1
|
Hassan MM, Li YD, Ma MW, Teng M, Byun WS, Puvar K, Lumpkin R, Sandoval B, Rutter JC, Jin CY, Wang MY, Xu S, Schmoker AM, Cheong H, Groendyke BJ, Qi J, Fischer ES, Ebert BL, Gray NS. Exploration of the tunability of BRD4 degradation by DCAF16 trans-labelling covalent glues. Eur J Med Chem 2024; 279:116904. [PMID: 39341093 PMCID: PMC11960843 DOI: 10.1016/j.ejmech.2024.116904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Chemically induced proximity modalities such as targeted protein degradation (TPD) hold promise for expanding the number of proteins that can be manipulated pharmacologically. However, current TPD strategies are often limited to proteins with preexisting ligands. Molecular glues (e.g. glutarimide ligands for CUL4CRBN), offer the potential to target undruggable proteins. Yet, their rational design is largely unattainable due to the unpredictability of the 'gain-of-function' nature of the glue interaction upon chemical modification of ligands. We recently reported a covalent trans-labelling glue mechanism which we named 'Template-assisted covalent modification', where an electrophile decorated BRD4 inhibitor was effectively delivered to a cysteine residue on DCAF16 due to an electrophile-induced BRD4-DCAF16 interaction. Herein, we report our efforts to evaluate how various electrophilic modifications to the BRD4 binder, JQ1, affect DCAF16 recruitment and subsequent BRD4 degradation efficiency. We discovered a moderate correlation between the electrophile-induced BRD4-DCAF16 ternary complex formation and BRD4 degradation. Moreover, we show that a more solvent-exposed warhead presentation optimally recruits DCAF16 and promotes BRD4 degradation. The diversity of covalent attachments in this class of BRD4 degraders suggests a high tolerance and tunability for the BRD4-DCAF16 interaction. This offers a new avenue for rational glue design by introducing covalent warheads to known binders.
Collapse
Affiliation(s)
- Muhammad Murtaza Hassan
- Department of Chemical and Systems Biology, ChEM-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, USA; SPARK Translational Research Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Yen-Der Li
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michelle W Ma
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Mingxing Teng
- Center for Drug Discovery, Department of Pathology & Immunology, and Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Woong Sub Byun
- Department of Chemical and Systems Biology, ChEM-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Kedar Puvar
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ryan Lumpkin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Brittany Sandoval
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Justine C Rutter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cyrus Y Jin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Michelle Y Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shawn Xu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Anna M Schmoker
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Hakyung Cheong
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Brian J Groendyke
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Boston, MA, USA.
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, ChEM-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Vrban L, Vianello R. Prominent Neuroprotective Potential of Indole-2- N-methylpropargylamine: High Affinity and Irreversible Inhibition Efficiency towards Monoamine Oxidase B Revealed by Computational Scaffold Analysis. Pharmaceuticals (Basel) 2024; 17:1292. [PMID: 39458932 PMCID: PMC11510145 DOI: 10.3390/ph17101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Monoamine oxidases (MAO) are flavoenzymes that metabolize a range of brain neurotransmitters, whose dysregulation is closely associated with the development of various neurological disorders. This is why MAOs have been the central target in pharmacological interventions for neurodegeneration for more than 60 years. Still, existing drugs only address symptoms and not the cause of the disease, which underlines the need to develop more efficient inhibitors without adverse effects. Methods: Our drug design strategy relied on docking 25 organic scaffolds to MAO-B, which were extracted from the ChEMBL20 database with the highest cumulative counts of unique member compounds and bioactivity assays. The most promising candidates were substituted with the inactivating propargylamine group, while further affinity adjustment was made by its N-methylation. A total of 46 propargylamines were submitted to the docking and molecular dynamics simulations, while the best binders underwent mechanistic DFT analysis that confirmed the hydride abstraction mechanism of the covalent inhibition reaction. Results: We identified indole-2-propargylamine 4fH and indole-2-N-methylpropargylamine 4fMe as superior MAO-B binders over the clinical drugs rasagiline and selegiline. DFT calculations highlighted 4fMe as more potent over selegiline, evident in a reduced kinetic requirement (ΔΔG‡ = -2.5 kcal mol-1) and an improved reaction exergonicity (ΔΔGR = -4.3 kcal mol-1), together with its higher binding affinity, consistently determined by docking (ΔΔGBIND = -0.1 kcal mol-1) and MM-PBSA analysis (ΔΔGBIND = -1.5 kcal mol-1). Conclusions: Our findings strongly advocate 4fMe as an excellent drug candidate, whose synthesis and biological evaluation are highly recommended. Also, our results reveal the structural determinants that influenced the affinity and inhibition rates that should cooperate when designing further MAO inhibitors, which are of utmost significance and urgency with the increasing prevalence of brain diseases.
