AE, Alitongbieke G, Zhou Y, Zhang X, Ye X, Hu M, Ren G, Chen Z, Ma Y, Zhang D, Liu S, Gao W, Cai L, Wu L, Zeng Z, Jiang F, Liu J, Zhou H, Cadwell G, Liddington RC, Su Y, Zhang XK. Modulation of nongenomic activation of PI3K signalling by tetramerization of N-terminally-cleaved RXRα. Nat Commun 2017; 8:16066. [PMID: 28714476 PMCID: PMC5520057 DOI: 10.1038/ncomms16066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 05/24/2017] [Indexed: 12/14/2022] Open
Abstract
Retinoid X receptor-alpha (RXRα) binds to DNA either as homodimers or heterodimers, but it also forms homotetramers whose function is poorly defined. We previously discovered that an N-terminally-cleaved form of RXRα (tRXRα), produced in tumour cells, activates phosphoinositide 3-kinase (PI3K) signalling by binding to the p85α subunit of PI3K and that K-80003, an anti-cancer agent, inhibits this process. Here, we report through crystallographic and biochemical studies that K-80003 binds to and stabilizes tRXRα tetramers via a ‘three-pronged’ combination of canonical and non-canonical mechanisms. K-80003 binding has no effect on tetramerization of RXRα, owing to the head–tail interaction that is absent in tRXRα. We also identify an LxxLL motif in p85α, which binds to the coactivator-binding groove on tRXRα and dissociates from tRXRα upon tRXRα tetramerization. These results identify conformational selection as the mechanism for inhibiting the nongenomic action of tRXRα and provide molecular insights into the development of RXRα cancer therapeutics. The transcription factor retinoid X receptor-alpha (RXRα) can also form homotetramers. Here the authors show that the anti-cancer agent K-80003 selectively inhibits the nongenomic action of N-terminally-cleaved RXRα in tumour cells by stabilizing its tetramerization but not that of full-length RXRα.
Collapse
Affiliation(s)
- Liqun Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China.,College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China.,Sanford Burnham Prebys Medical Discovery Institute, 10901, North Torrey Pines Road, La Jolla, California 92037, USA
| | - Alexander E Aleshin
- Sanford Burnham Prebys Medical Discovery Institute, 10901, North Torrey Pines Road, La Jolla, California 92037, USA
| | - Gulimiran Alitongbieke
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Yuqi Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Xindao Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Xiaohong Ye
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Mengjie Hu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Gaoang Ren
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Ziwen Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Yue Ma
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Duo Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Shuai Liu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Weiwei Gao
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Lijun Cai
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Lingjuan Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zhiping Zeng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Fuquan Jiang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Jie Liu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Hu Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Gregory Cadwell
- Sanford Burnham Prebys Medical Discovery Institute, 10901, North Torrey Pines Road, La Jolla, California 92037, USA
| | - Robert C Liddington
- Sanford Burnham Prebys Medical Discovery Institute, 10901, North Torrey Pines Road, La Jolla, California 92037, USA
| | - Ying Su
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China.,Sanford Burnham Prebys Medical Discovery Institute, 10901, North Torrey Pines Road, La Jolla, California 92037, USA
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China.,Sanford Burnham Prebys Medical Discovery Institute, 10901, North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
30
|
Vimal A, Kumar A. The morpheein model of allosterism: a remedial step for targeting virulent l -asparaginase. Drug Discov Today 2017; 22:814-822. [DOI: 10.1016/j.drudis.2016.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/02/2016] [Accepted: 10/03/2016] [Indexed: 11/15/2022]
|
31
|
The trimer interface in the quaternary structure of the bifunctional prokaryotic FAD synthetase from Corynebacterium ammoniagenes. Sci Rep 2017; 7:404. [PMID: 28341845 PMCID: PMC5428420 DOI: 10.1038/s41598-017-00402-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 02/27/2017] [Indexed: 12/25/2022] Open
Abstract
Bifunctional FAD synthetases (FADSs) fold in two independent modules; The C-terminal riboflavin kinase (RFK) catalyzes the RFK activity, while the N-terminal FMN-adenylyltransferase (FMNAT) exhibits the FMNAT activity. The search for macromolecular interfaces in the Corynebacterium ammoniagenes FADS (CaFADS) crystal structure predicts a dimer of trimers organization. Within each trimer, a head-to-tail arrangement causes the RFK and FMNAT catalytic sites of the two neighboring protomers to approach, in agreement with active site residues of one module influencing the activity at the other. We analyze the relevance of the CaFADS head-to-tail macromolecular interfaces to stabilization of assemblies, catalysis and ligand binding. With this aim, we evaluate the effect of point mutations in loop L1c-FlapI, loop L6c, and helix α1c of the RFK module (positions K202, E203, F206, D298, V300, E301 and L304), regions at the macromolecular interface between two protomers within the trimer. Although none of the studied residues is critical in the formation and dissociation of assemblies, residues at L1c-FlapI and helix α1c particularly modulate quaternary architecture, as well as ligand binding and kinetic parameters involved with RFK and FMNAT activities. These data support the influence of transient oligomeric structures on substrate accommodation and catalysis at both CaFADS active sites.
