1
|
Ren Z, Ren M, Ling W, Ren D, Liang J, Cai Y, Wang X, Wang S, Duan Y, Ku T, Ning X, Sang N. Cu(OH) 2 nanopesticide induced liver dysfunction in mice by targeting lipoylated tricarboxylic acid cycle proteins via ferredoxin 1. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138403. [PMID: 40311425 DOI: 10.1016/j.jhazmat.2025.138403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/20/2025] [Accepted: 04/23/2025] [Indexed: 05/03/2025]
Abstract
Copper hydroxide [Cu(OH)2] nanopesticide is an emerging agrochemical known for its ability to mitigate bacterial and fungal damage to host organisms. However, its environmental exposure and potential toxicological effects have garnered significant attention. The liver is regarded as the primary organ for copper storage and utilization within the body. Here, the potential hepatic dyshomeostasis and metabolic dysfunction resulting from exposure to Cu(OH)2 nanopesticide for a month were investigated using the C57BL/6 mouse model. The findings demonstrated that Cu(OH)2 nanopesticide induced damage to the core functions of the mouse liver, evidenced by an impaired tissue microstructure, attenuated biochemical function, as well as disturbed bile acid synthesis and energy metabolism. The regulatory manner of Cu(OH)2 nanopesticide on the lipoylated proteins in the tricarboxylic acid (TCA) cycle by targeting ferredoxin 1 (FDX1) and its associated lipoic acid and iron-sulfur pathways, also shared genetic characteristics with the recently identified cuproptosis mechanism, providing a deeper understanding of the hepatoxic effects induced by this copper nanopesticide. These findings contribute valuable data for evaluating the hepatotoxicity of Cu(OH)2 nanopesticide, and further research into the molecular mechanisms is anticipated to enhance the identification of therapeutic targets for hepatic diseases related to copper metabolism.
Collapse
Affiliation(s)
- Zhihua Ren
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Mengyao Ren
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Weibo Ling
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Danqin Ren
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Jiefeng Liang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yixue Cai
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Xiao Wang
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Shuo Wang
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Yonghui Duan
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Tingting Ku
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Xia Ning
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Nan Sang
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
2
|
Xia Z, Liu C, Wu D, Chen H, Zhao J, Jiang D. Structural insights into glucose-6-phosphate recognition and hydrolysis by human G6PC1. Proc Natl Acad Sci U S A 2025; 122:e2418316122. [PMID: 39847333 PMCID: PMC11789071 DOI: 10.1073/pnas.2418316122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025] Open
Abstract
The glucose-6-phosphatase (G6Pase) is an integral membrane protein that catalyzes the hydrolysis of glucose-6-phosphate (G6P) in the endoplasmic reticulum lumen and plays a vital role in glucose homeostasis. Dysregulation or genetic mutations of G6Pase are associated with diabetes and glycogen storage disease 1a (GSD-1a). Studies have characterized the biophysical and biochemical properties of G6Pase; however, the structure and substrate recognition mechanism of G6Pase remain unclear. Here, we present two cryo-EM structures of the 40-kDa human G6Pase: a wild-type apo form and a mutant G6Pase-H176A with G6P bound, elucidating the structural basis for substrate recognition and hydrolysis. G6Pase comprises nine transmembrane helices and possesses a large catalytic pocket facing the lumen. Unexpectedly, G6P binding induces substantial conformational rearrangements in the catalytic pocket, which facilitate the binding of the sugar moiety. In conjunction with functional analyses, this study provides critical insights into the structure, substrate recognition, catalytic mechanism, and pathology of G6Pase.
Collapse
Affiliation(s)
- Zhanyi Xia
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100190, China
| | - Chuanyu Liu
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100190, China
| | - Di Wu
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100190, China
| | - Huiwen Chen
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
| | - Jun Zhao
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong261000, China
| | - Daohua Jiang
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100190, China
| |
Collapse
|
3
|
Hawes EM, Rahim M, Haratipour Z, Orun AR, O'Rourke ML, Oeser JK, Kim K, Claxton DP, Blind RD, Young JD, O'Brien RM. Biochemical and metabolic characterization of a G6PC2 inhibitor. Biochimie 2024; 222:109-122. [PMID: 38431189 PMCID: PMC11661470 DOI: 10.1016/j.biochi.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Three glucose-6-phosphatase catalytic subunits, that hydrolyze glucose-6-phosphate (G6P) to glucose and inorganic phosphate, have been identified, designated G6PC1-3, but only G6PC1 and G6PC2 have been implicated in the regulation of fasting blood glucose (FBG). Elevated FBG has been associated with multiple adverse clinical outcomes, including increased risk for type 2 diabetes and various cancers. Therefore, G6PC1 and G6PC2 inhibitors that lower FBG may be of prophylactic value for the prevention of multiple conditions. The studies described here characterize a G6PC2 inhibitor, designated VU0945627, previously identified as Compound 3. We show that VU0945627 preferentially inhibits human G6PC2 versus human G6PC1 but activates human G6PC3. VU0945627 is a mixed G6PC2 inhibitor, increasing the Km but reducing the Vmax for G6P hydrolysis. PyRx virtual docking to an AlphaFold2-derived G6PC2 structural model suggests VU0945627 binds two sites in human G6PC2. Mutation of residues in these sites reduces the inhibitory effect of VU0945627. VU0945627 does not inhibit mouse G6PC2 despite its 84% sequence identity with human G6PC2. Mutagenesis studies suggest this lack of inhibition of mouse G6PC2 is due, in part, to a change in residue 318 from histidine in human G6PC2 to proline in mouse G6PC2. Surprisingly, VU0945627 still inhibited glucose cycling in the mouse islet-derived βTC-3 cell line. Studies using intact mouse liver microsomes and PyRx docking suggest that this observation can be explained by an ability of VU0945627 to also inhibit the G6P transporter SLC37A4. These data will inform future computational modeling studies designed to identify G6PC isoform-specific inhibitors.