Collapse
Affiliation(s)
| | - Robert Vianello
- Laboratory for the Computational Design and Synthesis of Functional Materials, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| |
Collapse
|
3
|
Mavroeidi P, Zorba LP, Tzouras NV, Neofotistos SP, Georgiou N, Sahin K, Şentürk M, Durdagi S, Vougioukalakis GC, Mavromoustakos T. Are Terminal Alkynes Necessary for MAO-A/MAO-B Inhibition? A New Scaffold Is Revealed. Molecules 2024; 29:2486. [PMID: 38893361 PMCID: PMC11174103 DOI: 10.3390/molecules29112486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
A versatile family of quaternary propargylamines was synthesized employing the KA2 multicomponent reaction, through the single-step coupling of a number of amines, ketones, and terminal alkynes. Sustainable synthetic procedures using transition metal catalysts were employed in all cases. The inhibitory activity of these molecules was evaluated against human monoaminoxidase (hMAO)-A and hMAO-B enzymes and was found to be significant. The IC50 values for hMAO-B range from 152.1 to 164.7 nM while the IC50 values for hMAO-A range from 765.6 to 861.6 nM. Furthermore, these compounds comply with Lipinski's rule of five and exhibit no predicted toxicity. To understand their binding properties with the two target enzymes, key interactions were studied using molecular docking, all-atom molecular dynamics (MD) simulations, and MM/GBSA binding free energy calculations. Overall, herein, the reported family of propargylamines exhibits promise as potential treatments for neurodegenerative disorders, such as Parkinson's disease. Interestingly, this is the first time a propargylamine scaffold bearing an internal alkyne has been reported to show activity against monoaminoxidases.
Collapse
Affiliation(s)
- Panagiou Mavroeidi
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (P.M.); (L.P.Z.); (N.V.T.); (S.P.N.); (N.G.)
| | - Leandros P. Zorba
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (P.M.); (L.P.Z.); (N.V.T.); (S.P.N.); (N.G.)
| | - Nikolaos V. Tzouras
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (P.M.); (L.P.Z.); (N.V.T.); (S.P.N.); (N.G.)
| | - Stavros P. Neofotistos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (P.M.); (L.P.Z.); (N.V.T.); (S.P.N.); (N.G.)
| | - Nikitas Georgiou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (P.M.); (L.P.Z.); (N.V.T.); (S.P.N.); (N.G.)
| | - Kader Sahin
- Department of Analytical Chemistry, School of Pharmacy, Bahcesehir University, 34349 Istanbul, Turkey;
| | - Murat Şentürk
- Department of Biochemistry, Faculty of Pharmacy, Agri Ibrahim Cecen University, 04100 Agri, Turkey;
| | - Serdar Durdagi
- Molecular Therapy Laboratory, Department of Pharmaceutical Chemistry, School of Pharmacy, Bahcesehir University, 34349 Istanbul, Turkey
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, 34349 Istanbul, Turkey
- Laboratory for Innovative Drugs (Lab4IND), Computational Drug Design Center (HİTMER), Bahcesehir University, 34349 Istanbul, Turkey
| | - Georgios C. Vougioukalakis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (P.M.); (L.P.Z.); (N.V.T.); (S.P.N.); (N.G.)
| | - Thomas Mavromoustakos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (P.M.); (L.P.Z.); (N.V.T.); (S.P.N.); (N.G.)
| |
Collapse
|
4
|
Yang C, Wang X, Gao C, Liu Y, Ma Z, Zang J, Wang H, Liu L, Liu Y, Sun H, Wang W. Molecular Mechanism and Structure-activity Relationship of the Inhibition Effect between Monoamine Oxidase and Selegiline Analogues. Curr Comput Aided Drug Des 2024; 20:474-485. [PMID: 37138424 DOI: 10.2174/1573409919666230503143055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/19/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023]
Abstract
INTRODUCTION To investigate the inhibition properties and structure-activity relationship between monoamine oxidase (MAO) and selected monoamine oxidase inhibitors (MAOIs, including selegiline, rasagiline and clorgiline). METHODS The inhibition effect and molecular mechanism between MAO and MAOIs were identified via the half maximal inhibitory concentration (IC50) and molecular docking technology. RESULTS It was indicated that selegiline and rasagiline were MAO B inhibitors, but clorgiline was MAO-A inhibitor based on the selectivity index (SI) of MAOIs (0.000264, 0.0197 and 14607.143 for selegiline, rasagiline and clorgiline, respectively). The high-frequency amino acid residues of the MAOIs and MAO were Ser24, Arg51, Tyr69 and Tyr407 for MAO-A and Arg42 and Tyr435 for MAO B. The MAOIs and MAO A/B pharmacophores included the aromatic core, hydrogen bond acceptor, hydrogen bond donor-acceptor and hydrophobic core. CONCLUSION This study shows the inhibition effect and molecular mechanism between MAO and MAOIs and provides valuable findings on the design and treatment of Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Chuanxi Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, Shandong, 266520, China
| | - Xiaoning Wang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Chang Gao
- Qingdao Jiaming Measurement and Control Technology Co., Ltd., Qingdao, Shandong, 266000, China
| | - Yunxiang Liu
- Environmental Monitoring Station of Yuncheng County Environmental Protection Bureau, Heze, Shandong, 274700, China
| | - Ziyi Ma
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, Shandong, 266520, China
| | - Jinqiu Zang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, Shandong, 266520, China
| | - Haoce Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, Shandong, 266520, China
| | - Lin Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, Shandong, 266520, China
| | - Yonglin Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, Shandong, 266520, China