Collapse
|
32
|
Nguyen TD, Takasuka H, Kaku Y, Inoue S, Nagamune T, Kawahara M. Engineering a growth sensor to select intracellular antibodies in the cytosol of mammalian cells. J Biosci Bioeng 2017; 124:125-132. [PMID: 28319021 DOI: 10.1016/j.jbiosc.2017.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/24/2017] [Indexed: 02/02/2023]
Abstract
Intracellular antibodies (intrabodies) are expected to function as therapeutics as well as tools for elucidating in vivo function of proteins. In this study, we propose a novel intrabody selection method in the cytosol of mammalian cells by utilizing a growth signal, induced by the interaction of the target antigen and an scFv-c-kit growth sensor. Here, we challenge this method to select specific intrabodies against rabies virus nucleoprotein (RV-N) for the first time. As a result, we successfully select antigen-specific intrabodies from a naïve synthetic library using phage panning followed by our growth sensor-based intracellular selection method, demonstrating the feasibility of the method. Additionally, we succeed in improving the response of the growth sensor by re-engineering the linker region of its construction. Collectively, the described selection method utilizing a growth sensor may become a highly efficient platform for selection of functional intrabodies in the future.
Collapse
Affiliation(s)
- Thuy Duong Nguyen
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hitoshi Takasuka
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yoshihiro Kaku
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Satoshi Inoue
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Teruyuki Nagamune
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masahiro Kawahara
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
33
|
Biochemical Characterization of Glutamate Racemase-A New Candidate Drug Target against Burkholderia cenocepacia Infections. PLoS One 2016; 11:e0167350. [PMID: 27898711 PMCID: PMC5127577 DOI: 10.1371/journal.pone.0167350] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/12/2016] [Indexed: 11/19/2022] Open
Abstract
The greatest obstacle for the treatment of cystic fibrosis patients infected with the Burkholderia species is their intrinsic antibiotic resistance. For this reason, there is a need to develop new effective compounds. Glutamate racemase, an essential enzyme for the biosynthesis of the bacterial cell wall, is an excellent candidate target for the design of new antibacterial drugs. To this aim, we recombinantly produced and characterized glutamate racemase from Burkholderia cenocepacia J2315. From the screening of an in-house library of compounds, two Zn (II) and Mn (III) 1,3,5-triazapentadienate complexes were found to efficiently inhibit the glutamate racemase activity with IC50 values of 35.3 and 10.0 μM, respectively. Using multiple biochemical approaches, the metal complexes have been shown to affect the enzyme activity by binding to the enzyme-substrate complex and promoting the formation of an inhibited dimeric form of the enzyme. Our results corroborate the value of glutamate racemase as a good target for the development of novel inhibitors against Burkholderia.