Collapse
Affiliation(s)
- Emily M Hawes
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Mohsin Rahim
- Department of Chemical and Biomolecular Engineering, Vanderbilt School of Engineering, Nashville, TN, 37232, USA
| | - Zeinab Haratipour
- Austin Peay State University, 601 College St, Clarksville, TN 37044, USA; Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Abigail R Orun
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Margaret L O'Rourke
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - James K Oeser
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Kwangho Kim
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Derek P Claxton
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Ray D Blind
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Jamey D Young
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA; Department of Chemical and Biomolecular Engineering, Vanderbilt School of Engineering, Nashville, TN, 37232, USA
| | - Richard M O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| |
Collapse
|
4
|
Zhang P, Zhou C, Jing Q, Gao Y, Yang L, Li Y, Du J, Tong X, Wang Y. Role of APR3 in cancer: apoptosis, autophagy, oxidative stress, and cancer therapy. Apoptosis 2023; 28:1520-1533. [PMID: 37634193 DOI: 10.1007/s10495-023-01882-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2023] [Indexed: 08/29/2023]
Abstract
APR3 (Apoptosis-related protein 3) is a gene that has recently been identified to be associated with apoptosis. The gene is located on human chromosome 2p22.3 and contains both transmembrane and EGF (epidermal growth factor)-like domains. Additionally, it has structural sites, including AP1, SP1, and MEF2D, that indicate NFAT (nuclear factor of activated T cells) and NF-κB (nuclear factor kappa-B) may be transcription factors for this gene. Functionally, APR3 participates in apoptosis due to the induction of mitochondrial damage to release mitochondrial cytochrome C. Concurrently, APR3 affects the cell cycle by altering the expression of Cyclin D1, which, in turn, affects the incidence and growth of malignancies and promotes cell differentiation. Previous reports indicate that APR3 is located in lysosomal membranes, where it contributes to lysosomal activity and participates in autophagy. While further research is required to determine the precise role and molecular mechanisms of APR3, earlier studies have laid the groundwork for APR3 research. There is growing evidence supporting the significance of APR3 in oncology. Therefore, this review aims to examine the current state of knowledge on the role of the newly discovered APR3 in tumorigenesis and to generate fresh insights and suggestions for future research.
Collapse
Affiliation(s)
- Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, Zhejiang, China
- School of Pharmacy, Hangzhou Medical College, 310000, Hangzhou, Zhejiang, China
| | - Chaoting Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
| | - Qiangan Jing
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
| | - Yan Gao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
- School of Pharmacy, Hangzhou Medical College, 310000, Hangzhou, Zhejiang, China
| | - Lei Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
| | - Yanchun Li
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, Zhejiang, China
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China.
| | - Xiangmin Tong
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, Zhejiang, China.
| | - Ying Wang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, Zhejiang, China.
- Department of Clinical Research Center, Luqiao Second People's Hospital, 317200, Taizhou, Zhejiang, China.
| |
Collapse
|
5
|
Torabidastgerdooei S, Roy ME, Annabi B. A molecular signature for the G6PC3/SLC37A2/SLC37A4 interactors in glioblastoma disease progression and in the acquisition of a brain cancer stem cell phenotype. Front Endocrinol (Lausanne) 2023; 14:1265698. [PMID: 38034009 PMCID: PMC10687460 DOI: 10.3389/fendo.2023.1265698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Glycogen plays an important role in glucose homeostasis and contributes to key functions related to brain cancer cell survival in glioblastoma multiforme (GBM) disease progression. Such adaptive molecular mechanism is dependent on the glycogenolytic pathway and intracellular glucose-6-phosphate (G6P) sensing by brain cancer cells residing within those highly hypoxic tumors. The involvement of components of the glucose-6-phosphatase (G6Pase) system remains however elusive. OBJECTIVE We questioned the gene expression levels of components of the G6Pase system in GBM tissues and their functional impact in the control of the invasive and brain cancer stem cells (CSC) phenotypes. METHODS In silico analysis of transcript levels in GBM tumor tissues was done by GEPIA. Total RNA was extracted and gene expression of G6PC1-3 as well as of SLC37A1-4 members analyzed by qPCR in four human brain cancer cell lines and from clinically annotated brain tumor cDNA arrays. Transient siRNA-mediated gene silencing was used to assess the impact of TGF-β-induced epithelial-to-mesenchymal transition (EMT) and cell chemotaxis. Three-dimensional (3D) neurosphere cultures were generated to recapitulate the brain CSC phenotype. RESULTS Higher expression in G6PC3, SLC37A2, and SLC37A4 was found in GBM tumor tissues in comparison to low-grade glioma and healthy tissue. The expression of these genes was also found elevated in established human U87, U251, U118, and U138 GBM cell models compared to human HepG2 hepatoma cells. SLC37A4/G6PC3, but not SLC37A2, levels were induced in 3D CD133/SOX2-positive U87 neurospheres when compared to 2D monolayers. Silencing of SLC37A4/G6PC3 altered TGF-β-induced EMT biomarker SNAIL and cell chemotaxis. CONCLUSION Two members of the G6Pase system, G6PC3 and SLC37A4, associate with GBM disease progression and regulate the metabolic reprogramming of an invasive and CSC phenotype. Such molecular signature may support their role in cancer cell survival and chemoresistance and become future therapeutic targets.
