1
|
Carrel A, Yiannakas A, Roukens JJ, Reynoso-Moreno I, Orsi M, Thakkar A, Arus-Pous J, Pellegata D, Gertsch J, Reymond JL. Exploring Simple Drug Scaffolds from the Generated Database Chemical Space Reveals a Chiral Bicyclic Azepane with Potent Neuropharmacology. J Med Chem 2025. [PMID: 40274264 DOI: 10.1021/acs.jmedchem.4c02549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
To assess how much structural diversity remains unexploited in simple drug scaffolds, we investigated ring systems functionalized with amine handles. Starting from the ring systems database GDB-4c, we enumerated 1139 possible amines and diamines with up to two five-, six-, or seven-membered rings. From the 680 cases not listed in PubChem, we synthesized several unprecedented cis- and trans-fused azepanes and tested possible targets predicted using the polypharmacology browser PPB2. From this screening campaign, an N-benzylated azepane emerged as a potent inhibitor of monoamine transporters with some selectivity toward norepinephrine (NET, SLC6A2) and dopamine transporter (DAT, SLC6A3) inhibition (IC50 < 100 nM) in combination with σ-1R inhibition (IC50 ≈ 110 nM). The in vitro profile, favorable pharmacokinetic properties, and preliminary behavioral and metabolomic effects in mice suggest a potential of N-benzylated bicyclic azepanes to target neuropsychiatric disorders. These experiments highlight the potential of simple but still unexplored scaffolds for drug discovery.
Collapse
Affiliation(s)
- Aline Carrel
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Adonis Yiannakas
- Institute of Biochemistry and Molecular Medicine, University of Bern, Gertrud-Woker Strasse 5, Bern 3012, Switzerland
| | - Jaap-Jan Roukens
- Institute of Biochemistry and Molecular Medicine, University of Bern, Gertrud-Woker Strasse 5, Bern 3012, Switzerland
| | - Ines Reynoso-Moreno
- Institute of Biochemistry and Molecular Medicine, University of Bern, Gertrud-Woker Strasse 5, Bern 3012, Switzerland
| | - Markus Orsi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Amol Thakkar
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Josep Arus-Pous
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Daniele Pellegata
- Institute of Biochemistry and Molecular Medicine, University of Bern, Gertrud-Woker Strasse 5, Bern 3012, Switzerland
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Gertrud-Woker Strasse 5, Bern 3012, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| |
Collapse
|
2
|
Herasymchuk MV, Melnykov KP, Druzhenko TV, Filatov YI, Dudenko DV, Ostapchuk EM, Volochnyuk DM, Ryabukhin SV. DOS-Like Strategy for the Spirocyclic MedChem Relevant Building Blocks via Petasis / Grubbs Reactions Sequence. Chemistry 2025:e202500681. [PMID: 40245246 DOI: 10.1002/chem.202500681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/19/2025]
Abstract
Through this model study, we showed broad perspectives on utilizing the diversity-oriented synthesis (DOS) like approach on the building block level in combination with well-developed methodologies for parallel synthesis for decoration and extension of ultra-large tangible chemical space to increase the speed and quality of drug discovery screening campaigns. This strategy led us to 16 novel Bemis-Murco scaffolds based on spirocyclic functionalized piperidines. The efficient, preparative, and scalable DOS-like approach to the above-mentioned motif was achieved by Petasis/Grubbs reactions sequence on a multigram scale. The chemoinformatically generated amide-based compound libraries demonstrated significant expansion of the chemical space of tangible compounds (on the example of Enamine's REAL database).
Collapse
Affiliation(s)
- Maksym V Herasymchuk
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska street, Kyiv, 01033, Ukraine
- Enamine Ltd, 78 Winston Churchill street, Kyiv, 02094, Ukraine
| | - Kostiantyn P Melnykov
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska street, Kyiv, 01033, Ukraine
- Enamine Ltd, 78 Winston Churchill street, Kyiv, 02094, Ukraine
| | - Tetiana V Druzhenko
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska street, Kyiv, 01033, Ukraine
- Enamine Ltd, 78 Winston Churchill street, Kyiv, 02094, Ukraine
| | - Yaroslav I Filatov
- Enamine Ltd, 78 Winston Churchill street, Kyiv, 02094, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Academik Kukhar street, Kyiv, 02094, Ukraine
| | | | - Eugeniy M Ostapchuk
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska street, Kyiv, 01033, Ukraine
- Enamine Ltd, 78 Winston Churchill street, Kyiv, 02094, Ukraine
| | - Dmytro M Volochnyuk
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska street, Kyiv, 01033, Ukraine
- Enamine Ltd, 78 Winston Churchill street, Kyiv, 02094, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Academik Kukhar street, Kyiv, 02094, Ukraine
| | - Serhiy V Ryabukhin
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska street, Kyiv, 01033, Ukraine
- Enamine Ltd, 78 Winston Churchill street, Kyiv, 02094, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Academik Kukhar street, Kyiv, 02094, Ukraine
| |
Collapse
|
3
|
Griggs SD, Piticari AS, Liver S, Arter C, Sievers S, Marsden SP, Nelson A. Phenotype-directed discovery of diverse, biologically-relevant molecular scaffolds. Chem Commun (Camb) 2025; 61:3528-3531. [PMID: 39907073 DOI: 10.1039/d4cc06605g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
An array of reactions of diazo substrates with many possible outcomes was executed, and the biological relevance of the resulting products assessed in the cell painting assay. Reactions that had yielded bioactive products were scaled-up, and the products structurally elucidated. By bypassing the need to characterise all reaction products, this phenotype-directed approach enabled efficient discovery of functionally-distinctive molecules based on novel, structurally-diverse scaffolds.
Collapse
Affiliation(s)
- Samuel D Griggs
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- Rosalind Franklin Institute, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | | | - Samuel Liver
- Rosalind Franklin Institute, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Chris Arter
- Rosalind Franklin Institute, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Sonja Sievers
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund, 44227, Germany
- Compound Management and Screening Center, Otto-Hahn-Strasse 11, Dortmund, 44227, Germany
| | | | - Adam Nelson
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- Rosalind Franklin Institute, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, UK
| |
Collapse
|
4
|
Bro FS, Laraia L. Unifying principles for the design and evaluation of natural product-inspired compound collections. Chem Sci 2025; 16:2961-2979. [PMID: 39906386 PMCID: PMC11788825 DOI: 10.1039/d4sc08017c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
Natural products play a major role in the discovery of novel bioactive compounds. In this regard, the synthesis of natural product-inspired and -derived analogues is an active field that is further developing. Several strategies and principles for the design of such compounds have been developed to streamline their access and synthesis. This perspective describes how individual strategies or their elements can be combined depending on the project goal. Illustrative examples are shown that demonstrate the blurred lines between approaches and how they can work in concert to discover new biologically active molecules. Lastly, a general set of guidelines for choosing an appropriate strategy combination for the specific purpose is presented.