Collapse
|
34
|
Hnízda A, Škerlová J, Fábry M, Pachl P, Šinalová M, Vrzal L, Man P, Novák P, Řezáčová P, Veverka V. Oligomeric interface modulation causes misregulation of purine 5´-nucleotidase in relapsed leukemia. BMC Biol 2016; 14:91. [PMID: 27756303 PMCID: PMC5070119 DOI: 10.1186/s12915-016-0313-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/23/2016] [Indexed: 11/10/2022] Open
Abstract
Background Relapsed acute lymphoblastic leukemia (ALL) is one of the main causes of mortality in childhood malignancies. Previous genetic studies demonstrated that chemoresistant ALL is driven by activating mutations in NT5C2, the gene encoding cytosolic 5´-nucleotidase (cN-II). However, molecular mechanisms underlying this hyperactivation are still unknown. Here, we present kinetic and structural properties of cN-II variants that represent 75 % of mutated alleles in patients who experience relapsed ALL (R367Q, R238W and L375F). Results Enzyme kinetics measurements revealed that the mutants are consitutively active without need for allosteric activators. This shows that hyperactivity is not caused by a direct catalytic effect but rather by misregulation of cN-II. X-ray crystallography combined with mass spectrometry-based techniques demonstrated that this misregulation is driven by structural modulation of the oligomeric interface within the cN-II homotetrameric assembly. These specific conformational changes are shared between the studied variants, despite the relatively random spatial distribution of the mutations. Conclusions These findings define a common molecular mechanism for cN-II hyperactivity, which provides a solid basis for targeted therapy of leukemia. Our study highlights the cN-II oligomerization interface as an attractive pharmacological target. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0313-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aleš Hnízda
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6, 166 10, Czech Republic.
| | - Jana Škerlová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6, 166 10, Czech Republic
| | - Milan Fábry
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Petr Pachl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6, 166 10, Czech Republic
| | - Martina Šinalová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6, 166 10, Czech Republic
| | - Lukáš Vrzal
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6, 166 10, Czech Republic
| | - Petr Man
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Petr Novák
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6, 166 10, Czech Republic.,Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6, 166 10, Czech Republic.
| |
Collapse
|
35
|
Ma X, Meng H, Lai L. Motions of Allosteric and Orthosteric Ligand-Binding Sites in Proteins are Highly Correlated. J Chem Inf Model 2016; 56:1725-33. [DOI: 10.1021/acs.jcim.6b00039] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaomin Ma
- Center for Quantitative Biology, ‡BNLMS, State Key
Laboratory for Structural
Chemistry of Unstable and Stable Species, College of Chemistry and
Molecular Engineering, and §Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Hu Meng
- Center for Quantitative Biology, ‡BNLMS, State Key
Laboratory for Structural
Chemistry of Unstable and Stable Species, College of Chemistry and
Molecular Engineering, and §Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Luhua Lai
- Center for Quantitative Biology, ‡BNLMS, State Key
Laboratory for Structural
Chemistry of Unstable and Stable Species, College of Chemistry and
Molecular Engineering, and §Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
36
|
Dunyak BM, Gestwicki JE. Peptidyl-Proline Isomerases (PPIases): Targets for Natural Products and Natural Product-Inspired Compounds. J Med Chem 2016; 59:9622-9644. [PMID: 27409354 DOI: 10.1021/acs.jmedchem.6b00411] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Peptidyl-proline isomerases (PPIases) are a chaperone superfamily comprising the FK506-binding proteins (FKBPs), cyclophilins, and parvulins. PPIases catalyze the cis/trans isomerization of proline, acting as a regulatory switch during folding, activation, and/or degradation of many proteins. These "clients" include proteins with key roles in cancer, neurodegeneration, and psychiatric disorders, suggesting that PPIase inhibitors could be important therapeutics. However, the active site of PPIases is shallow, solvent-exposed, and well conserved between family members, making selective inhibitor design challenging. Despite these hurdles, macrocyclic natural products, including FK506, rapamycin, and cyclosporin, bind PPIases with nanomolar or better affinity. De novo attempts to derive new classes of inhibitors have been somewhat less successful, often showcasing the "undruggable" features of PPIases. Interestingly, the most potent of these next-generation molecules tend to integrate features of the natural products, including macrocyclization or proline mimicry strategies. Here, we review recent developments and ongoing challenges in the inhibition of PPIases, with a focus on how natural products might inform the creation of potent and selective inhibitors.
Collapse
Affiliation(s)
- Bryan M Dunyak
- Department of Biological Chemistry, University of Michigan Medical School , 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109, United States.,Department of Pharmaceutical Chemistry, University of California at San Francisco , 675 Nelson Rising Lane, San Francisco, California 94158, United States
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California at San Francisco , 675 Nelson Rising Lane, San Francisco, California 94158, United States
| |
Collapse
|
37
|
Bandyopadhyay D, Prakash S, Gupta K, Balaram P. Mass spectrometric analysis of dimer-disrupting mutations in Plasmodium triosephosphate isomerase. Anal Biochem 2016; 500:45-50. [PMID: 26919806 DOI: 10.1016/j.ab.2016.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/12/2016] [Accepted: 02/13/2016] [Indexed: 01/16/2023]
Abstract
Electrospray ionization mass spectrometry (ESI MS) under nanospray conditions has been used to examine the effects of mutation at two key dimer interface residues, Gln (Q) 64 and Thr (T) 75, in Plasmodium falciparum triosephosphate isomerase. Both residues participate in an intricate network of intra- and intersubunit hydrogen bonds. The gas phase distributions of dimeric and monomeric protein species have been examined for the wild type enzyme (TWT) and three mutants, Q64N, Q64E, and T75S, under a wide range of collision energies (40-160 eV). The results established the order of dimer stability as TWT > T75S > Q64E ∼ Q64N. The mutational effects on dimer stability are in good agreement with the previously reported estimates, based on the concentration dependence of enzyme activity. Additional experiments in solution, using inhibition of activity by a synthetic dimer interface peptide, further support the broad agreement between gas phase and solution studies.
Collapse
Affiliation(s)
| | - Sunita Prakash
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Kallol Gupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Padmanabhan Balaram
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
38
|
Makthal N, Gavagan M, Do H, Olsen RJ, Musser JM, Kumaraswami M. Structural and functional analysis of RopB: a major virulence regulator in Streptococcus pyogenes. Mol Microbiol 2016; 99:1119-33. [PMID: 26714274 PMCID: PMC4794775 DOI: 10.1111/mmi.13294] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/02/2015] [Indexed: 01/12/2023]
Abstract
Group A Streptococcus (GAS) is an exclusive human pathogen that causes significant disease burden. Global regulator RopB of GAS controls the expression of several major virulence factors including secreted protease SpeB during high cell density. However, the molecular mechanism for RopB-dependent speB expression remains unclear. To understand the mechanism of transcription activation by RopB, we determined the crystal structure of the C-terminal domain of RopB. RopB-CTD has the TPR motif, a signature motif involved in protein-peptide interactions and shares significant structural homology with the quorum sensing RRNPP family regulators. Characterization of the high cell density-specific cell-free growth medium demonstrated the presence of a low molecular weight proteinaceous secreted factor that upregulates RopB-dependent speB expression. Together, these results suggest that RopB and its cognate peptide signals constitute an intercellular signalling machinery that controls the virulence gene expression in concert with population density. Structure-guided mutational analyses of RopB dimer interface demonstrated that single alanine substitutions at this critical interface significantly altered RopB-dependent speB expression and attenuated GAS virulence. Results presented here suggested that a properly aligned RopB dimer interface is important for GAS pathogenesis and highlighted the dimerization interactions as a plausible therapeutic target for the development of novel antimicrobials.
Collapse
Affiliation(s)
- Nishanth Makthal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Maire Gavagan
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Hackwon Do
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
39
|
Hu G, Xiao F, Li Y, Li Y, Vongsangnak W. Protein-Protein Interface and Disease: Perspective from Biomolecular Networks. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 160:57-74. [PMID: 27928579 DOI: 10.1007/10_2016_40] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein-protein interactions are involved in many important biological processes and molecular mechanisms of disease association. Structural studies of interfacial residues in protein complexes provide information on protein-protein interactions. Characterizing protein-protein interfaces, including binding sites and allosteric changes, thus pose an imminent challenge. With special focus on protein complexes, approaches based on network theory are proposed to meet this challenge. In this review we pay attention to protein-protein interfaces from the perspective of biomolecular networks and their roles in disease. We first describe the different roles of protein complexes in disease through several structural aspects of interfaces. We then discuss some recent advances in predicting hot spots and communication pathway analysis in terms of amino acid networks. Finally, we highlight possible future aspects of this area with respect to both methodology development and applications for disease treatment.
Collapse
Affiliation(s)
- Guang Hu
- Center for Systems Biology, School of Electronic and Information Engineering, Soochow University, Suzhou, 215006, China.
| | - Fei Xiao
- School of Basic Medicine and Biological Sciences, Medical College of Soochow University, Suzhou, 215123, China
| | - Yuqian Li
- School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yuan Li
- Center for Systems Biology, School of Electronic and Information Engineering, Soochow University, Suzhou, 215006, China
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
40
|
Lee Y, Hong S, Cui M, Sharma PK, Lee J, Choi S. Transient receptor potential vanilloid type 1 antagonists: a patent review (2011 - 2014). Expert Opin Ther Pat 2015; 25:291-318. [PMID: 25666693 DOI: 10.1517/13543776.2015.1008449] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Transient receptor potential vanilloid type 1 (TRPV1) is a nonselective cation channel that can be activated by noxious heat, low pH and vanilloid compounds such as capsaicin. Since TRPV1 acts as an integrator of painful stimuli, TRPV1 antagonists can be used as promising therapeutics for new types of analgesics. AREAS COVERED This review article covers the patents that claim TRPV1 antagonists and were published during 2011 - 2014. The patent evaluation is organized according to the applicant companies, and the representative chemical entities with important in vitro and in vivo data are summarized. EXPERT OPINION Many pharmaceutical companies showed promising results in the discovery of potent small molecule TRPV1 antagonists, and recently, a number of small molecule TRPV1 antagonists have been advanced into clinical trials. Unfortunately, several candidate molecules showed critical side effects such as hyperthermia and impaired noxious heat sensation in humans, leading to their withdrawal from clinical trials. Some TRPV1 antagonists patented in recent years (2011 - 2014) overcame these undesirable side effects, making the development of TRPV1 antagonists much more promising.
Collapse
Affiliation(s)
- Yoonji Lee
- Ewha Womans University, National Leading Research Laboratory of Molecular Modeling and Drug Design, College of Pharmacy, Graduate School of Pharmaceutical Sciences, and Global Top 5 Research Program , Seoul 120-750 , Korea +82 2 3277 4503 ; +82 2 3277 2851 ;
| | | | | | | | | | | |
Collapse
|
41
|
Synergistic Activity of Combined NS5A Inhibitors. Antimicrob Agents Chemother 2015; 60:1573-83. [PMID: 26711745 DOI: 10.1128/aac.02639-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/13/2015] [Indexed: 12/29/2022] Open
Abstract
Daclatasvir (DCV) is a first-in-class hepatitis C virus (HCV) nonstructural 5A replication complex inhibitor (NS5A RCI) that is clinically effective in interferon-free combinations with direct-acting antivirals (DAAs) targeting alternate HCV proteins. Recently, we reported NS5A RCI combinations that enhance HCV inhibitory potential in vitro, defining a new class of HCV inhibitors termed NS5A synergists (J. Sun, D. R. O'Boyle II, R. A. Fridell, D. R. Langley, C. Wang, S. Roberts, P. Nower, B. M. Johnson F. Moulin, M. J. Nophsker, Y. Wang, M. Liu, K. Rigat, Y. Tu, P. Hewawasam, J. Kadow, N. A. Meanwell, M. Cockett, J. A. Lemm, M. Kramer, M. Belema, and M. Gao, Nature 527:245-248, 2015, doi:10.1038/nature15711). To extend the characterization of NS5A synergists, we tested new combinations of DCV and NS5A synergists against genotype (gt) 1 to 6 replicons and gt 1a, 2a, and 3a viruses. The kinetics of inhibition in HCV-infected cells treated with DCV, an NS5A synergist (NS5A-Syn), or a combination of DCV and NS5A-Syn were distinctive. Similar to activity observed clinically, DCV caused a multilog drop in HCV, followed by rebound due to the emergence of resistance. DCV-NS5A-Syn combinations were highly efficient at clearing cells of viruses, in line with the trend seen in replicon studies. The retreatment of resistant viruses that emerged using DCV monotherapy with DCV-NS5A-Syn resulted in a multilog drop and rebound in HCV similar to the initial decline and rebound observed with DCV alone on wild-type (WT) virus. A triple combination of DCV, NS5A-Syn, and a DAA targeting the NS3 or NS5B protein cleared the cells of viruses that are highly resistant to DCV. Our data support the observation that the cooperative interaction of DCV and NS5A-Syn potentiates both the genotype coverage and resistance barrier of DCV, offering an additional DAA option for combination therapy and tools for explorations of NS5A function.
Collapse
|
42
|
Small Molecule Targeting of Protein-Protein Interactions through Allosteric Modulation of Dynamics. Molecules 2015; 20:16435-45. [PMID: 26378508 PMCID: PMC6332300 DOI: 10.3390/molecules200916435] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/06/2015] [Accepted: 09/08/2015] [Indexed: 11/16/2022] Open
Abstract
The protein–protein interaction (PPI) target class is particularly challenging, but offers potential for “first in class” therapies. Most known PPI small molecules are orthosteric inhibitors but many PPI sites may be fundamentally intractable to this approach. One potential alternative is to consider more attractive, remote small molecule pockets; however, on the whole, allostery is poorly understood and difficult to discover and develop. Here we review the literature in order to understand the basis for allostery, especially as it can apply to PPIs. We suggest that the upfront generation of sophisticated and experimentally validated dynamic models of target proteins can aid in target choice and strategy for allosteric intervention to produce the required functional effect.
Collapse
|
43
|
Blackmore NJ, Nazmi AR, Hutton RD, Webby MN, Baker EN, Jameson GB, Parker EJ. Complex Formation between Two Biosynthetic Enzymes Modifies the Allosteric Regulatory Properties of Both: AN EXAMPLE OF MOLECULAR SYMBIOSIS. J Biol Chem 2015; 290:18187-18198. [PMID: 26032422 DOI: 10.1074/jbc.m115.638700] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Indexed: 11/06/2022] Open
Abstract
Allostery, where remote ligand binding alters protein function, is essential for the control of metabolism. Here, we have identified a highly sophisticated allosteric response that allows complex control of the pathway for aromatic amino acid biosynthesis in the pathogen Mycobacterium tuberculosis. This response is mediated by an enzyme complex formed by two pathway enzymes: chorismate mutase (CM) and 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS). Whereas both enzymes are active in isolation, the catalytic activity of both enzymes is enhanced, and in particular that of the much smaller CM is greatly enhanced (by 120-fold), by formation of a hetero-octameric complex between CM and DAH7PS. Moreover, on complex formation M. tuberculosis CM, which has no allosteric response on its own, acquires allosteric behavior to facilitate its own regulatory needs by directly appropriating and partly reconfiguring the allosteric machinery that provides a synergistic allosteric response in DAH7PS. Kinetic and analytical ultracentrifugation experiments demonstrate that allosteric binding of phenylalanine specifically promotes hetero-octameric complex dissociation, with concomitant reduction of CM activity. Together, DAH7PS and CM from M. tuberculosis provide exquisite control of aromatic amino acid biosynthesis, not only controlling flux into the start of the pathway, but also directing the pathway intermediate chorismate into either Phe/Tyr or Trp biosynthesis.
Collapse
Affiliation(s)
- Nicola J Blackmore
- Maurice Wilkins Centre and Biomolecular Interaction Centre, Department of Chemistry, University of Canterbury, Christchurch 8140, New Zealand
| | - Ali Reza Nazmi
- Maurice Wilkins Centre and Biomolecular Interaction Centre, Department of Chemistry, University of Canterbury, Christchurch 8140, New Zealand
| | - Richard D Hutton
- Maurice Wilkins Centre and Biomolecular Interaction Centre, Department of Chemistry, University of Canterbury, Christchurch 8140, New Zealand
| | - Melissa N Webby
- Maurice Wilkins Centre and Biomolecular Interaction Centre, Department of Chemistry, University of Canterbury, Christchurch 8140, New Zealand
| | - Edward N Baker
- Maurice Wilkins Centre and School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Geoffrey B Jameson
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand.
| | - Emily J Parker
- Maurice Wilkins Centre and Biomolecular Interaction Centre, Department of Chemistry, University of Canterbury, Christchurch 8140, New Zealand.
| |
Collapse
|
44
|
Ramirez UD, Nikonova AS, Liu H, Pecherskaya A, Lawrence SH, Serebriiskii IG, Zhou Y, Robinson MK, Einarson MB, Golemis EA, Jaffe EK. Compounds identified by virtual docking to a tetrameric EGFR extracellular domain can modulate Grb2 internalization. BMC Cancer 2015; 15:436. [PMID: 26016476 PMCID: PMC4451962 DOI: 10.1186/s12885-015-1415-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 05/05/2015] [Indexed: 01/27/2023] Open
Abstract
Background Overexpression or mutation of the epidermal growth factor receptor (EGFR) potently enhances the growth of many solid tumors. Tumor cells frequently display resistance to mechanistically-distinct EGFR-directed therapeutic agents, making it valuable to develop therapeutics that work by additional mechanisms. Current EGFR-targeting therapeutics include antibodies targeting the extracellular domains, and small molecules inhibiting the intracellular kinase domain. Recent studies have identified a novel prone extracellular tetrameric EGFR configuration, which we identify as a potential target for drug discovery. Methods Our focus is on the prone EGFR tetramer, which contains a novel protein-protein interface involving extracellular domain III. This EGFR tetramer is computationally targeted for stabilization by small molecule ligand binding. This study performed virtual screening of a Life Chemicals, Inc. small molecule library of 345,232 drug-like compounds against a molecular dynamics simulation of protein-protein interfaces distinct to the novel tetramer. One hundred nine chemically diverse candidate molecules were selected and evaluated using a cell-based high-content imaging screen that directly assessed induced internalization of the EGFR effector protein Grb2. Positive hits were further evaluated for influence on phosphorylation of EGFR and its effector ERK1/2. Results Fourteen hit compounds affected internalization of Grb2, an adaptor responsive to EGFR activation. Most hits had limited effect on cell viability, and minimally influenced EGFR and ERK1/2 phosphorylation. Docked hit compound poses generally include Arg270 or neighboring residues, which are also involved in binding the effective therapeutic cetuximab, guiding further chemical optimization. Conclusions These data suggest that the EGFR tetrameric configuration offers a novel cancer drug target. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1415-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ursula D Ramirez
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA, 19111, USA.
| | - Anna S Nikonova
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA, 19111, USA.
| | - Hanqing Liu
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA, 19111, USA.
| | - Anna Pecherskaya
- Translational Facility, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA, 19111, USA.
| | - Sarah H Lawrence
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA, 19111, USA.
| | - Ilya G Serebriiskii
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA, 19111, USA. .,Kazan Federal University, Kazan, Russia.
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA, 19111, USA.
| | - Matthew K Robinson
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA, 19111, USA.
| | - Margret B Einarson
- Translational Facility, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA, 19111, USA.
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA, 19111, USA.
| | - Eileen K Jaffe
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA, 19111, USA.
| |
Collapse
|