Collapse
Affiliation(s)
| | | | - Borhane Annabi
- Laboratoire d’Oncologie Moléculaire, Centre de recherche CERMO-FC, Département de Chimie, Université du Québec à Montréal, Montreal, QC, Canada
| |
Collapse
|
6
|
Bassøe CF. A universal diagnosis syntax. BMC Med Inform Decis Mak 2023; 23:143. [PMID: 37525189 PMCID: PMC10388516 DOI: 10.1186/s12911-023-02209-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 06/15/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Diagnoses are crucial assets of clinical work and provide the foundation for treatment and follow up. They should be informative and customized to the patient's problem. Common prefixes, morphemes, and suffixes may aid the implementation of expressions that generate diagnoses. RESULTS Apt choices of symbols plays a major role in science. In this study, the variables e, o, and p are assigned to names of an etiological agent, a disorder, and a pathogenetic mechanism, respectively. The suffix -itis designates infections, allergies, inflammation, and/or immune reactions. Diagnoses (d) are generated by the formula d:= e&o&p where '&' means concatenation and ':= ' means assignment. Thus, with e:= 'Staphylococcus aureus ', o:= 'endocard', and p:= 'itis', d:= e&o&p generates the diagnosis d = 'Staphylococcus aureus endocarditis'. Diagnoses formed this way comply with common clinical diagnoses. Certain extensions generate complete, systematic medical diagnoses that are applicable to all medical specialties. For example, common medical prefixes, morphemes, and suffixes give rise to o = 'hypothyroidism', o = 'tachycardia', and o = 'hypophagocytosis'. The formula scales well with the developments in clinical medicine, systems biology, molecular biology, and microbiology. The diagnosis generating formula d:= e&o&p requires meticulous analysis of the components of diagnoses plus the introduction of appropriate variables and terms. Terms partition on established clinical categories and adhere to established clinical nomenclature. The syntax generates universal medical diagnoses. CONCLUSIONS The present study concerns a universal diagnosis syntax (UDS) that generates diagnoses using the formula d:= e&o&p with several extensions described in the study. The formula is easy to learn and covers diagnoses in all medical specialties. The present work succeeded in creating diagnoses from the formula. The fundamental insight is that no matter how complicated a diagnosis is it can be generated by a systematic process, which adds terms one by one. UDS may have implications for medical education and classifications. The formula lays a foundation for structured clinical decision-making. Formulas are hallmarks of hard science. So, d:= e&o&p anticipates a scientific medical revolution.
Collapse
|
7
|
Veiga-da-Cunha M, Wortmann SB, Grünert SC, Van Schaftingen E. Treatment of the Neutropenia Associated with GSD1b and G6PC3 Deficiency with SGLT2 Inhibitors. Diagnostics (Basel) 2023; 13:1803. [PMID: 37238286 PMCID: PMC10217388 DOI: 10.3390/diagnostics13101803] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Glycogen storage disease type Ib (GSD1b) is due to a defect in the glucose-6-phosphate transporter (G6PT) of the endoplasmic reticulum, which is encoded by the SLC37A4 gene. This transporter allows the glucose-6-phosphate that is made in the cytosol to cross the endoplasmic reticulum (ER) membrane and be hydrolyzed by glucose-6-phosphatase (G6PC1), a membrane enzyme whose catalytic site faces the lumen of the ER. Logically, G6PT deficiency causes the same metabolic symptoms (hepatorenal glycogenosis, lactic acidosis, hypoglycemia) as deficiency in G6PC1 (GSD1a). Unlike GSD1a, GSD1b is accompanied by low neutrophil counts and impaired neutrophil function, which is also observed, independently of any metabolic problem, in G6PC3 deficiency. Neutrophil dysfunction is, in both diseases, due to the accumulation of 1,5-anhydroglucitol-6-phosphate (1,5-AG6P), a potent inhibitor of hexokinases, which is slowly formed in the cells from 1,5-anhydroglucitol (1,5-AG), a glucose analog that is normally present in blood. Healthy neutrophils prevent the accumulation of 1,5-AG6P due to its hydrolysis by G6PC3 following transport into the ER by G6PT. An understanding of this mechanism has led to a treatment aimed at lowering the concentration of 1,5-AG in blood by treating patients with inhibitors of SGLT2, which inhibits renal glucose reabsorption. The enhanced urinary excretion of glucose inhibits the 1,5-AG transporter, SGLT5, causing a substantial decrease in the concentration of this polyol in blood, an increase in neutrophil counts and function and a remarkable improvement in neutropenia-associated clinical signs and symptoms.
Collapse
Affiliation(s)
- Maria Veiga-da-Cunha
- Metabolic Research Group, de Duve Institute and UCLouvain, B-1200 Brussels, Belgium
| | - Saskia B. Wortmann
- University Children’s Hospital, Paracelsus Medical University, 5020 Salzburg, Austria;
- Amalia Children’s Hospital, Radboudumc, 6525 Nijmegen, The Netherlands
| | - Sarah C. Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | | |
Collapse
|
8
|
Sugar transporter Slc37a2 regulates bone metabolism in mice via a tubular lysosomal network in osteoclasts. Nat Commun 2023; 14:906. [PMID: 36810735 PMCID: PMC9945426 DOI: 10.1038/s41467-023-36484-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 02/01/2023] [Indexed: 02/23/2023] Open
Abstract
Osteoclasts are giant bone-digesting cells that harbor specialized lysosome-related organelles termed secretory lysosomes (SLs). SLs store cathepsin K and serve as a membrane precursor to the ruffled border, the osteoclast's 'resorptive apparatus'. Yet, the molecular composition and spatiotemporal organization of SLs remains incompletely understood. Here, using organelle-resolution proteomics, we identify member a2 of the solute carrier 37 family (Slc37a2) as a SL sugar transporter. We demonstrate in mice that Slc37a2 localizes to the SL limiting membrane and that these organelles adopt a hitherto unnoticed but dynamic tubular network in living osteoclasts that is required for bone digestion. Accordingly, mice lacking Slc37a2 accrue high bone mass owing to uncoupled bone metabolism and disturbances in SL export of monosaccharide sugars, a prerequisite for SL delivery to the bone-lining osteoclast plasma membrane. Thus, Slc37a2 is a physiological component of the osteoclast's unique secretory organelle and a potential therapeutic target for metabolic bone diseases.
Collapse
|
9
|
Iskarpatyoti JA, Shi J, Abraham MA, Rathore APS, Miao Y, Abraham SN. Mast cell regranulation requires a metabolic switch involving mTORC1 and a glucose-6-phosphate transporter. Cell Rep 2022; 40:111346. [PMID: 36170813 PMCID: PMC11218746 DOI: 10.1016/j.celrep.2022.111346] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/16/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Mast cells (MCs) are granulated cells implicated in inflammatory disorders because of their capacity to degranulate, releasing prestored proinflammatory mediators. As MCs have the unique capacity to reform granules following degranulation in vitro, their potential to regranulate in vivo is linked to their pathogenesis. It is not known what factors regulate regranulation, let alone if regranulation occurs in vivo. We report that mice can undergo multiple bouts of MC regranulation following successive anaphylactic reactions. mTORC1, a nutrient sensor that activates protein and lipid synthesis, is necessary for regranulation. mTORC1 activity is regulated by a glucose-6-phosphate transporter, Slc37a2, which increases intracellular glucose-6-phosphate and ATP during regranulation, two upstream signals of mTOR. Additionally, Slc37a2 concentrates extracellular metabolites within endosomes, which are trafficked into nascent granules. Thus, the metabolic switch associated with MC regranulation is mediated by the interactions of a cellular metabolic sensor and a transporter of extracellular metabolites into MC granules.
Collapse
Affiliation(s)
- Jason A Iskarpatyoti
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jianling Shi
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Mathew A Abraham
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Abhay P S Rathore
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yuxuan Miao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Soman N Abraham
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA; Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore 169857, Singapore.
| |
Collapse
|
10
|
Haralambieva IH, Eberhard KG, Ovsyannikova IG, Grill DE, Schaid DJ, Kennedy RB, Poland GA. Transcriptional signatures associated with rubella virus-specific humoral immunity after a third dose of MMR vaccine in women of childbearing age. Eur J Immunol 2021; 51:1824-1838. [PMID: 33818775 PMCID: PMC9841595 DOI: 10.1002/eji.202049054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/03/2021] [Accepted: 12/17/2020] [Indexed: 01/19/2023]
Abstract
Multiple factors linked to host genetics/inherent biology play a role in interindividual variability in immune response outcomes after rubella vaccination. In order to identify these factors, we conducted a study of rubella-specific humoral immunity before (Baseline) and after (Day 28) a third dose of MMR-II vaccine in a cohort of 109 women of childbearing age. We performed mRNA-Seq profiling of PBMCs after rubella virus in vitro stimulation to delineate genes associated with post-vaccination rubella humoral immunity and to define genes mediating the association between prior immune response status (high or low antibody) and subsequent immune response outcome. Our study identified novel genes that mediated the association between prior immune response and neutralizing antibody titer after a third MMR vaccine dose. These genes included the following: CDC34; CSNK1D; APOBEC3F; RAD18; AAAS; SLC37A1; FAS; and JAK2. The encoded proteins are involved in innate antiviral response, IFN/cytokine signaling, B cell repertoire generation, the clonal selection of B lymphocytes in germinal centers, and somatic hypermutation/antibody affinity maturation to promote optimal antigen-specific B cell immune function. These data advance our understanding of how subjects' prior immune status and/or genetic propensity to respond to rubella/MMR vaccination ultimately affects innate immunity and humoral immune outcomes after vaccination.
Collapse
Affiliation(s)
| | | | | | - Diane E. Grill
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel J. Schaid
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard B. Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory A. Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
11
|
Wu Y. Molecular phyloecology suggests a trophic shift concurrent with the evolution of the first birds. Commun Biol 2021; 4:547. [PMID: 33986452 PMCID: PMC8119460 DOI: 10.1038/s42003-021-02067-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/31/2021] [Indexed: 02/03/2023] Open
Abstract
Birds are characterized by evolutionary specializations of both locomotion (e.g., flapping flight) and digestive system (toothless, crop, and gizzard), while the potential selection pressures responsible for these evolutionary specializations remain unclear. Here we used a recently developed molecular phyloecological method to reconstruct the diets of the ancestral archosaur and of the common ancestor of living birds (CALB). Our results suggest a trophic shift from carnivory to herbivory (fruit, seed, and/or nut eater) at the archosaur-to-bird transition. The evolutionary shift of the CALB to herbivory may have essentially made them become a low-level consumer and, consequently, subject to relatively high predation risk from potential predators such as gliding non-avian maniraptorans, from which birds descended. Under the relatively high predation pressure, ancestral birds with gliding capability may have then evolved not only flapping flight as a possible anti-predator strategy against gliding predatory non-avian maniraptorans but also the specialized digestive system as an evolutionary tradeoff of maximizing foraging efficiency and minimizing predation risk. Our results suggest that the powered flight and specialized digestive system of birds may have evolved as a result of their tropic shift-associated predation pressure.
Collapse
Affiliation(s)
- Yonghua Wu
- School of Life Sciences, Northeast Normal University, Changchun, China.
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.
| |
Collapse
|
12
|
Ribet ABP, Ng PY, Pavlos NJ. Membrane Transport Proteins in Osteoclasts: The Ins and Outs. Front Cell Dev Biol 2021; 9:644986. [PMID: 33718388 PMCID: PMC7952445 DOI: 10.3389/fcell.2021.644986] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
During bone resorption, the osteoclast must sustain an extraordinarily low pH environment, withstand immense ionic pressures, and coordinate nutrient and waste exchange across its membrane to sustain its unique structural and functional polarity. To achieve this, osteoclasts are equipped with an elaborate set of membrane transport proteins (pumps, transporters and channels) that serve as molecular ‘gatekeepers’ to regulate the bilateral exchange of ions, amino acids, metabolites and macromolecules across the ruffled border and basolateral domains. Whereas the importance of the vacuolar-ATPase proton pump and chloride voltage-gated channel 7 in osteoclasts has long been established, comparatively little is known about the contributions of other membrane transport proteins, including those categorized as secondary active transporters. In this Special Issue review, we provide a contemporary update on the ‘ins and outs’ of membrane transport proteins implicated in osteoclast differentiation, function and bone homeostasis and discuss their therapeutic potential for the treatment of metabolic bone diseases.
Collapse
Affiliation(s)
- Amy B P Ribet
- Bone Biology and Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Pei Ying Ng
- Bone Biology and Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Nathan J Pavlos
- Bone Biology and Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
13
|
The mitochondrial aspartate/glutamate carrier (AGC or Aralar1) isoforms in D. melanogaster: biochemical characterization, gene structure, and evolutionary analysis. Biochim Biophys Acta Gen Subj 2021; 1865:129854. [PMID: 33497735 DOI: 10.1016/j.bbagen.2021.129854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND In man two mitochondrial aspartate/glutamate carrier (AGC) isoforms, known as aralar and citrin, are required to accomplish several metabolic pathways. In order to fill the existing gap of knowledge in Drosophila melanogaster, we have studied aralar1 gene, orthologue of human AGC-encoding genes in this organism. METHODS The blastp algorithm and the "reciprocal best hit" approach have been used to identify the human orthologue of AGCs in Drosophilidae and non-Drosophilidae. Aralar1 proteins have been overexpressed in Escherichia coli and functionally reconstituted into liposomes for transport assays. RESULTS The transcriptional organization of aralar1 comprises six isoforms, three constitutively expressed (aralar1-RA, RD and RF), and the remaining three distributed during the development or in different tissues (aralar1-RB, RC and RE). Aralar1-PA and Aralar1-PE, representative of all isoforms, have been biochemically characterized. Recombinant Aralar1-PA and Aralar1-PE proteins share similar efficiency to exchange glutamate against aspartate, and same substrate affinities than the human isoforms. Interestingly, although Aralar1-PA and Aralar1-PE diverge only in their EF-hand 8, they greatly differ in their specific activities and substrate specificity. CONCLUSIONS The tight regulation of aralar1 transcripts expression and the high request of aspartate and glutamate during early embryogenesis suggest a crucial role of Aralar1 in this Drosophila developmental stage. Furthermore, biochemical characterization and calcium sensitivity have identified Aralar1-PA and Aralar1-PE as the human aralar and citrin counterparts, respectively. GENERAL SIGNIFICANCE The functional characterization of the fruit fly mitochondrial AGC transporter represents a crucial step toward a complete understanding of the metabolic events acting during early embryogenesis.
Collapse
|
14
|
Drosophila melanogaster Mitochondrial Carriers: Similarities and Differences with the Human Carriers. Int J Mol Sci 2020; 21:ijms21176052. [PMID: 32842667 PMCID: PMC7504413 DOI: 10.3390/ijms21176052] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial carriers are a family of structurally related proteins responsible for the exchange of metabolites, cofactors and nucleotides between the cytoplasm and mitochondrial matrix. The in silico analysis of the Drosophila melanogaster genome has highlighted the presence of 48 genes encoding putative mitochondrial carriers, but only 20 have been functionally characterized. Despite most Drosophila mitochondrial carrier genes having human homologs and sharing with them 50% or higher sequence identity, D. melanogaster genes display peculiar differences from their human counterparts: (1) in the fruit fly, many genes encode more transcript isoforms or are duplicated, resulting in the presence of numerous subfamilies in the genome; (2) the expression of the energy-producing genes in D. melanogaster is coordinated from a motif known as Nuclear Respiratory Gene (NRG), a palindromic 8-bp sequence; (3) fruit-fly duplicated genes encoding mitochondrial carriers show a testis-biased expression pattern, probably in order to keep a duplicate copy in the genome. Here, we review the main features, biological activities and role in the metabolism of the D. melanogaster mitochondrial carriers characterized to date, highlighting similarities and differences with their human counterparts. Such knowledge is very important for obtaining an integrated view of mitochondrial function in D. melanogaster metabolism.
Collapse
|
15
|
Tani M, Tanaka S, Oeda C, Azumi Y, Kawamura H, Sakaue M, Ito M. SLC37A2, a phosphorus-related molecule, increases in smooth muscle cells in the calcified aorta. J Clin Biochem Nutr 2020; 68:23-31. [PMID: 33536709 PMCID: PMC7844665 DOI: 10.3164/jcbn.19-114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/04/2020] [Indexed: 11/24/2022] Open
Abstract
Vascular calcification is major source of cardiovascular disease in patients with chronic kidney disease. Hyperphosphatemia leads to increased intracellular phosphorus influx, which leads to an increase in osteoblast-like cells in vascular smooth muscle cell. PiT-1 transports phosphate in vascular smooth muscle cell. However, the mechanism of vascular calcification is not completely understood. This study investigated candidate phosphorus-related molecules other than PiT-1. We hypothesized that phosphorus-related molecules belonging to the solute-carrier (SLC) superfamily would be involved in vascular calcification. As a result of DNA microarray analysis, we focused on SLC37A2 and showed that mRNA expression of these cells increased on calcified aotic smooth muscle cells (AoSMC). SLC37A2 has been reported to transport both glucose-6-phosphate/phosphate and phosphate/phosphate exchanges. In vitro analysis showed that SLC37A2 expression was not affected by inflammation on AoSMC. The expression of SLC37A2 mRNA and protein increased in calcified AoSMC. In vivo analysis showed that SLC37A2 mRNA expression in the aorta of chronic kidney disease rats was correlated with osteogenic marker genes. Furthermore, SLC37A2 was expressed at the vascular calcification area in chronic kidney disease rats. As a result, we showed that SLC37A2 is one of the molecules that increase with vascular calcification in vitro and in vivo.
Collapse
Affiliation(s)
- Mariko Tani
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Sarasa Tanaka
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Chihiro Oeda
- School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Yuichi Azumi
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Hiromi Kawamura
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Motoyoshi Sakaue
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Mikiko Ito
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| |
Collapse
|
16
|
Hasuzawa N, Moriyama S, Moriyama Y, Nomura M. Physiopathological roles of vesicular nucleotide transporter (VNUT), an essential component for vesicular ATP release. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183408. [PMID: 32652056 DOI: 10.1016/j.bbamem.2020.183408] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023]
Abstract
Vesicular nucleotide transporter (VNUT) is the last identified member of the SLC17 organic anion transporter family, which plays a central role in vesicular storage in ATP-secreting cells. The discovery of VNUT demonstrated that, despite having been neglected for a long time, vesicular ATP release represents a major pathway for purinergic chemical transmission, which had been mainly attributed to ATP permeation channels. This article summarizes recent advances in our understanding of the mechanism of VNUT and its physiopathological roles as well as the development of inhibitors. Regulating the activity and/or the expression of VNUT represents a new and promising therapeutic strategy for the treatment of multiple diseases.
Collapse
Affiliation(s)
- Nao Hasuzawa
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan.
| | - Sawako Moriyama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Yoshinori Moriyama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Masatoshi Nomura
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| |
Collapse
|
17
|
Nagala M, Crocker PR. Towards understanding the cell surface phenotype, metabolic properties and immune functions of resident macrophages of the peritoneal cavity and splenic red pulp using high resolution quantitative proteomics. Wellcome Open Res 2020. [DOI: 10.12688/wellcomeopenres.16061.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background:Resident macrophages (Mϕs) are distributed throughout the body and are important for maintaining tissue homeostasis and for defence against infections. Tissue Mϕs are highly adapted to their microenvironment and thought to mediate tissue-specific functions involving metabolism and immune defence that are not fully elucidated. Methods:We have used high resolution quantitative proteomics to gain insights into the functions of two types of resident tissue Mϕs: peritoneal cavity Mϕs and splenic red pulp Mϕs. The cellular expression levels of many proteins were validated by flow cytometry and were consistently in agreement with the proteomics data.Results:Peritoneal and splenic red pulp macrophages displayed major differences in cell surface phenotype reflecting their adaptation to different tissue microenvironments and tissue-specific functions. Peritoneal Mϕs were shown to be enriched in a number of key enzymes and metabolic pathways normally associated with the liver, such as metabolism of fructose, detoxification, nitrogen homeostasis and the urea cycle. Supporting these observations, we show that peritoneal Mϕs are able to utilise glutamine and glutamate which are rich in peritoneum for urea generation. In comparison, splenic red pulp Mϕs were enriched in proteins important for adaptive immunity such as antigen presenting MHC molecules, in addition to proteins required for erythrocyte homeostasis and iron turnover. We also show that these tissue Mϕs may utilise carbon and nitrogen substrates for different metabolic fates to support distinct tissue-specific roles.Conclusions:This study provides new insights into the functions of tissue Mϕs in immunity and homeostasis. The comprehensive proteomics data sets are a valuable resource for biologists and immunologists.
Collapse
|
18
|
Li S, Liu H, Bian S, Sha X, Li Y, Wang Y. The accelerated aging model reveals critical mechanisms of late-onset Parkinson's disease. BioData Min 2020; 13:4. [PMID: 32536974 PMCID: PMC7288517 DOI: 10.1186/s13040-020-00215-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/26/2020] [Indexed: 12/21/2022] Open
Abstract
Background Late-onset Parkinson’s disease (LOPD) is a common neurodegenerative disorder and lacks disease-modifying treatments, attracting major attentions as the aggravating trend of aging population. There were numerous evidences supported that accelerated aging was the primary risk factor for LOPD, thus pointed out that the mechanisms of PD should be revealed thoroughly based on aging acceleration. However, how PD was triggered by accelerated aging remained unclear and the systematic prediction model was needed to study the mechanisms of PD. Results In this paper, an improved PD predictor was presented by comparing with the normal aging process, and both aging and PD markers were identified herein using machine learning methods. Based on the aging scores, the aging acceleration network was constructed thereby, where the enrichment analysis shed light on key characteristics of LOPD. As a result, dysregulated energy metabolisms, the cell apoptosis, neuroinflammation and the ion imbalances were identified as crucial factors linking accelerated aging and PD coordinately, along with dysfunctions in the immune system. Conclusions In short, mechanisms between aging and LOPD were integrated by our computational pipeline.
Collapse
Affiliation(s)
- Shiyan Li
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, 110122 Liaoning Province China
| | - Hongxin Liu
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, 110122 Liaoning Province China
| | - Shiyu Bian
- China Medical University, The Queen's University of Belfast Joint College, China Medical University, Shenyang, 110122 Liaoning Province China
| | - Xianzheng Sha
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, 110122 Liaoning Province China
| | - Yixue Li
- Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Science, Shanghai, 200031 China.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China.,Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200433 China.,Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai, 201203 China
| | - Yin Wang
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, 110122 Liaoning Province China.,Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001 Liaoning Province China
| |
Collapse
|
19
|
Tan Z, Zhu J, Stemmer PM, Sun L, Yang Z, Schultz K, Gaffrey MJ, Cesnik AJ, Yi X, Hao X, Shortreed MR, Shi T, Lubman DM. Comprehensive Detection of Single Amino Acid Variants and Evaluation of Their Deleterious Potential in a PANC-1 Cell Line. J Proteome Res 2020; 19:1635-1646. [PMID: 32058723 DOI: 10.1021/acs.jproteome.9b00840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Identifying single amino acid variants (SAAVs) in cancer is critical for precision oncology. Several advanced algorithms are now available to identify SAAVs, but attempts to combine different algorithms and optimize them on large data sets to achieve a more comprehensive coverage of SAAVs have not been implemented. Herein, we report an expanded detection of SAAVs in the PANC-1 cell line using three different strategies, which results in the identification of 540 SAAVs in the mass spectrometry data. Among the set of 540 SAAVs, 79 are evaluated as deleterious SAAVs based on analysis using the novel AssVar software in which one of the driver mutations found in each protein of KRAS, TP53, and SLC37A4 is further validated using independent selected reaction monitoring (SRM) analysis. Our study represents the most comprehensive discovery of SAAVs to date and the first large-scale detection of deleterious SAAVs in the PANC-1 cell line. This work may serve as the basis for future research in pancreatic cancer and personal immunotherapy and treatment.
Collapse
Affiliation(s)
- Zhijing Tan
- Department of Surgery, The University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jianhui Zhu
- Department of Surgery, The University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Paul M Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Zhichang Yang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Kendall Schultz
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Matthew J Gaffrey
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Anthony J Cesnik
- Department of Genetics, Stanford University, Stanford, California 94305, United States
| | - Xinpei Yi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Xiaohu Hao
- Shanghai Institutes for Biological Science, Chinese Academy of Science, Shanghai 200031, China
| | - Michael R Shortreed
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Tujin Shi
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - David M Lubman
- Department of Surgery, The University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
20
|
Yu Y, Sun B. Autophagy-mediated regulation of neutrophils and clinical applications. BURNS & TRAUMA 2020; 8:tkz001. [PMID: 32341923 PMCID: PMC7175771 DOI: 10.1093/burnst/tkz001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/07/2019] [Indexed: 12/16/2022]
Abstract
Autophagy, an adaptive catabolic process, plays a cytoprotective role in enabling cellular homeostasis in the innate and adaptive immune systems. Neutrophils, the most abundant immune cells in circulation, are professional killers that orchestrate a series of events during acute inflammation. The recent literature indicates that autophagy has important roles in regulating neutrophil functions, including differentiation, degranulation, metabolism and neutrophil extracellular trap formation, that dictate neutrophil fate. It is also becoming increasingly clear that autophagy regulation is critical for neutrophils to exert their immunological activity. However, evidence regarding the systematic communication between neutrophils and autophagy is insufficient. Here, we provide an updated overview of the function of autophagy as a regulator of neutrophils and discuss its clinical relevance to provide novel insight into potentially relevant treatment strategies.
Collapse
Affiliation(s)
- Yao Yu
- Department of Burns and Plastic Surgery, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, Jiangsu Province, China
| | - Bingwei Sun
- Department of Burns and Plastic Surgery, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, Jiangsu Province, China
| |
Collapse
|
21
|
Wang FS, Wu WH, Hsiu WS, Liu YJ, Chuang KW. Genome-Scale Metabolic Modeling with Protein Expressions of Normal and Cancerous Colorectal Tissues for Oncogene Inference. Metabolites 2019; 10:metabo10010016. [PMID: 31881674 PMCID: PMC7022839 DOI: 10.3390/metabo10010016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/10/2019] [Accepted: 12/21/2019] [Indexed: 12/23/2022] Open
Abstract
Although cancer has historically been regarded as a cell proliferation disorder, it has recently been considered a metabolic disease. The first discovery of metabolic alterations in cancer cells refers to Otto Warburg’s observations. Cancer metabolism results in alterations in metabolic fluxes that are evident in cancer cells compared with most normal tissue cells. This study applied protein expressions of normal and cancer cells to reconstruct two tissue-specific genome-scale metabolic models. Both models were employed in a tri-level optimization framework to infer oncogenes. Moreover, this study also introduced enzyme pseudo-coding numbers in the gene association expression to avoid performing posterior decision-making that is necessary for the reaction-based method. Colorectal cancer (CRC) was the topic of this case study, and 20 top-ranked oncogenes were determined. Notably, these dysregulated genes were involved in various metabolic subsystems and compartments. We found that the average similarity ratio for each dysregulation is higher than 98%, and the extent of similarity for flux changes is higher than 93%. On the basis of surveys of PubMed and GeneCards, these oncogenes were also investigated in various carcinomas and diseases. Most dysregulated genes connect to catalase that acts as a hub and connects protein signaling pathways, such as those involving TP53, mTOR, AKT1, MAPK1, EGFR, MYC, CDK8, and RAS family.
Collapse
|
22
|
Lizák B, Szarka A, Kim Y, Choi KS, Németh CE, Marcolongo P, Benedetti A, Bánhegyi G, Margittai É. Glucose Transport and Transporters in the Endomembranes. Int J Mol Sci 2019; 20:ijms20235898. [PMID: 31771288 PMCID: PMC6929180 DOI: 10.3390/ijms20235898] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 12/18/2022] Open
Abstract
Glucose is a basic nutrient in most of the creatures; its transport through biological membranes is an absolute requirement of life. This role is fulfilled by glucose transporters, mediating the transport of glucose by facilitated diffusion or by secondary active transport. GLUT (glucose transporter) or SLC2A (Solute carrier 2A) families represent the main glucose transporters in mammalian cells, originally described as plasma membrane transporters. Glucose transport through intracellular membranes has not been elucidated yet; however, glucose is formed in the lumen of various organelles. The glucose-6-phosphatase system catalyzing the last common step of gluconeogenesis and glycogenolysis generates glucose within the lumen of the endoplasmic reticulum. Posttranslational processing of the oligosaccharide moiety of glycoproteins also results in intraluminal glucose formation in the endoplasmic reticulum (ER) and Golgi. Autophagic degradation of polysaccharides, glycoproteins, and glycolipids leads to glucose accumulation in lysosomes. Despite the obvious necessity, the mechanism of glucose transport and the molecular nature of mediating proteins in the endomembranes have been hardly elucidated for the last few years. However, recent studies revealed the intracellular localization and functional features of some glucose transporters; the aim of the present paper was to summarize the collected knowledge.
Collapse
Affiliation(s)
- Beáta Lizák
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, 1094 Budapest, Hungary; (B.L.); (C.E.N.); (G.B.)
| | - András Szarka
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, 1111 Budapest, Hungary;
| | - Yejin Kim
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (Y.K.); (K.-s.C.)
| | - Kyu-sung Choi
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (Y.K.); (K.-s.C.)
| | - Csilla E. Németh
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, 1094 Budapest, Hungary; (B.L.); (C.E.N.); (G.B.)
| | - Paola Marcolongo
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (P.M.); (A.B.)
| | - Angelo Benedetti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (P.M.); (A.B.)
| | - Gábor Bánhegyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, 1094 Budapest, Hungary; (B.L.); (C.E.N.); (G.B.)
| | - Éva Margittai
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (Y.K.); (K.-s.C.)
- Correspondence: ; Tel.: +36-459-1500 (ext. 60311); Fax: +36-1-2662615
| |
Collapse
|
23
|
López de Las Hazas MC, Martin-Hernández R, Crespo MC, Tomé-Carneiro J, Del Pozo-Acebo L, Ruiz-Roso MB, Escola-Gil JC, Osada J, Portillo MP, Martinez JA, Navarro MA, Rubió L, Motilva MJ, Visioli F, Dávalos A. Identification and validation of common molecular targets of hydroxytyrosol. Food Funct 2019; 10:4897-4910. [PMID: 31339147 DOI: 10.1039/c9fo01159e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hydroxytyrosol (HT) is involved in healthful activities and is beneficial to lipid metabolism. Many investigations focused on finding tissue-specific targets of HT through the use of different omics approaches such as transcriptomics and proteomics. However, it is not clear which (if any) of the potential molecular targets of HT reported in different studies are concurrently affected in various tissues. Following the bioinformatic analyses of publicly available data from a selection of in vivo studies involving HT-supplementation, we selected differentially expressed lipid metabolism-related genes and proteins common to more than one study, for validation in rodent liver samples from the entire selection. Four miRNAs (miR-802-5p, miR-423-3p, miR-30a-5p, and miR-146b-5p) responded to HT supplementation. Of note, miR-802-5p was commonly regulated in the liver and intestine. Our premise was that, in an organ crucial for lipid metabolism such as the liver, consistent modulation should be found for a specific target of HT even if different doses and duration of HT supplementation were used in vivo. Even though our results show inconsistency regarding differentially expressed lipid metabolism-related genes and proteins across studies, we found Fgf21 and Rora as potential novel targets of HT. Omics approaches should be fine-tuned to better exploit the available databases.
Collapse
Affiliation(s)
- María-Carmen López de Las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, 28049 Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Conte M, Dell'Aversana C, Sgueglia G, Carissimo A, Altucci L. HDAC2-dependent miRNA signature in acute myeloid leukemia. FEBS Lett 2019; 593:2574-2584. [PMID: 31254352 PMCID: PMC6790563 DOI: 10.1002/1873-3468.13521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/11/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022]
Abstract
Acute myeloid leukemia (AML) arises from a complex sequence of biological and finely orchestrated events that are still poorly understood. Increasingly, epigenetic studies are providing exciting findings that may be exploited in promising and personalized cutting‐edge therapies. A more appropriate and broader screening of possible players in cancer could identify a master molecular mechanism in AML. Here, we build on our previously published study by evaluating a histone deacetylase (HDAC)2‐mediated miRNA regulatory network in U937 leukemic cells. Following a comparative miRNA profiling analysis in genetically and enzymatically HDAC2‐downregulated AML cells, we identified miR‐96‐5p and miR‐92a‐3p as potential regulators in AML etiopathology by targeting defined genes. Our findings support the potentially beneficial role of alternative physiopathological interventions.
Collapse
Affiliation(s)
| | - Carmela Dell'Aversana
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Giulia Sgueglia
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Annamaria Carissimo
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|
25
|
Abstract
Drugs called bisphosphonates are used to treat a range of bone diseases, but how do they reach the enzymes that are their target?
Collapse
Affiliation(s)
- Michael J Rogers
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Marcia A Munoz
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| |
Collapse
|