| | - Haofen Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, Shandong, 266520, China
| | - Weiliang Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, Shandong, 266520, China
| |
Collapse
|
5
|
Hassan MM, Li YD, Ma MW, Teng M, Byun WS, Puvar K, Lumpkin R, Sandoval B, Rutter JC, Jin CY, Wang MY, Xu S, Schmoker AM, Cheong H, Groendyke BJ, Qi J, Fischer ES, Ebert BL, Gray NS. Exploration of the Tunability of BRD4 Degradation by DCAF16 Trans-labelling Covalent Glues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.07.561308. [PMID: 37873358 PMCID: PMC10592706 DOI: 10.1101/2023.10.07.561308] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Small molecules that can induce protein degradation by inducing proximity between a desired target and an E3 ligase have the potential to greatly expand the number of proteins that can be manipulated pharmacologically. Current strategies for targeted protein degradation are mostly limited in their target scope to proteins with preexisting ligands. Alternate modalities such as molecular glues, as exemplified by the glutarimide class of ligands for the CUL4CRBN ligase, have been mostly discovered serendipitously. We recently reported a trans-labelling covalent glue mechanism which we named 'Template-assisted covalent modification', where an electrophile decorated small molecule binder of BRD4 was effectively delivered to a cysteine residue on an E3 ligase DCAF16 as a consequence of a BRD4-DCAF16 protein-protein interaction. Herein, we report our medicinal chemistry efforts to evaluate how various electrophilic modifications to the BRD4 binder, JQ1, affect DCAF16 trans-labeling and subsequent BRD4 degradation efficiency. We discovered a decent correlation between the ability of the electrophilic small molecule to induce ternary complex formation between BRD4 and DCAF16 with its ability to induce BRD4 degradation. Moreover, we show that a more solvent-exposed warhead presentation is optimal for DCAF16 recruitment and subsequent BRD4 degradation. Unlike the sensitivity of CUL4CRBN glue degraders to chemical modifications, the diversity of covalent attachments in this class of BRD4 glue degraders suggests a high tolerance and tunability for the BRD4-DCAF16 interaction. This offers a potential new avenue for a rational design of covalent glue degraders by introducing covalent warheads to known binders.
Collapse
Affiliation(s)
- Muhammad Murtaza Hassan
- Department of Chemical and Systems Biology, ChEM-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA
| | - Yen-Der Li
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Michelle W. Ma
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Mingxing Teng
- Center for Drug Discovery, Department of Pathology & Immunology, and Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX
| | - Woong Sub Byun
- Department of Chemical and Systems Biology, ChEM-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA
| | - Kedar Puvar
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Ryan Lumpkin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Brittany Sandoval
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Justine C. Rutter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Cyrus Y. Jin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Michelle Y. Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Shawn Xu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Anna M. Schmoker
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Hakyung Cheong
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | | | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Eric S. Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Benjamin L. Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
- Howard Hughes Medical Institute, Boston, MA
| | - Nathanael S. Gray
- Department of Chemical and Systems Biology, ChEM-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA
| |
Collapse
|
6
|
Guo Z, Gu J, Zhang M, Su F, Su W, Xie Y. NMR-Based Metabolomics to Analyze the Effects of a Series of Monoamine Oxidases-B Inhibitors on U251 Cells. Biomolecules 2023; 13:biom13040600. [PMID: 37189348 DOI: 10.3390/biom13040600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Alzheimer’s disease (AD) is a typical progressive neurodegenerative disorder, and with multiple possible pathogenesis. Among them, coumarin derivatives could be used as potential drugs as monoamine oxidase-B (MAO-B) inhibitors. Our lab has designed and synthesized coumarin derivatives based on MAO-B. In this study, we used nuclear magnetic resonance (NMR)-based metabolomics to accelerate the pharmacodynamic evaluation of candidate drugs for coumarin derivative research and development. We detailed alterations in the metabolic profiles of nerve cells with various coumarin derivatives. In total, we identified 58 metabolites and calculated their relative concentrations in U251 cells. In the meantime, the outcomes of multivariate statistical analysis showed that when twelve coumarin compounds were treated with U251cells, the metabolic phenotypes were distinct. In the treatment of different coumarin derivatives, there several metabolic pathways changed, including aminoacyl-tRNA biosynthesis, D-glutamine and D-glutamate metabolism, glycine, serine and threonine metabolism, taurine and hypotaurine metabolism, arginine biosynthesis, alanine, aspartate and glutamate metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, glutathione metabolism and valine, leucine and isoleucine biosynthesis. Our work documented how our coumarin derivatives affected the metabolic phenotype of nerve cells in vitro. We believe that these NMR-based metabolomics might accelerate the process of drug research in vitro and in vivo.