Collapse
Affiliation(s)
- Frederik Simonsen Bro
- Department of Chemistry, Technical University of Denmark 2800 Kongens Lyngby Denmark
| | - Luca Laraia
- Department of Chemistry, Technical University of Denmark 2800 Kongens Lyngby Denmark
| |
Collapse
|
5
|
Xu J, Liu B. Metal Free Functionalization of Saturated Heterocycles with Vinylarenes and Pyridine Enabled by Photocatalytic Hydrogen Atom Transfer. Chemistry 2024; 30:e202400612. [PMID: 38566284 DOI: 10.1002/chem.202400612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/04/2024]
Abstract
Saturated heterocycles are important class of structural scaffolds in small-molecule drugs, natural products, and synthetic intermediates. Here, we disclosed a metal free, mild, and scalable functionalization of saturated heterocycles using vinylarenes as a linchpin approach. Key to success of this transformation is the employing of simple and cheap benzophenone as a hydrogen atom transfer (HAT) catalyst. This operationally robust process was used for the making of diverse functionalized saturated heterocycles. Furthermore, aldehydes, alkane, and alcohol have been functionalized under the optimized conditions. The potential pharmaceutical utility of the procedure has also been demonstrated by late-stage functionalization of bioactive natural compounds and pharmaceutical molecules. Initial mechanism studies and control experiments were performed to elucidate the mechanism of the reactions.
Collapse
Affiliation(s)
- Junhua Xu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Bin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| |
Collapse
|
6
|
Olmedo DA, Durant-Archibold AA, López-Pérez JL, Medina-Franco JL. Design and Diversity Analysis of Chemical Libraries in Drug Discovery. Comb Chem High Throughput Screen 2024; 27:502-515. [PMID: 37409545 DOI: 10.2174/1386207326666230705150110] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023]
Abstract
Chemical libraries and compound data sets are among the main inputs to start the drug discovery process at universities, research institutes, and the pharmaceutical industry. The approach used in the design of compound libraries, the chemical information they possess, and the representation of structures, play a fundamental role in the development of studies: chemoinformatics, food informatics, in silico pharmacokinetics, computational toxicology, bioinformatics, and molecular modeling to generate computational hits that will continue the optimization process of drug candidates. The prospects for growth in drug discovery and development processes in chemical, biotechnological, and pharmaceutical companies began a few years ago by integrating computational tools with artificial intelligence methodologies. It is anticipated that it will increase the number of drugs approved by regulatory agencies shortly.
Collapse
Affiliation(s)
- Dionisio A Olmedo
- Centro de Investigaciones Farmacognósticas de la Flora Panameña (CIFLORPAN), Facultad de Farmacia, Universidad de Panamá, Ciudad de Panamá, Apartado, 0824-00178, Panamá
- Sistema Nacional de Investigación (SNI), Secretaria Nacional de Ciencia, Tecnología e Innovación (SENACYT), Ciudad del Saber, Clayton, Panamá
| | - Armando A Durant-Archibold
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Apartado, 0843-01103, Panamá
- Departamento de Bioquímica, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Ciudad de Panamá, Panamá
| | - José Luis López-Pérez
- CESIFAR, Departamento de Farmacología, Facultad de Medicina, Universidad de Panamá, Ciudad de Panamá, Panamá
- Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, Avda. Campo Charro s/n, 37071 Salamanca, España
| | - José Luis Medina-Franco
- DIFACQUIM Grupo de Investigación, Departamento de Farmacia, Escuela de Química, Universidad Nacional Autónoma de México, Ciudad de México, Apartado, 04510, México
| |
Collapse
|
7
|
Ivantcova PM, Kirsanova AA, Polshakov VI, Lyssenko KA, Kudryavtsev KV. Pyrrolidine/Azepane Ring Expansion via Intramolecular Ullmann-Type Annulation/Rearrangement Cascade: Synthesis of Highly Functionalized 1 H-Benzazepines. Org Lett 2023; 25:7573-7577. [PMID: 37801732 DOI: 10.1021/acs.orglett.3c03030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
5-Arylpyrrolidine-2-carboxylates with an ortho-halogen substituent at 5-aryl and an electron-withdrawing group at the C4 position of the pyrrolidine ring were transformed into 1H-benzo[b]azepine-2-carboxylates under Cu(I) promotion and microwave activation. Reaction promoter copper(I) thiophene-2-carboxylate has been generated in situ in the reaction's environment from Cu2O and thiophene-2-carboxylic acid. Functionalized 1H-benzo[b]azepine-2-carboxylates were obtained in racemic and optically active forms in 67-89% yields. Subsequent stereoselective 1,3-dipolar cycloaddition and an Ullmann-type annulation/rearrangement cascade (UARC) ensure a synthetic route to oligomeric optically active benzazepine species with a well-defined 3D-structure.
Collapse
Affiliation(s)
- Polina M Ivantcova
- Sirius University of Science and Technology, Olympic Ave 1, 354340 Sochi, Russian Federation
| | - Anna A Kirsanova
- Department of Chemistry, City University of Hong Kong, Tat Chee Ave 83, Kowloon Tong, Hong Kong
| | - Vladimir I Polshakov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Lomonosovsky Ave 31/5, 119991 Moscow, Russian Federation
| | - Konstantin A Lyssenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russian Federation
| | - Konstantin V Kudryavtsev
- Institute of Pharmacy and Medicinal Chemistry, Pirogov Russian National Research Medical University, Ostrovityanova Street 1, 117997 Moscow, Russian Federation
| |
Collapse
|
8
|
Miankooshki FR, Bayat M, Nasri S, Samet NH. 1,3-Dipolar cycloaddition reactions of isatin-derived azomethine ylides for the synthesis of spirooxindole and indole-derived scaffolds: recent developments. Mol Divers 2023; 27:2365-2397. [PMID: 35925529 DOI: 10.1007/s11030-022-10510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/28/2022] [Indexed: 10/16/2022]
Abstract
The unique therapeutic and biological characteristics of spirooxindole have led to the presentation of numerous reactions for the synthesis of spirooxindoles through 1,3-Dipolar cycloaddition of highly reactive isatin-derived azomethine ylides with activated olefins as the main tool for the formation of spirocyclic oxindoles during the last 4 years. Therefore, there is a need to highlight the recent developments in this area, along with the representative synthetic methods and relevant reaction mechanisms from 2018 to 2021. The representative synthetic methodologies were listed in four sections based on the procedure to form the azomethine ylide species including isatins and amino acids, isatin-derived α-(trifluoromethyl)imine, isatins and benzylamines, and from isatin-derived cyclic imine 1,3-dipoles.
Collapse
Affiliation(s)
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.
| | - Shima Nasri
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Narges Habibi Samet
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
9
|
Revillo Imbernon J, Chiesa L, Kellenberger E. Mining the Protein Data Bank to inspire fragment library design. Front Chem 2023; 11:1089714. [PMID: 36846858 PMCID: PMC9950109 DOI: 10.3389/fchem.2023.1089714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
The fragment approach has emerged as a method of choice for drug design, as it allows difficult therapeutic targets to be addressed. Success lies in the choice of the screened chemical library and the biophysical screening method, and also in the quality of the selected fragment and structural information used to develop a drug-like ligand. It has recently been proposed that promiscuous compounds, i.e., those that bind to several proteins, present an advantage for the fragment approach because they are likely to give frequent hits in screening. In this study, we searched the Protein Data Bank for fragments with multiple binding modes and targeting different sites. We identified 203 fragments represented by 90 scaffolds, some of which are not or hardly present in commercial fragment libraries. By contrast to other available fragment libraries, the studied set is enriched in fragments with a marked three-dimensional character (download at 10.5281/zenodo.7554649).
Collapse
Affiliation(s)
- Julia Revillo Imbernon
- Laboratoire d’Innovation Thérapeutique, Faculté de Pharmacie, UMR7200 CNRS Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Luca Chiesa
- Laboratoire d’Innovation Thérapeutique, Faculté de Pharmacie, UMR7200 CNRS Université de Strasbourg, Illkirch-Graffenstaden, France
| | | |
Collapse
|
10
|
Iusupov IR, Lukyanenko ER, Altieri A, Kurkin AV. Design and Synthesis of Fsp3-Enriched Spirocyclic-Based Biological Screening Compound Arrays via DOS Strategies and Their NNMT Inhibition Profiling. ChemMedChem 2022; 17:e202200394. [PMID: 36193863 DOI: 10.1002/cmdc.202200394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/26/2022] [Indexed: 01/14/2023]
Abstract
Medicinal chemists are keen to explore tridimensional compounds, especially when it comes to small molecules. It has already been stressed that the majority of known drugs tend to be flat, whereas natural products tend to be more tridimensional and represent a good source of active compounds. 3D metrics have been implemented and computational descriptors are available to evaluate and prioritize compounds based on their 3D geometry. This is usually done by comparing the saturated carbon atoms in a molecule with the total number of its non-hydrogen atoms (the Fsp3 value). While this aspect is clear, still there are not enough synthetic tools that support the realization of novel chemotypes that conform to these criteria. Herein we describe a diversity oriented synthesis (DOS) synthetic cascade technology that starts from two simple reagents, and generates highly enriched Fsp3 novel and diverse spiro-scaffolds with pragmatic synthetic handles (points of diversity). The spiro nature of these scaffolds not only ensures high Fsp3 values but renders the compounds more rigid and therefore more effective in forming precise stereo-interactions with their potential biological targets. These compounds were also profiled for their drug-like properties and as potential modulators of the NNMT enzyme.
Collapse
Affiliation(s)
- Ildar R Iusupov
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninsky Gory, Moscow, 119991, Russia
| | - Evgeny R Lukyanenko
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninsky Gory, Moscow, 119991, Russia
| | - Andrea Altieri
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninsky Gory, Moscow, 119991, Russia.,EDASA Scientific Srls, Via Stingi, 3, 66050, San Salvo, Italy
| | - Alexander V Kurkin
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninsky Gory, Moscow, 119991, Russia
| |
Collapse
|
11
|
Jones SP, Firth JD, Wheldon MC, Atobe M, Hubbard RE, Blakemore DC, De Fusco C, Lucas SCC, Roughley SD, Vidler LR, Whatton MA, Woolford AJA, Wrigley GL, O'Brien P. Exploration of piperidine 3D fragment chemical space: synthesis and 3D shape analysis of fragments derived from 20 regio- and diastereoisomers of methyl substituted pipecolinates. RSC Med Chem 2022; 13:1614-1620. [PMID: 36545433 PMCID: PMC9749955 DOI: 10.1039/d2md00239f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
Fragment-based drug discovery is now widely adopted for lead generation in the pharmaceutical industry. However, fragment screening collections are often predominantly populated with flat, 2D molecules. Herein, we report the synthesis of piperidine-based 3D fragment building blocks - 20 regio- and diastereoisomers of methyl substituted pipecolinates using simple and general synthetic methods. cis-Piperidines, accessed through a pyridine hydrogenation were transformed into their trans-diastereoisomers using conformational control and unified reaction conditions. Additionally, diastereoselective lithiation/trapping was utilised to access trans-piperidines. Analysis of a virtual library of fragments derived from the 20 cis- and trans-disubstituted piperidines showed that it consisted of 3D molecules with suitable molecular properties to be used in fragment-based drug discovery programs.
Collapse
Affiliation(s)
- S. Paul Jones
- Department of Chemistry, University of YorkHeslingtonYorkYO10 5DDUK
| | - James D. Firth
- Department of Chemistry, University of YorkHeslingtonYorkYO10 5DDUK
| | - Mary C. Wheldon
- Department of Chemistry, University of YorkHeslingtonYorkYO10 5DDUK
| | - Masakazu Atobe
- Department of Chemistry, University of YorkHeslingtonYorkYO10 5DDUK,Asahi Kasei Pharma Corporation632-1 Mifuku, IzunokuniShizuoka 410-2321Japan
| | - Roderick E. Hubbard
- Department of Chemistry, University of YorkHeslingtonYorkYO10 5DDUK,Vernalis (R&D) Ltd.Granta Park, AbingtonCambridgeCB21 6GBUK
| | | | - Claudia De Fusco
- Bayer AG, Research and Development, Pharmaceuticals, Synthetic Modalities13353BerlinGermany
| | - Simon C. C. Lucas
- Hit Discovery, Discovery Sciences, R&D, AstraZenecaCambridgeCB4 0WGUK
| | | | - Lewis R. Vidler
- Amphista TherapeuticsThe Cori Building, Granta Park, Great AbingtonCambridge CB21 6GQUK
| | - Maria Ann Whatton
- Evotec (UK) LtdDorothy Crowfoot Hodgkin Campus, 114 Innovation Drive, Milton Park, AbingdonOxonOX14 4RZUK
| | | | | | - Peter O'Brien
- Department of Chemistry, University of YorkHeslingtonYorkYO10 5DDUK
| |
Collapse
|
12
|
Lenci E, Trabocchi A. Diversity‐Oriented Synthesis and Chemoinformatics: A Fruitful Synergy towards Better Chemical Libraries. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Elena Lenci
- Universita degli Studi di Firenze Department of Chemistry Via della Lastruccia 1350019Italia 50019 Sesto Fiorentino ITALY
| | - Andrea Trabocchi
- University of Florence: Universita degli Studi di Firenze Department of Chemistry "Ugo Schiff" ITALY
| |
Collapse
|
13
|
Acharyya SR, Sen P, Kandasamy T, Ghosh SS. Designing of disruptor molecules to restrain the protein-protein interaction network of VANG1/SCRIB/NOS1AP using fragment-based drug discovery techniques. Mol Divers 2022:10.1007/s11030-022-10462-0. [PMID: 35648249 DOI: 10.1007/s11030-022-10462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022]
Abstract
Governing protein-protein interaction networks are the cynosure of cell signaling and oncogenic networks. Multifarious processes when aligned with one another can result in a dysregulated output which can result in cancer progression. In the current research, one such network of proteins comprising VANG1/SCRIB/NOS1AP, which is responsible for cell migration, is targeted. The proteins are modeled using in-silico approaches, and the interaction is visualized utilizing protein-protein docking. Designing drugs for the convoluted protein network can serve as a challenging task that can be overcome by fragment-based drug designing, a recent game-changer in the computational drug discovery strategy for protein interaction networks. The model is exposed to the extraction of hotspots, also known as the restrained regions for small molecular hits. The hotspot regions are subjected to a library of generated fragments, which are then recombined and rejoined to develop small molecular disruptors of the macromolecular assemblage. Rapid screening methods using pharmacokinetic tools and 2D interaction studies resulted in four molecules that could serve the purpose of a disruptor. The final validation is executed by long-range simulations of 100 ns and exploring the stability of the complex using several parameters leading to the emergence of two novel molecules VNS003 and VNS005 that could be used as the disruptors of the protein assembly VANG1/SCRIB/NOS1AP. Also, the molecules were explored as single protein targets approbated via molecular docking and 100 ns molecular dynamics simulation. This concluded VNS003 as the most suitable inhibitor module capable of acting as a disruptor of a macromolecular assembly as well as acting on individual protein chains, thus leading to the primary hindrance in the formation of the protein interaction complex.
Collapse
Affiliation(s)
- Suchandra Roy Acharyya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 39, India
| | - Plaboni Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 39, India
| | - Thirukumaran Kandasamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 39, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 39, India. .,Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, 39, India.
| |
Collapse
|
14
|
Klein HF, Hamilton DJ, J. P. de Esch I, Wijtmans M, O'Brien P. Escape from planarity in fragment-based drug discovery: a synthetic strategy analysis of synthetic 3D fragment libraries. Drug Discov Today 2022; 27:2484-2496. [DOI: 10.1016/j.drudis.2022.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
|
15
|
Kiss L, Benke Z, Nonn M, Remete AM, Fustero S. Diversity-Oriented Synthesis of Highly Functionalized Alicycles across Dipolar Cycloaddition/Metathesis Reaction. Synlett 2021. [DOI: 10.1055/s-0040-1706041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AbstractThis Account gives an insight into the selective functionalization of some readily available commercial cyclodienes across simple chemical transformations into functionalized small-molecular scaffolds. The syntheses involved selective cycloadditions, followed by ring-opening metathesis (ROM) of the resulting azetidin-2-one derivatives or isoxazoline frameworks and selective cross metathesis (CM) by discrimination of the C=C bonds on the alkenylated heterocycles. The CM protocols have been described when investigated under various conditions with the purpose on exploring chemodifferentiation of the olefin bonds and a study on the access of the corresponding functionalized β-lactam or isoxazoline derivatives is presented. Due to the expanding importance of organofluorine chemistry in drug research as well as of the high biological potential of β-lactam derivatives several illustrative examples to the access of some fluorine-containing molecular entities is also presented in this synopsis.1 Introduction2 Ring C=C Bond Functionalization of Some Cycloalkene β-Amino Acid Derivatives across Chlorosulfonyl Isocyanate Cycloaddition3 Ring C=C Bond Functionalization of Some Cycloalkene β-Amino Acid Derivatives across Nitrile Oxide Cycloaddition4 Ring C=C Bond Functionalization of Some Cycloalkene β-Amino Acid Derivatives across Metathesis5 Functionalization of sSome Cyclodienes across Nitrile Oxide Cycloaddition6 Selective Synthesis of Functionalized Alicycles across Ring-Opening Metathesis7 Selective Synthesis of Functionalized Alicycles through Cross Metathesis8 Summary and Outlook9 List of Abbreviations
Collapse
Affiliation(s)
- Loránd Kiss
- Institute of Pharmaceutical Chemistry, University of Szeged
- University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry
| | - Zsanett Benke
- Institute of Pharmaceutical Chemistry, University of Szeged
- University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry
| | - Melinda Nonn
- Institute of Pharmaceutical Chemistry, University of Szeged
- University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry
| | - Attila M. Remete
- Institute of Pharmaceutical Chemistry, University of Szeged
- University of Szeged, Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry
| | - Santos Fustero
- Department of Organic Chemistry, University of Valencia, Pharmacy Faculty
| |
Collapse
|
16
|
Eymery M, Tran-Nguyen VK, Boumendjel A. Diversity-Oriented Synthesis: Amino Acetophenones as Building Blocks for the Synthesis of Natural Product Analogs. Pharmaceuticals (Basel) 2021; 14:1127. [PMID: 34832909 PMCID: PMC8619038 DOI: 10.3390/ph14111127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Diversity-Oriented Synthesis (DOS) represents a strategy to obtain molecule libraries with diverse structural features starting from one common compound in limited steps of synthesis. During the last two decades, DOS has become an unmissable strategy in organic synthesis and is fully integrated in various drug discovery processes. On the other hand, natural products with multiple relevant pharmacological properties have been extensively investigated as scaffolds for ligand-based drug design. In this article, we report the amino dimethoxyacetophenones that can be easily synthesized and scaled up from the commercially available 3,5-dimethoxyaniline as valuable starting blocks for the DOS of natural product analogs. More focus is placed on the synthesis of analogs of flavones, coumarins, azocanes, chalcones, and aurones, which are frequently studied as lead compounds in drug discovery.
Collapse
Affiliation(s)
- Mathias Eymery
- Université Grenoble Alpes, INSERM, LRB, 38000 Grenoble, France;
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Viet-Khoa Tran-Nguyen
- Laboratoire d’Innovation Thérapeutique, Université de Strasbourg, 67400 Illkirch, France;
| | | |
Collapse
|
17
|
Chaplygin DA, Gorbunov YK, Fershtat LL. Ring Distortion Diversity‐Oriented Approach to Fully Substituted Furoxans and Isoxazoles. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Daniil A. Chaplygin
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 119991 Leninsky prospect, 47 Moscow Russia
| | - Yaroslav K. Gorbunov
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 119991 Leninsky prospect, 47 Moscow Russia
- Department of Chemistry M.V. Lomonosov Moscow State University 119991 Leninskie Gory 1-3 Moscow Russia
| | - Leonid L. Fershtat
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 119991 Leninsky prospect, 47 Moscow Russia
- National Research University Higher School of Economics 101000 Myasnitskaya str. 20 Moscow Russia
| |
Collapse
|
18
|
Liu HW, Wang DL, Jiang NQ, Li HY, Cai ZJ, Ji SJ. Divergent synthesis of α-functionalized amides through selective N-O/C-C or N-O/C-C/C-N cleavage of aza-cyclobutanone oxime esters. Chem Commun (Camb) 2021; 57:9618-9621. [PMID: 34546230 DOI: 10.1039/d1cc03348d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, a novel sequential ring opening reaction of aza-cyclobutanone oxime esters with isocyanides is described. The reaction proceeded smoothly under redox-neutral and mild conditions, leading to a divergent synthesis of α-cyanomethylaminoamides, α-acyloxyamides and α-acylaminoamides. In these transformations, a selective N-O/C-C or N-O/C-C/C-N cleavage was achieved only by changing the iron-catalyst system. Among them, a rare sequential N-O/C-C/C-N cleavage process with a classical Passerini or Ugi multicomponent reaction can be executed in a single step. To the best of our knowledge, this work creates a novel reaction mode of cycloketone oximes and provides new opportunities for reaction design.
Collapse
Affiliation(s)
- Hua-Wei Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China.
| | - Dian-Liang Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China.
| | - Nan-Quan Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China.
| | - Hai-Yan Li
- Analysis and Testing Center, Soochow University, Suzhou 215123, China
| | - Zhong-Jian Cai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China.
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China.
| |
Collapse
|
19
|
Abstract
Polyfunctional building blocks are essential for the implementation of diversity-oriented synthetic strategies, highly demanded in small molecule libraries’ design for modern drug discovery. Acyl(imidoyl)ketenes are highly reactive organic compounds, bearing both oxa- and aza-diene moieties, conjugated symmetrically to the ketene fragment, enabling synthesis of various skeletally diverse heterocycles on their basis. The highlights of reactions utilizing acyl(imidoyl)ketenes are high yields, short reaction time (about several minutes), high selectivity, atom economy, and simple purification procedures, which benefits the drug discovery. The present review focuses on the approaches to thermal generation of acyl(imidoyl)ketenes, patterns of their immediate transformations via intra- and intermolecular reactions, including the reactions of cyclodimerization, in which either symmetric or dissymmetric heterocycles can be formed. Recent advances in investigations on mechanisms, identifications of intermediates, and chemo- and regioselectivity of reactions with participation of acyl(imidoyl)ketenes are also covered.
Collapse
|
20
|
Lebrêne A, Martzel T, Gouriou L, Sanselme M, Levacher V, Oudeyer S, Afonso C, Loutelier-Bourhis C, Brière JF. The Catalytic Regio- and Stereoselective Synthesis of 1,6-Diazabicyclo[4.3.0]nonane-2,7-diones. J Org Chem 2021; 86:8600-8609. [PMID: 34125536 DOI: 10.1021/acs.joc.1c00252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A straightforward synthesis of original 1,6-diazabicyclo[4.3.0]nonane-2,7-diones was achieved through a DBU-organocatalyzed multicomponent Knoevenagel-aza-Michael-Cyclocondensation reaction which takes advantage of an unprecedented highly regio- and diastereoselective conjugate addition of pyridazinones to alkylidene Meldrum's acid intermediates. The key reactive intermediates of this complex process were analyzed by means of electrospray ionization mass spectrometry coupled to ion mobility spectrometry, allowing us to validate the proposed mechanism.
Collapse
Affiliation(s)
- Arthur Lebrêne
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | - Thomas Martzel
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | - Laura Gouriou
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | - Morgane Sanselme
- Laboratoire SMS - EA3233, Normandie Univ-University of Rouen, 76821 Mont Saint Aignan, France
| | - Vincent Levacher
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | - Sylvain Oudeyer
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | - Carlos Afonso
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | | | | |
Collapse
|
21
|
Bilsland AE, McAulay K, West R, Pugliese A, Bower J. Automated Generation of Novel Fragments Using Screening Data, a Dual SMILES Autoencoder, Transfer Learning and Syntax Correction. J Chem Inf Model 2021; 61:2547-2559. [PMID: 34029470 DOI: 10.1021/acs.jcim.0c01226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fragment-based hit identification (FBHI) allows proportionately greater coverage of chemical space using fewer molecules than traditional high-throughput screening approaches. However, effectively exploiting this advantage is highly dependent on the library design. Solubility, stability, chemical complexity, chemical/shape diversity, and synthetic tractability for fragment elaboration are all critical aspects, and molecule design remains a time-consuming task for computational and medicinal chemists. Artificial neural networks have attracted considerable attention in automated de novo design applications and could also prove useful for fragment library design. Chemical autoencoders are neural networks consisting of encoder and decoder parts, which respectively compress and decompress molecular representations. The decoder is applied to samples drawn from the space of compressed representations to generate novel molecules that can be scored for properties of interest. Here, we report an autoencoder model using a recurrent neural network architecture, which was trained using 486,565 fragments curated from commercial sources, to simultaneously reconstruct both SMILES and chemical fingerprints. To explore its utility in fragment design, we applied transfer learning to the fingerprint decoder layers to train a classifier using 66 frequent hitter fragments identified from our screening campaigns. Using a particle swarm optimization sampling approach, we compare the performance of this "dual" model to an architecture encoding SMILES only. The dual model produced valid SMILES with improved features, considering a range of properties including aromatic ring counts, heavy atom count, synthetic accessibility, and a new fragment complexity score we term Feature Complexity (FeCo). Additionally, we demonstrate that generative performance is further enhanced by use of a simple syntax-correction procedure during training, in which invalid and undesirable SMILES are spiked into the training set. Finally, we used the syntax-corrected model to generate a library of novel candidate privileged fragments.
Collapse
Affiliation(s)
- Alan E Bilsland
- Beatson Drug Discovery Unit, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, U.K
| | - Kirsten McAulay
- Beatson Drug Discovery Unit, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, U.K
| | - Ryan West
- Beatson Drug Discovery Unit, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, U.K
| | - Angelo Pugliese
- Beatson Drug Discovery Unit, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, U.K
- BioAscent Discovery Ltd., Bo'Ness Road, Newhouse, Lanarkshire ML1 5UH, U.K
| | - Justin Bower
- Beatson Drug Discovery Unit, Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, U.K
| |
Collapse
|
22
|
Moreira-Filho JT, Silva AC, Dantas RF, Gomes BF, Souza Neto LR, Brandao-Neto J, Owens RJ, Furnham N, Neves BJ, Silva-Junior FP, Andrade CH. Schistosomiasis Drug Discovery in the Era of Automation and Artificial Intelligence. Front Immunol 2021; 12:642383. [PMID: 34135888 PMCID: PMC8203334 DOI: 10.3389/fimmu.2021.642383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/30/2021] [Indexed: 12/20/2022] Open
Abstract
Schistosomiasis is a parasitic disease caused by trematode worms of the genus Schistosoma and affects over 200 million people worldwide. The control and treatment of this neglected tropical disease is based on a single drug, praziquantel, which raises concerns about the development of drug resistance. This, and the lack of efficacy of praziquantel against juvenile worms, highlights the urgency for new antischistosomal therapies. In this review we focus on innovative approaches to the identification of antischistosomal drug candidates, including the use of automated assays, fragment-based screening, computer-aided and artificial intelligence-based computational methods. We highlight the current developments that may contribute to optimizing research outputs and lead to more effective drugs for this highly prevalent disease, in a more cost-effective drug discovery endeavor.
Collapse
Affiliation(s)
- José T. Moreira-Filho
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Arthur C. Silva
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Rafael F. Dantas
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Barbara F. Gomes
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Lauro R. Souza Neto
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Jose Brandao-Neto
- Diamond Light Source Ltd., Didcot, United Kingdom
- Research Complex at Harwell, Didcot, United Kingdom
| | - Raymond J. Owens
- The Rosalind Franklin Institute, Harwell, United Kingdom
- Division of Structural Biology, The Wellcome Centre for Human Genetic, University of Oxford, Oxford, United Kingdom
| | - Nicholas Furnham
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Bruno J. Neves
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| | - Floriano P. Silva-Junior
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Carolina H. Andrade
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás – UFG, Goiânia, Brazil
| |
Collapse
|
23
|
Agouram N, El Hadrami EM, Bentama A. 1,2,3-Triazoles as Biomimetics in Peptide Science. Molecules 2021; 26:2937. [PMID: 34069302 PMCID: PMC8156386 DOI: 10.3390/molecules26102937] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 01/10/2023] Open
Abstract
Natural peptides are an important class of chemical mediators, essential for most vital processes. What limits the potential of the use of peptides as drugs is their low bioavailability and enzymatic degradation in vivo. To overcome this limitation, the development of new molecules mimicking peptides is of great importance for the development of new biologically active molecules. Therefore, replacing the amide bond in a peptide with a heterocyclic bioisostere, such as the 1,2,3-triazole ring, can be considered an effective solution for the synthesis of biologically relevant peptidomimetics. These 1,2,3-triazoles may have an interesting biological activity, because they behave as rigid link units, which can mimic the electronic properties of amide bonds and show bioisosteric effects. Additionally, triazole can be used as a linker moiety to link peptides to other functional groups.
Collapse
Affiliation(s)
- Naima Agouram
- Laboratory of Applied Organic Chemistry, Faculty of Science and Technology, Sidi Mohammed Ben Abdellah University, Immouzer Road, Fez 30050, Morocco; (E.M.E.H.); (A.B.)
| | | | | |
Collapse
|
24
|
Non-regioselective functionalization: an underestimate chemical diversity generator in medicinal chemistry. Future Med Chem 2021; 13:595-599. [PMID: 33657835 DOI: 10.4155/fmc-2021-0011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
25
|
Caplin MJ, Foley DJ. Emergent synthetic methods for the modular advancement of sp 3-rich fragments. Chem Sci 2021; 12:4646-4660. [PMID: 34168751 PMCID: PMC8179648 DOI: 10.1039/d1sc00161b] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/28/2021] [Indexed: 12/29/2022] Open
Abstract
Fragment-based drug discovery is an important and increasingly reliable technology for the delivery of clinical candidates. Notably, however, sp3-rich fragments are a largely untapped resource in molecular discovery, in part due to the lack of general and suitably robust chemical methods available to aid their development into higher affinity lead and drug compounds. This Perspective describes the challenges associated with developing sp3-rich fragments, and succinctly highlights recent advances in C(sp3)-H functionalisations of high potential value towards advancing fragment hits by 'growing' functionalised rings and chains from unconventional, carbon-centred vectors.
Collapse
Affiliation(s)
- Max J Caplin
- School of Physical and Chemical Sciences, University of Canterbury Christchurch New Zealand
| | - Daniel J Foley
- School of Physical and Chemical Sciences, University of Canterbury Christchurch New Zealand
| |
Collapse
|
26
|
Cuevas F, Saavedra CJ, Romero‐Estudillo I, Boto A, Ordóñez M, Vergara I. Structural Diversity using Hyp “Customizable Units”: Proof‐of‐Concept Synthesis of Sansalvamide‐Related Antitumoral Peptides. European J Org Chem 2021; 2021:933-943. [DOI: 10.1002/ejoc.202001427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Indexed: 01/06/2025]
Abstract
AbstractThe potential of “customizable units” to generate structural diversity for biological screenings is highlighted in this proof‐of‐concept synthesis of new peptides related to the potent antitumoral Sansalvamide A. Using L‐4‐hydroxyproline (Hyp) as a customizable unit in a linear parent peptide, an improved procedure for selective peptide modification was developed. A divergent Hyp scission‐reductive amination process was carried out, affording five linear peptides with cationic residues, and notably, an N‐alkyl moiety that affected the conformation of the peptide. After two steps (saponification and macrocyclization), sixteen differently N1‐substituted linear and cyclic peptides were obtained. For the first time, the activity of the linear and cyclic compounds was compared. Not only some linear analogs but also cyclic compounds with scarcely studied cationic residues were active against MCF7 breast cancer line. Thus, the structural diversity generated from customizable units can be valuable in drug discovery.
Collapse
Affiliation(s)
- Fernando Cuevas
- Centro de Investigaciones Químicas-IICBA Universidad Autónoma del Estado de Morelos Av. Universidad 1001 Cuernavaca Morelos 62209 México
| | - Carlos J. Saavedra
- Instituto de Productos Naturales y Agrobiología del CSIC Avda. Astrofísico Francisco Sánchez 3 38206- La Laguna Tenerife Spain
- BIOSIGMA SL c/Antonio Dominguez Afonso 16 38003- S/C Tenerife Spain
| | - Ivan Romero‐Estudillo
- Centro de Investigaciones Químicas-IICBA Universidad Autónoma del Estado de Morelos Av. Universidad 1001 Cuernavaca Morelos 62209 México
- Catedrático CONACYT-CIQ-UAEM México
| | - Alicia Boto
- Instituto de Productos Naturales y Agrobiología del CSIC Avda. Astrofísico Francisco Sánchez 3 38206- La Laguna Tenerife Spain
| | - Mario Ordóñez
- Centro de Investigaciones Químicas-IICBA Universidad Autónoma del Estado de Morelos Av. Universidad 1001 Cuernavaca Morelos 62209 México
| | - Irene Vergara
- Departamento de Ciencias Químico-Biológicas Universidad de las Américas Puebla, ExHda Sta. Catarina Mártir s/n San Andrés Cholula Puebla 72820 México
| |
Collapse
|
27
|
McCosker PM, Butler NM, Shakoori A, Volland MK, Perry MJ, Mullen JW, Willis AC, Clark T, Bremner JB, Guldi DM, Keller PA. The Cascade Reactions of Indigo with Propargyl Substrates for Heterocyclic and Photophysical Diversity. Chemistry 2021; 27:3708-3721. [PMID: 32885487 DOI: 10.1002/chem.202003662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/31/2020] [Indexed: 11/11/2022]
Abstract
The synthesis of structurally diverse heterocycles for chemical space exploration was achieved via the cascade reactions of indigo with propargylic electrophiles. New pyrazinodiindolodione, naphthyridinedione, azepinodiindolone, oxazinoindolone and pyrrolodione products were prepared in one pot reactions by varying the leaving group (-Cl, -Br, -OMs, -OTs) or propargyl terminal functionality (-H, -Me, -Ph, -Ar). Mechanistic and density functional theory studies revealed that the unsaturated propargyl moiety can behave as an electrophile when aromatic terminal substitutions are made, and therefore competes with leaving group substitution for new outcomes. Selected products from the cascade reactions were investigated for their absorption and fluorescence properties, including transient absorption spectroscopy. This revealed polarity dependent excited state relaxation pathways, fluorescence, and triplet formation, thus highlighting these reactions as a means to access diverse functional materials rapidly.
Collapse
Affiliation(s)
- Patrick M McCosker
- School of Chemistry & Molecular Bioscience, Molecular Horizons, Illawarra Health & Medical Research Institute, University of Wollongong, Northfields Avenue, 2522, Wollongong, NSW, Australia.,Department of Chemistry and Pharmacy, Computer-Chemistry-Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nägelbachstrasse 25, 91052, Erlangen, Germany.,Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Chair of Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Nicholas M Butler
- School of Chemistry & Molecular Bioscience, Molecular Horizons, Illawarra Health & Medical Research Institute, University of Wollongong, Northfields Avenue, 2522, Wollongong, NSW, Australia
| | - Alireza Shakoori
- School of Chemistry & Molecular Bioscience, Molecular Horizons, Illawarra Health & Medical Research Institute, University of Wollongong, Northfields Avenue, 2522, Wollongong, NSW, Australia
| | - Michel K Volland
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Chair of Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Matthew J Perry
- School of Chemistry & Molecular Bioscience, Molecular Horizons, Illawarra Health & Medical Research Institute, University of Wollongong, Northfields Avenue, 2522, Wollongong, NSW, Australia
| | - Jesse W Mullen
- School of Chemistry & Molecular Bioscience, Molecular Horizons, Illawarra Health & Medical Research Institute, University of Wollongong, Northfields Avenue, 2522, Wollongong, NSW, Australia
| | - Anthony C Willis
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Timothy Clark
- Department of Chemistry and Pharmacy, Computer-Chemistry-Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nägelbachstrasse 25, 91052, Erlangen, Germany
| | - John B Bremner
- School of Chemistry & Molecular Bioscience, Molecular Horizons, Illawarra Health & Medical Research Institute, University of Wollongong, Northfields Avenue, 2522, Wollongong, NSW, Australia
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Chair of Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Paul A Keller
- School of Chemistry & Molecular Bioscience, Molecular Horizons, Illawarra Health & Medical Research Institute, University of Wollongong, Northfields Avenue, 2522, Wollongong, NSW, Australia
| |
Collapse
|
28
|
Meier K, Arús‐Pous J, Reymond J. A Potent and Selective Janus Kinase Inhibitor with a Chiral 3D‐Shaped Triquinazine Ring System from Chemical Space. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kris Meier
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Josep Arús‐Pous
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Jean‐Louis Reymond
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
29
|
Sharma P, Ranga Prabhath MR, Wong D, Ampem-Lassen MA, Bhat SV, Williams L, Carvalho TG. Synthesis of Biologically Active Heterospirocycles through Iterative 1,3-Dipolar Cycloaddition Pathways. J Org Chem 2021; 86:1223-1230. [PMID: 33316159 DOI: 10.1021/acs.joc.0c02424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We demonstrate the novel spiroannulation of exo-imines with 1,3-dipoles, for the first time, leading to 3D spirocycles with a secondary amine (NH) in the spiro-ring. The synthetic method described herein allows access to these previously unexplored heterospirocyclic cores that have application in the discovery of functional molecules for medicinal and materials science. This was demonstrated by discovering an unprecedented class of heterospirocycles with antimalarial activity against the human protozoan P. falciparum.
Collapse
Affiliation(s)
- Pallavi Sharma
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.,School of Chemistry, Joseph Bank Laboratory, University of Lincoln, Lincoln LN6 7TS, United Kingdom
| | - M R Ranga Prabhath
- School of Chemistry, Joseph Bank Laboratory, University of Lincoln, Lincoln LN6 7TS, United Kingdom
| | - Derek Wong
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Maame Adjoa Ampem-Lassen
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Shreesha V Bhat
- School of Chemistry, Joseph Bank Laboratory, University of Lincoln, Lincoln LN6 7TS, United Kingdom
| | - Luke Williams
- School of Chemistry, Joseph Bank Laboratory, University of Lincoln, Lincoln LN6 7TS, United Kingdom
| | - Teresa G Carvalho
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
30
|
Design and synthesis of nature-inspired chromenopyrroles as potential modulators of mitochondrial metabolism. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Meier K, Arús‐Pous J, Reymond J. A Potent and Selective Janus Kinase Inhibitor with a Chiral 3D‐Shaped Triquinazine Ring System from Chemical Space. Angew Chem Int Ed Engl 2020; 60:2074-2077. [DOI: 10.1002/anie.202012049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/25/2020] [Indexed: 01/31/2023]
Affiliation(s)
- Kris Meier
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Josep Arús‐Pous
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Jean‐Louis Reymond
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
32
|
Motika SE, Hergenrother PJ. Re-engineering natural products to engage new biological targets. Nat Prod Rep 2020; 37:1395-1403. [PMID: 33034322 PMCID: PMC7720426 DOI: 10.1039/d0np00059k] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to 2020 Natural products have a long history in drug discovery, with their inherent biological activity often tailored by medicinal chemists to arrive at the final drug product. This process is illustrated by numerous examples, including the conversion of epothilone to ixabepilone, erythromycin to azithromycin, and lovastatin to simvastatin. However, natural products are also fruitful starting points for the creation of complex and diverse compounds, especially those that are markedly different from the parent natural product and accordingly do not retain the biological activity of the parent. The resulting products have physiochemical properties that differ considerably when compared to traditional screening collections, thus affording an opportunity to discover novel biological activity. The synthesis of new structural frameworks from natural products thus yields value-added compounds, as demonstrated in the last several years with multiple biological discoveries emerging from these collections. This Highlight details a handful of these studies, describing new compounds derived from natural products that have biological activity and cellular targets different from those evoked/engaged by the parent. Such re-engineering of natural products offers the potential for discovering compounds with interesting and unexpected biological activity.
Collapse
Affiliation(s)
- Stephen E Motika
- Department of Chemistry, Institute for Genomic Biology, Cancer Center at Illinois, University of Illinois, Urbana-Champaign, USA.
| | - Paul J Hergenrother
- Department of Chemistry, Institute for Genomic Biology, Cancer Center at Illinois, University of Illinois, Urbana-Champaign, USA.
| |
Collapse
|
33
|
Fási L, Latif AD, Zupkó I, Lévai S, Dékány M, Béni Z, Könczöl Á, Balogh GT, Hunyadi A. AAPH or Peroxynitrite-Induced Biorelevant Oxidation of Methyl Caffeate Yields a Potent Antitumor Metabolite. Biomolecules 2020; 10:biom10111537. [PMID: 33187226 PMCID: PMC7697082 DOI: 10.3390/biom10111537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/08/2020] [Indexed: 12/13/2022] Open
Abstract
Hydroxycinnamic acids represent a versatile group of dietary plant antioxidants. Oxidation of methyl-p-coumarate (pcm) and methyl caffeate (cm) was previously found to yield potent antitumor metabolites. Here, we report the formation of potentially bioactive products of pcm and cm oxidized with peroxynitrite (ONOO¯), a biologically relevant reactive nitrogen species (RNS), or with α,α'-azodiisobutyramidine dihydrochloride (AAPH) as a chemical model for reactive oxygen species (ROS). A continuous flow system was developed to achieve reproducible in situ ONOO¯ formation. Reaction mixtures were tested for their cytotoxic effect on HeLa, SiHa, MCF-7 and MDA-MB-231 cells. The reaction of pcm with ONOO¯ produced two fragments, an o-nitrophenol derivative, and a new chlorinated compound. Bioactivity-guided isolation from the reaction mixture of cm with AAPH produced two dimerization products, including a dihydrobenzofuran lignan that exerted strong antitumor activity in vitro, and has potent in vivo antimetastatic activity which was previously reported. This compound was also detected from the reaction between cm and ONOO¯. Our results demonstrate the ROS/RNS dependent formation of chemically stable metabolites, including a potent antitumor agent (5), from hydroxycinnamic acids. This suggests that diversity-oriented synthesis using ROS/RNS to obtain oxidized antioxidant metabolite mixtures may serve as a valid natural product-based drug discovery strategy.
Collapse
Affiliation(s)
- Laura Fási
- Institute of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, Eötvös str. 6, H-6720 Szeged, Hungary; (L.F.); (A.D.L.)
| | - Ahmed Dhahir Latif
- Institute of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, Eötvös str. 6, H-6720 Szeged, Hungary; (L.F.); (A.D.L.)
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös str. 6, H-6720 Szeged, Hungary;
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös str. 6, H-6720 Szeged, Hungary;
| | - Sándor Lévai
- Department of Chemistry, Gedeon Richter Plc., Gyömrői u. 19-21, H-1103 Budapest, Hungary; (S.L.); (M.D.); (Z.B.); (A.K.)
| | - Miklós Dékány
- Department of Chemistry, Gedeon Richter Plc., Gyömrői u. 19-21, H-1103 Budapest, Hungary; (S.L.); (M.D.); (Z.B.); (A.K.)
| | - Zoltán Béni
- Department of Chemistry, Gedeon Richter Plc., Gyömrői u. 19-21, H-1103 Budapest, Hungary; (S.L.); (M.D.); (Z.B.); (A.K.)
| | - Árpád Könczöl
- Department of Chemistry, Gedeon Richter Plc., Gyömrői u. 19-21, H-1103 Budapest, Hungary; (S.L.); (M.D.); (Z.B.); (A.K.)
| | - György Tibor Balogh
- