1
|
Patel K, Bora V, Patel B. Sodium orthovanadate exhibits anti-angiogenic, antiapoptotic and blood glucose-lowering effect on colon cancer associated with diabetes. Cancer Chemother Pharmacol 2024; 93:55-70. [PMID: 37755518 DOI: 10.1007/s00280-023-04596-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND The presence of type 2 diabetes mellitus increases the risk of developing the colon cancer. The main objective of this study was to determine the role of sodium orthovanadate (SOV) in colon cancer associated with diabetes mellitus by targeting the competitive inhibition of PTP1B. METHODS For in vivo study, high fat diet with low dose streptozotocin model was used for inducing the diabetes mellitus. Colon cancer was induced by injecting 1,2-dimethylhydrazine (25 mg/kg, sc) twice a week. TNM staging and immunohistochemistry (IHC) was carried out for colon cancer tissues. In vitro studies like MTT assay, clonogenic assay, rhodamine-123 dye assay and annexin V-FITC assay using flow cytometry were performed on HCT-116 cell line. CAM assay was performed to examine the anti-angiogenic effect of the drug. RESULTS Sodium orthovanadate reduces the blood glucose level and tumor parameters in the animals. In vitro studies revealed that SOV decreased cell proliferation dose dependently. In addition, SOV induced apoptosis as depicted from rhodamine-123 dye assay and annexin V-FITC assay using flow cytometry as well as p53 IHC staining. SOV showed reduced angiogenesis effect on eggs which was depicted from CAM assay and also from CD34 and E-cadherin IHC staining. CONCLUSIONS Our data suggest that SOV exhibits protective role in colon cancer associated with diabetes mellitus. SOV exhibits anti-proliferative, anti-angiogenic and apoptotic inducing effects hence can be considered for therapeutic switching in diabetic colon cancer.
Collapse
Affiliation(s)
- Kruti Patel
- Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Vivek Bora
- Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Bhoomika Patel
- National Forensic Sciences University, Sector 9, Gandhinagar, 382007, Gujarat, India.
| |
Collapse
|
2
|
Brenda CT, Norma RF, Marcela RL, Nelly LV, Teresa F. Vanadium compounds as antiparasitic agents: An approach to their mechanisms of action. J Trace Elem Med Biol 2023; 78:127201. [PMID: 37210920 DOI: 10.1016/j.jtemb.2023.127201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/03/2023] [Accepted: 05/14/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Parasitic infections are a public health problem since they have high morbidity and mortality worldwide. In parasitosis such as malaria, leishmaniasis and trypanosomiasis it is necessary to develop new compounds for their treatment since an increase in drug resistance and toxic effects have been observed. Therefore, the use of different compounds that couple vanadium in their structure and that have a broad spectrum against different parasites have been proposed experimentally. OBJECTIVE Report the mechanisms of action exerted by vanadium in different parasites. CONCLUSION In this review, some of the targets that vanadium compounds have were identified and it was observed that they have a broad spectrum against different parasites, which represents an advance to continue investigating therapeutic options.
Collapse
Affiliation(s)
- Casarrubias-Tabarez Brenda
- Av. Ciudad Universitaria 3000, C.P. 04510, Coyoacan, Mexico City, Mexico; Department of Cellular and Tissue Biology, School of Medicine, UNAM, C.P. 04510, Coyoacan, Mexico City, Mexico; Posgrado en Ciencias Biologicas, UNAM, C.P. 04510, Coyoacan, Mexico City, Mexico
| | - Rivera-Fernández Norma
- Av. Ciudad Universitaria 3000, C.P. 04510, Coyoacan, Mexico City, Mexico; Department of Microbiology and Parasitology. School of Medicine, UNAM, C.P. 04510, Coyoacan, Mexico City, Mexico
| | - Rojas-Lemus Marcela
- Av. Ciudad Universitaria 3000, C.P. 04510, Coyoacan, Mexico City, Mexico; Department of Cellular and Tissue Biology, School of Medicine, UNAM, C.P. 04510, Coyoacan, Mexico City, Mexico
| | - López-Valdez Nelly
- Av. Ciudad Universitaria 3000, C.P. 04510, Coyoacan, Mexico City, Mexico; Department of Cellular and Tissue Biology, School of Medicine, UNAM, C.P. 04510, Coyoacan, Mexico City, Mexico
| | - Fortoul Teresa
- Av. Ciudad Universitaria 3000, C.P. 04510, Coyoacan, Mexico City, Mexico; Department of Cellular and Tissue Biology, School of Medicine, UNAM, C.P. 04510, Coyoacan, Mexico City, Mexico.
| |
Collapse
|
3
|
Vanadium(V) Removal from Aqueous Solutions and Real Wastewaters onto Anion Exchangers and Lewatit AF5. Molecules 2022; 27:molecules27175432. [PMID: 36080204 PMCID: PMC9457782 DOI: 10.3390/molecules27175432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Adsorption abilities of weakly (Purolite A830), weakly basic/chelating (Purolite S984), and strongly basic (Lewatit MonoPlus SR7, Purolite A400TL, Dowex PSR2, Dowex PSR3) ion exchange resins of different functional groups and microporous Lewatit AF5 without functional groups towards vanadium(V) ions were studied in batch and column systems. In the batch system, the influence of the sorbent mass (0.01–0.1 g), pH (2–10), the phase contact time (1–1440 min),and the initial concentration (5–2000 mg/L) were studied, whereas in the column system, the initial concentrations (50, 100, and 200 mg/L) with the same bed volume and flow rate (0.4 mL/min) were studied. Desorption agents HCl and NaOH of 0.1–1 mol/L concentration were used for loaded sorbent regeneration. The pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models as well as the Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm models were used to describe kinetic and equilibrium data to acquire improved knowledge on the adsorption mechanism. The desorption efficiency was the largest using 0.5 mol/L NaOH for all sorbents under discussion. Purolite S984, Purolite A830, and Purolite A400TL, especially Purolite S984, are characterized by the best removal ability towards vanadium(V) from both model and real wastewater.
Collapse
|
4
|
Aureliano M, Gumerova NI, Sciortino G, Garribba E, McLauchlan CC, Rompel A, Crans DC. Polyoxidovanadates' interactions with proteins: An overview. Coord Chem Rev 2022; 454:214344. [DOI: 10.1016/j.ccr.2021.214344] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Pessoa JC, Santos MF, Correia I, Sanna D, Sciortino G, Garribba E. Binding of vanadium ions and complexes to proteins and enzymes in aqueous solution. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214192] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Katsipis G, Tsalouxidou V, Halevas E, Geromichalou E, Geromichalos G, Pantazaki AA. In vitro and in silico evaluation of the inhibitory effect of a curcumin-based oxovanadium (IV) complex on alkaline phosphatase activity and bacterial biofilm formation. Appl Microbiol Biotechnol 2020; 105:147-168. [PMID: 33191462 DOI: 10.1007/s00253-020-11004-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/27/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022]
Abstract
The scientific interest in the development of novel metal-based compounds as inhibitors of bacterial biofilm-related infections and alkaline phosphatase (ALP) deregulating effects is continuous and rising. In the current study, a novel crystallographically defined heteroleptic V(IV)-curcumin-bipyridine (V-Cur) complex with proven bio-activity was studied as a potential inhibitor of ALP activity and bacterial biofilm. The inhibitory effect of V-Cur was evaluated on bovine ALP, with two different substrates: para-nitrophenyl phosphate (pNPP) and adenosine triphosphate (ATP). The obtained results suggested that V-Cur inhibited the ALP activity in a dose-dependent manner (IC50 = 26.91 ± 1.61 μM for ATP, IC50 = 2.42 ± 0.12 μM for pNPP) exhibiting a mixed/competitive type of inhibition with both substrates tested. The evaluation of the potential V-Cur inhibitory effect on bacterial biofilm formation was performed on Gram (+) bacteria Staphylococcus aureus (S. aureus) and Gram (-) Escherichia coli (E. coli) cultures, and it positively correlated with inhibition of bacterial ALP activity. In silico study proved the binding of V-Cur at eukaryotic and bacterial ALP, and its interaction with crucial amino acids of the active sites, verifying complex's inhibitory potential. The findings suggested a specific anti-biofilm activity of V-Cur, offering a further dimension in the importance of metal complexes, with naturally derived products as biological ligands, as therapeutic agents against bacterial infections and ALP-associated diseases. KEY POINTS: • V-Cur inhibits bovine and bacterial alkaline phosphatases and bacterial biofilm formation. • Alkaline phosphatase activity correlates with biofilm formation. • In silico studies prove binding of the complex on alkaline phosphatase.
Collapse
Affiliation(s)
- G Katsipis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - V Tsalouxidou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - E Halevas
- Institute of Biosciences & Applications, National Centre for Scientific Research "Democritus", 15310, Athens, Greece
| | - E Geromichalou
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527, Athens, Greece
| | - G Geromichalos
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - A A Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
7
|
Zhao M, Chen X, Chi G, Shuai D, Wang L, Chen B, Li J. Research progress on the inhibition of enzymes by polyoxometalates. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00860e] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polyoxometalates (POMs) are a kind of inorganic cluster metal complex with various biological activities, such as anti-Alzheimer's disease, antibacterial, anti-cancer, anti-diabetes, anti-virus and so on.
Collapse
Affiliation(s)
- Meijuan Zhao
- College of Food and Biological Engineering
- Jimei University
- Xiamen
- P.R. China
| | - Xiangsong Chen
- College of Food and Biological Engineering
- Jimei University
- Xiamen
- P.R. China
| | - Guoxiang Chi
- College of Food and Biological Engineering
- Jimei University
- Xiamen
- P.R. China
| | - Die Shuai
- College of Food and Biological Engineering
- Jimei University
- Xiamen
- P.R. China
| | - Li Wang
- College of Food and Biological Engineering
- Jimei University
- Xiamen
- P.R. China
| | | | - Jian Li
- College of Food and Biological Engineering
- Jimei University
- Xiamen
- P.R. China
| |
Collapse
|
8
|
Samart N, Arhouma Z, Kumar S, Murakami HA, Crick DC, Crans DC. Decavanadate Inhibits Mycobacterial Growth More Potently Than Other Oxovanadates. Front Chem 2018; 6:519. [PMID: 30515375 PMCID: PMC6255961 DOI: 10.3389/fchem.2018.00519] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 10/09/2018] [Indexed: 01/06/2023] Open
Abstract
51V NMR spectroscopy is used to document, using speciation analysis, that one oxometalate is a more potent growth inhibitor of two Mycobacterial strains than other oxovanadates, thus demonstrating selectivity in its interaction with cells. Historically, oxometalates have had many applications in biological and medical studies, including study of the phase-problem in X-ray crystallography of the ribosome. The effect of different vanadate salts on the growth of Mycobacterium smegmatis (M. smeg) and Mycobacterium tuberculosis (M. tb) was investigated, and speciation was found to be critical for the observed growth inhibition. Specifically, the large orange-colored sodium decavanadate (V10O 28 6 - ) anion was found to be a stronger inhibitor of growth of two mycobacterial species than the colorless oxovanadate prepared from sodium metavanadate. The vanadium(V) speciation in the growth media and conversion among species under growth conditions was monitored using 51V NMR spectroscopy and speciation calculations. The findings presented in this work is particularly important in considering the many applications of polyoxometalates in biological and medical studies, such as the investigation of the phase-problem in X-ray crystallography for the ribosome. The findings presented in this work investigate the interactions of oxometalates with other biological systems.
Collapse
Affiliation(s)
- Nuttaporn Samart
- Department of Chemistry, Colorado State University, Fort Collins, CO, United States
- Department of Chemistry, Rajabhat Rajanagarindra University, Chachoengsao, Thailand
| | - Zeyad Arhouma
- Department of Chemistry, Colorado State University, Fort Collins, CO, United States
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, United States
| | - Santosh Kumar
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Heide A. Murakami
- Department of Chemistry, Colorado State University, Fort Collins, CO, United States
| | - Dean C. Crick
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, United States
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO, United States
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
9
|
Sánchez-Lara E, Treviño S, Sánchez-Gaytán BL, Sánchez-Mora E, Eugenia Castro M, Meléndez-Bustamante FJ, Méndez-Rojas MA, González-Vergara E. Decavanadate Salts of Cytosine and Metformin: A Combined Experimental-Theoretical Study of Potential Metallodrugs Against Diabetes and Cancer. Front Chem 2018; 6:402. [PMID: 30333969 PMCID: PMC6176007 DOI: 10.3389/fchem.2018.00402] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/20/2018] [Indexed: 01/15/2023] Open
Abstract
Cytosine, a DNA and RNA building-block, and Metformin, the most widely prescribed drug for the treatment of Type 2 Diabetes mellitus were made to react separately with ammonium or sodium metavanadates in acidic aqueous solutions to obtain two polyoxovanadate salts with a 6:1 ratio of cation-anion. Thus, compounds [HCyt]6[V10O28]·4H2O, 1 and [HMetf]6[V10O28]·6H2O, 2 (where HCyt = Cytosinium cation, [C4H6N3O]+ and HMetf = Metforminium cation, [C4H12N5]+) were obtained and characterized by elemental analysis, single crystal X-ray diffraction, vibrational spectroscopy (IR and Raman), solution 51V-NMR, thermogravimetric analysis (TGA-DTGA), as well as, theoretical methods. Both compounds crystallized in P1 ¯ space group with Z' = 1/2, where the anionic charge of the centrosymmetric ion [V10O28]6- is balanced by six Cytosinium and six Metforminium counterions, respectively. Compound 1 is stabilized by π-π stacking interactions coming from the aromatic rings of HCyt cations, as denoted by close contacts of 3.63 Å. On the other hand, guanidinium moieties from the non-planar HMetf in Compound 2 interact with decavanadate μ2-O atoms via N-H···O hydrogen bonds. The vibrational spectroscopic data of both IR and Raman spectra show that the dominant bands in the 1000-450 cm-1 range are due to the symmetric and asymmetric ν(V-O) vibrational modes. In solution, 51V-NMR experiments of both compounds show that polyoxovanadate species are progressively transformed into the monomeric, dimeric and tetrameric oxovanadates. The thermal stability behavior suggests a similar molecular mechanism regarding the loss of water molecules and the decomposition of the organic counterions. Yet, no changes were observed in the TGA range of 540-580°C due to the stability of the [V10O28]6- fragment. Dispersion-corrected density functional theory (DFT-D) calculations were carried out to model the compounds in aqueous phase using a polarized continuum model calculation. Optimized structures were obtained and the main non-covalent interactions were characterized. Biological activities of these compounds are also under investigation. The combination of two therapeutic agents opens up a window toward the generation of potential metalopharmaceuticals with new and exciting pharmacological properties.
Collapse
Affiliation(s)
- Eduardo Sánchez-Lara
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Brenda L. Sánchez-Gaytán
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Enrique Sánchez-Mora
- Instituto de Física “Luis Rivera Terrazas”, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - María Eugenia Castro
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | - Miguel A. Méndez-Rojas
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Puebla, Mexico
| | - Enrique González-Vergara
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
10
|
Missina JM, Gavinho B, Postal K, Santana FS, Valdameri G, de Souza EM, Hughes DL, Ramirez MI, Soares JF, Nunes GG. Effects of Decavanadate Salts with Organic and Inorganic Cations on Escherichia coli, Giardia intestinalis, and Vero Cells. Inorg Chem 2018; 57:11930-11941. [DOI: 10.1021/acs.inorgchem.8b01298] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Glaucio Valdameri
- Departamento de Análises Clínicas, Universidade Federal do Paraná, Campus Jardim Botânico, Jardim Botânico, 80210-170 Curitiba, Paraná, Brazil
| | | | - David L. Hughes
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Marcel I. Ramirez
- Fundação Osvaldo Cruz, Av. Brazil, Manguinhos, 4365 Rio de Janeiro, Brazil
| | | | | |
Collapse
|