Collapse
|
7
|
Ramsay RR. MAO Visible Spectroscopy for Ligand Interactions, Redox Chemistry, and Kinetics of Irreversible Inhibition. Methods Mol Biol 2023; 2558:63-74. [PMID: 36169856 DOI: 10.1007/978-1-0716-2643-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The covalently bound FAD cofactor in monoamine oxidase (MAO) is reduced by the amine substrate and reoxidized by oxygen. Visible spectroscopy provides a convenient tool to study the interaction of ligands and the kinetics of the half-reactions for mechanistic investigations. Equilibrium redox titrations allow measurement of redox potentials, while rapid mixing experiments allow determination of the rate of reduction by different substrates and of covalent adduct formation by irreversible inactivators. Three techniques are described: (1) measuring ligand interactions by alterations in the spectrum, especially at 495 nm; (2) reducing MAO, including the essentials for anaerobic procedures; and (3) studying kinetics of reduction, reoxidation, or inactivation of MAO.
Collapse
Affiliation(s)
- Rona R Ramsay
- School of Biology, Biomolecular Sciences Research Complex, University of St Andrews, Fife, UK.
| |
Collapse
|
8
|
Abstract
Propargylamine is a chemical moiety whose properties have made it a widely distributed group within the fields of medicinal chemistry and chemical biology. Its particular reactivity has traditionally popularized the preparation of propargylamine derivatives using a large variety of synthetic strategies, which have facilitated the access to these compounds for the study of their biomedical potential. This review comprehensively covers and analyzes the applications that propargylamine-based derivatives have achieved in the drug discovery field, both from a medicinal chemistry perspective and from a chemical biology-oriented approach. The principal therapeutic fields where propargylamine-based compounds have made an impact are identified, and a discussion of their influence and growing potential is included.
Collapse
|
9
|
Iyer A, Reis RAG, Agniswamy J, Weber IT, Gadda G. Discovery of a new flavin N5-adduct in a tyrosine to phenylalanine variant of d-Arginine dehydrogenase. Arch Biochem Biophys 2022; 715:109100. [PMID: 34864048 DOI: 10.1016/j.abb.2021.109100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/02/2022]
Abstract
d-Arginine dehydrogenase from Pseudomonas aeruginosa (PaDADH) catalyzes the flavin-dependent oxidation of d-arginine and other d-amino acids. Here, we report the crystal structure at 1.29 Å resolution for PaDADH-Y249F expressed and co-crystallized with d-arginine. The overall structure of PaDADH-Y249F resembled PaDADH-WT, but the electron density for the flavin cofactor was ambiguous, suggesting the presence of modified flavins. Electron density maps and mass spectrometric analysis confirmed the presence of both N5-(4-guanidino-oxobutyl)-FAD and 6-OH-FAD in a single crystal of PaDADH-Y249F and helped with the further refinement of the X-ray crystal structure. The versatility of the reduced flavin is apparent in the PaDADH-Y249F structure and is evidenced by the multiple functions it can perform in the same active site.
Collapse
Affiliation(s)
- Archana Iyer
- Department of Chemistry, Georgia State University, Atlanta, GA, 30302, USA
| | - Renata A G Reis
- Department of Chemistry, Georgia State University, Atlanta, GA, 30302, USA
| | - Johnson Agniswamy
- Department of Biology, Georgia State University, Atlanta, GA, 30302, USA
| | - Irene T Weber
- Department of Chemistry, Georgia State University, Atlanta, GA, 30302, USA; Department of Biology, Georgia State University, Atlanta, GA, 30302, USA
| | - Giovanni Gadda
- Department of Chemistry, Georgia State University, Atlanta, GA, 30302, USA; Department of Biology, Georgia State University, Atlanta, GA, 30302, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30302, USA.
| |
Collapse
|
10
|
Albreht A, Hussain H, Jiménez B, Yuen AHY, Whiley L, Witt M, Lewis MR, Chekmeneva E. Structure Elucidation and Mitigation of Endogenous Interferences in LC-MS-Based Metabolic Profiling of Urine. Anal Chem 2022; 94:1760-1768. [PMID: 35026111 DOI: 10.1021/acs.analchem.1c04378] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Liquid chromatography-mass spectrometry (LC-MS) is the main workhorse of metabolomics owing to its high degree of analytical sensitivity and specificity when measuring diverse chemistry in complex biological samples. LC-MS-based metabolic profiling of human urine, a biofluid of primary interest for clinical and biobank studies, is not widely considered to be compromised by the presence of endogenous interferences and is often accomplished using a simple "dilute-and-shoot" approach. Yet, it is our experience that broad obscuring signals are routinely observed in LC-MS metabolic profiles and represent interferences that lack consideration in the relevant metabolomics literature. In this work, we chromatographically isolated the interfering metabolites from human urine and unambiguously identified them via de novo structure elucidation as two separate proline-containing dipeptides: N,N,N-trimethyl-l-alanine-l-proline betaine (l,l-TMAP) and N,N-dimethyl-l-proline-l-proline betaine (l,l-DMPP), the latter reported here for the first time. Offline LC-MS/MS, magnetic resonance mass spectrometry (MRMS), and nuclear magnetic resonance (NMR) spectroscopy were essential components of this workflow for the full chemical and spectroscopic characterization of these metabolites and for establishing the coexistence of cis and trans isomers of both dipeptides in solution. Analysis of these definitive structures highlighted intramolecular ionic interactions as responsible for slow interconversion between these isomeric forms resulting in their unusually broad elution profiles. Proposed mitigation strategies, aimed at increasing the quality of LC-MS-based urine metabolomics data, include modification of column temperature and mobile-phase pH to reduce the chromatographic footprint of these dipeptides, thereby reducing their interfering effect on the underlying metabolic profiles. Alternatively, sample dilution and internal standardization methods may be employed to reduce or account for the observed effects of ionization suppression on the metabolic profile.
Collapse
Affiliation(s)
- Alen Albreht
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom.,Analytical, Environmental & Forensic Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE1 9NH, United Kingdom.,Laboratory for Food Chemistry, Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Humma Hussain
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom.,Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Beatriz Jiménez
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom.,Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ada H Y Yuen
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom.,Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, United Kingdom
| | - Luke Whiley
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - Matthias Witt
- MRMS Solutions, Bruker Daltonics GmbH & Co. KG, MRMS Solutions, 28359 Bremen, Germany
| | - Matthew R Lewis
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom.,Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, United Kingdom
| | - Elena Chekmeneva
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom.,Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
11
|
Novel propargylamine-based inhibitors of cholinesterases and monoamine oxidases: Synthesis, biological evaluation and docking study. Bioorg Chem 2021; 116:105301. [PMID: 34492558 DOI: 10.1016/j.bioorg.2021.105301] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 01/21/2023]
Abstract
A combination of several pharmacophores in one molecule has been successfully used for multi-target-directed ligands (MTDL) design. New propargylamine substituted derivatives combined with salicylic and cinnamic scaffolds were designed and synthesized as potential cholinesterases and monoamine oxidases (MAOs) inhibitors. They were evaluated invitro for inhibition of acetyl- (AChE) and butyrylcholinesterase (BuChE) using Ellman's method. All the compounds act as dual inhibitors. Most of the derivatives are stronger inhibitors of AChE, the best activity showed 5-bromo-N-(prop-2-yn-1-yl)salicylamide 1e (IC50 = 8.05 µM). Carbamates (4-bromo-2-[(prop-2-yn-1-yl)carbamoyl]phenyl ethyl(methyl)carbamate 2d and 2,4-dibromo-6-[(prop-2-yn-1-yl)carbamoyl]phenyl ethyl(methyl)carbamate 2e were selective and the most active for BuChE (25.10 and 26.09 µM). 4-Bromo-2-[(prop-2-yn-1-ylimino)methyl]phenol 4a was the most potent inhibitor of MAOs (IC50 of 3.95 and ≈10 µM for MAO-B and MAO-A, respectively) along with a balanced inhibition of both cholinesterases being a real MTDL. The mechanism of action was proposed, and binding modes of the hits were studied by molecular docking on human enzymes. Some of the derivatives also exhibited antioxidant properties. Insilico prediction of physicochemical parameters affirm that the molecules would be active after oral administration and able to reach brain tissue.
Collapse
|
12
|
Abstract
We have structure, a wealth of kinetic data, thousands of chemical ligands and clinical information for the effects of a range of drugs on monoamine oxidase activity in vivo. We have comparative information from various species and mutations on kinetics and effects of inhibition. Nevertheless, there are what seem like simple questions still to be answered. This article presents a brief summary of existing experimental evidence the background and poses questions that remain intriguing for chemists and biochemists researching the chemical enzymology of and drug design for monoamine oxidases (FAD-containing EC 4.1.3.4).
Collapse
|
13
|
Zorba LP, Vougioukalakis GC. The Ketone-Amine-Alkyne (KA2) coupling reaction: Transition metal-catalyzed synthesis of quaternary propargylamines. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213603] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
14
|
Parameters for Irreversible Inactivation of Monoamine Oxidase. Molecules 2020; 25:molecules25245908. [PMID: 33322203 PMCID: PMC7763263 DOI: 10.3390/molecules25245908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/25/2022] Open
Abstract
The irreversible inhibitors of monoamine oxidases (MAO) slow neurotransmitter metabolism in depression and neurodegenerative diseases. After oxidation by MAO, hydrazines, cyclopropylamines and propargylamines form a covalent adduct with the flavin cofactor. To assist the design of new compounds to combat neurodegeneration, we have updated the kinetic parameters defining the interaction of these established drugs with human MAO-A and MAO-B and analyzed the required features. The Ki values for binding to MAO-A and molecular models show that selectivity is determined by the initial reversible binding. Common to all the irreversible inhibitor classes, the non-covalent 3D-chemical interactions depend on a H-bond donor and hydrophobic-aromatic features within 5.7 angstroms apart and an ionizable amine. Increasing hydrophobic interactions with the aromatic cage through aryl halogenation is important for stabilizing ligands in the binding site for transformation. Good and poor inactivators were investigated using visible spectroscopy and molecular dynamics. The initial binding, close and correctly oriented to the FAD, is important for the oxidation, specifically at the carbon adjacent to the propargyl group. The molecular dynamics study also provides evidence that retention of the allenyl imine product oriented towards FADH− influences the formation of the covalent adduct essential for effective inactivation of MAO.
Collapse
|
15
|
Neofotistos SP, Tzouras NV, Pauze M, Gómez‐Bengoa E, Vougioukalakis GC. Manganese‐Catalyzed Multicomponent Synthesis of Tetrasubstituted Propargylamines: System Development and Theoretical Study. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000566] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Stavros P. Neofotistos
- Department of Chemistry, Laboratory of Organic Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece 7274230
| | - Nikolaos V. Tzouras
- Department of Chemistry, Laboratory of Organic Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece 7274230
| | - Martin Pauze
- Department of Organic Chemistry I, Faculty of Chemistry University of the Basque Country UPV/EHU 20018 Donostia-San Sebastián Spain
| | - Enrique Gómez‐Bengoa
- Department of Organic Chemistry I, Faculty of Chemistry University of the Basque Country UPV/EHU 20018 Donostia-San Sebastián Spain
| | - Georgios C. Vougioukalakis
- Department of Chemistry, Laboratory of Organic Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece 7274230
| |
Collapse
|
16
|
Knez D, Colettis N, Iacovino LG, Sova M, Pišlar A, Konc J, Lešnik S, Higgs J, Kamecki F, Mangialavori I, Dolšak A, Žakelj S, Trontelj J, Kos J, Binda C, Marder M, Gobec S. Stereoselective Activity of 1-Propargyl-4-styrylpiperidine-like Analogues That Can Discriminate between Monoamine Oxidase Isoforms A and B. J Med Chem 2020; 63:1361-1387. [PMID: 31917923 PMCID: PMC7307930 DOI: 10.1021/acs.jmedchem.9b01886] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The resurgence of interest in monoamine oxidases (MAOs) has been fueled by recent correlations of this enzymatic activity with cardiovascular, neurological, and oncological disorders. This has promoted increased research into selective MAO-A and MAO-B inhibitors. Here, we shed light on how selective inhibition of MAO-A and MAO-B can be achieved by geometric isomers of cis- and trans-1-propargyl-4-styrylpiperidines. While the cis isomers are potent human MAO-A inhibitors, the trans analogues selectively target only the MAO-B isoform. The inhibition was studied by kinetic analysis, UV-vis spectrum measurements, and X-ray crystallography. The selective inhibition of the MAO-A and MAO-B isoforms was confirmed ex vivo in mouse brain homogenates, and additional in vivo studies in mice show the therapeutic potential of 1-propargyl-4-styrylpiperidines for central nervous system disorders. This study represents a unique case of stereoselective activity of cis/trans isomers that can discriminate between structurally related enzyme isoforms.
Collapse
Affiliation(s)
- Damijan Knez
- Faculty of Pharmacy , University of Ljubljana , Aškerčeva 7 , 1000 Ljubljana , Slovenia
| | - Natalia Colettis
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, and Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires , Junín 956 , C1113AAD Buenos Aires , Argentina
| | - Luca G Iacovino
- Department of Biology and Biotechnology , University of Pavia , Via Ferrata 1 , 27100 Pavia , Italy
| | - Matej Sova
- Faculty of Pharmacy , University of Ljubljana , Aškerčeva 7 , 1000 Ljubljana , Slovenia
| | - Anja Pišlar
- Faculty of Pharmacy , University of Ljubljana , Aškerčeva 7 , 1000 Ljubljana , Slovenia
| | - Janez Konc
- National Institute of Chemistry , Hajdrihova 19 , 1000 Ljubljana , Slovenia
| | - Samo Lešnik
- National Institute of Chemistry , Hajdrihova 19 , 1000 Ljubljana , Slovenia
| | - Josefina Higgs
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, and Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires , Junín 956 , C1113AAD Buenos Aires , Argentina
| | - Fabiola Kamecki
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, and Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires , Junín 956 , C1113AAD Buenos Aires , Argentina
| | - Irene Mangialavori
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, and Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires , Junín 956 , C1113AAD Buenos Aires , Argentina
| | - Ana Dolšak
- Faculty of Pharmacy , University of Ljubljana , Aškerčeva 7 , 1000 Ljubljana , Slovenia
| | - Simon Žakelj
- Faculty of Pharmacy , University of Ljubljana , Aškerčeva 7 , 1000 Ljubljana , Slovenia
| | - Jurij Trontelj
- Faculty of Pharmacy , University of Ljubljana , Aškerčeva 7 , 1000 Ljubljana , Slovenia
| | - Janko Kos
- Faculty of Pharmacy , University of Ljubljana , Aškerčeva 7 , 1000 Ljubljana , Slovenia
| | - Claudia Binda
- Department of Biology and Biotechnology , University of Pavia , Via Ferrata 1 , 27100 Pavia , Italy
| | - Mariel Marder
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, and Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires , Junín 956 , C1113AAD Buenos Aires , Argentina
| | - Stanislav Gobec
- Faculty of Pharmacy , University of Ljubljana , Aškerčeva 7 , 1000 Ljubljana , Slovenia
| |
Collapse
|
17
|
Nakamura A, Latif MA, Deck PA, Castagnoli N, Tanko JM. Evidence for a Proton-Coupled Electron Transfer Mechanism in a Biomimetic System for Monoamine Oxidase B Catalysis. Chemistry 2020; 26:823-829. [PMID: 31658386 DOI: 10.1002/chem.201904634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Indexed: 11/11/2022]
Abstract
Mechanistic studies with 5-ethyl-3-methyllumiflavinium (Fl+ ) perchlorate, a biomimetic model for flavoenzyme monoamine oxidase B (MAO-B) catalysis, and the tertiary, allyl amine 1-methyl-4-(1-methyl-1 H-pyrrol-2-yl)-1,2,3,6-tetrahydropyridine (MMTP) reveal that proton-coupled electron transfer (PCET) may be an important pathway for MAO catalysis. The first step involves a single-electron transfer (SET) leading to the free radicals Fl. and MMTP. , the latter produced by deprotonation of the initially formed and highly acidic MMTP.+ . Molecular oxygen (O2 ) is found to play a hitherto unrecognized role in the early steps of the oxidation. MMTP and several structurally similar tertiary amines are the only tertiary amines oxidized by MAO, and their structural/electronic properties provide the key to understanding this behavior. A general hypothesis about the role of SET in MAO catalysis, and the recognition that PCET occurs with appropriately substituted substrates is presented.
Collapse
Affiliation(s)
- Akiko Nakamura
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24060, USA
| | | | - Paul A Deck
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Neal Castagnoli
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24060, USA
| | - James M Tanko
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24060, USA
| |
Collapse
|
18
|
De Simone A, Naldi M, Tedesco D, Bartolini M, Davani L, Andrisano V. Advanced analytical methodologies in Alzheimer’s disease drug discovery. J Pharm Biomed Anal 2020; 178:112899. [DOI: 10.1016/j.jpba.2019.112899] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
|
19
|
Tandarić T, Vianello R. Computational Insight into the Mechanism of the Irreversible Inhibition of Monoamine Oxidase Enzymes by the Antiparkinsonian Propargylamine Inhibitors Rasagiline and Selegiline. ACS Chem Neurosci 2019; 10:3532-3542. [PMID: 31264403 DOI: 10.1021/acschemneuro.9b00147] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Monoamine oxidases (MAOs) are flavin adenine dinucleotide containing flavoenzymes that catalyze the degradation of a range of brain neurotransmitters, whose imbalance is extensively linked with the pathology of various neurological disorders. This is why MAOs have been the central pharmacological targets in treating neurodegeneration for more than 60 years. Still, despite this practical importance, the precise chemical mechanisms underlying the irreversible inhibition of the MAO B isoform with clinical drugs rasagiline (RAS) and selegiline (SEL) remained unknown. Here we employed a combination of MD simulations, MM-GBSA binding free energy evaluations, and QM cluster calculations to show the MAO inactivation proceeds in three steps, where, in the rate-limiting first step, FAD utilizes its N5 atom to abstracts a hydride anion from the inhibitor α-CH2 group to ultimately give the final inhibitor-FAD adduct matching crystallographic data. The obtained free energy profiles reveal a lower activation energy for SEL by 1.2 kcal mol-1 and a higher reaction exergonicity by 0.8 kcal mol-1, with the former being in excellent agreement with experimental ΔΔG‡EXP = 1.7 kcal mol-1, thus rationalizing its higher in vivo reactivity over RAS. The calculated ΔGBIND energies confirm SEL binds better due to its bigger size and flexibility allowing it to optimize hydrophobic C-H···π and π···π interactions with residues throughout both of enzyme's cavities, particularly with FAD, Gln206 and four active site tyrosines, thus overcoming a larger ability of RAS to form hydrogen bonds that only position it in less reactive orientations for the hydride abstraction. Offered results elucidate structural determinants affecting the affinity and rates of the inhibition reaction that should be considered to cooperate when designing more effective compounds devoid of untoward effects, which are of utmost significance and urgency with the growing prevalence of brain diseases.
Collapse
Affiliation(s)
- Tana Tandarić
- Computational Organic Chemistry and Biochemistry Group, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Robert Vianello
- Computational Organic Chemistry and Biochemistry Group, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| |
Collapse
|
20
|
Tzouras N, Neofotistos SP, Vougioukalakis GC. Zn-Catalyzed Multicomponent KA 2 Coupling: One-Pot Assembly of Propargylamines Bearing Tetrasubstituted Carbon Centers. ACS OMEGA 2019; 4:10279-10292. [PMID: 31460120 PMCID: PMC6648923 DOI: 10.1021/acsomega.9b01387] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 05/23/2019] [Indexed: 05/20/2023]
Abstract
Tetrasubstituted propargylamines comprise a unique class of highly useful compounds, which can be accessed through the multicomponent coupling between ketones, amines, and alkynes (KA2 coupling), an underexplored transformation. Herein, the development of a novel, highly efficient, and user-friendly catalytic system for the KA2 coupling, based on the environmentally benign, inexpensive, and readily available zinc acetate, is described. This system is employed in the multicomponent assembly of unprecedented, tetrasubstituted propargylamines derived from structurally diverse, challenging, and even biorelevant substrates. Notable features of this protocol include the demonstration of the enhancing effect that neat conditions can have on catalytic activity, as well as the expedient functionalization of hindered, prochiral cyclohexanones, linear ketones, and interesting molecular scaffolds such as norcamphor and nornicotine.
Collapse
|
21
|
Umek N, Geršak B, Vintar N, Šoštarič M, Mavri J. Dopamine Autoxidation Is Controlled by Acidic pH. Front Mol Neurosci 2018; 11:467. [PMID: 30618616 PMCID: PMC6305604 DOI: 10.3389/fnmol.2018.00467] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/03/2018] [Indexed: 11/16/2022] Open
Abstract
We studied the reaction mechanism of dopamine autoxidation using quantum chemical methods. Unlike other biogenic amines important in the central nervous system, dopamine and noradrenaline are capable of undergoing a non-enzymatic autoxidative reaction giving rise to a superoxide anion that further decomposes to reactive oxygen species. The reaction in question, which takes place in an aqueous solution, is as such not limited to the mitochondrial membrane where scavenging enzymes such as catalase and superoxide dismutase are located. With the experimental rate constant of 0.147 s−1, the dopamine autoxidation reaction is comparably as fast as the monoamine oxidase B catalyzed dopamine decomposition with a rate constant of 1 s−1. By using quantum chemical calculations, we demonstrated that the rate-limiting step is the formation of a hydroxide ion from a water molecule, which attacks the amino group that enters intramolecular Michael addition, giving rise to a pharmacologically inert aminochrome. We have shown that for dopamine stability on a time scale of days, it is essential that the pH value of the synaptic vesicle interior is acidic. The pathophysiologic correlates of the results are discussed in the context of Parkinson's disease as well as the pathology caused by long-term amphetamine and cocaine administration.
Collapse
Affiliation(s)
- Nejc Umek
- Department of Anesthesiology and Surgical Intensive Therapy, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Blaž Geršak
- Department of Anesthesiology and Surgical Intensive Therapy, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Neli Vintar
- Department of Anesthesiology and Surgical Intensive Therapy, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Department of Anesthesiology and Reanimatology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Šoštarič
- Department of Anesthesiology and Surgical Intensive Therapy, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Department of Anesthesiology and Reanimatology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Janez Mavri
- National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|
22
|
Kalbasi RJ, Khojastegi A. Fabrication of Bimetallic Ag-Co Nanoparticle Deposited on Hierarchical ZSM-5 as a Selective Catalyst for Synthesis of Propargylamine in Water via Multicomponent A3
Coupling. ChemistrySelect 2018. [DOI: 10.1002/slct.201803011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|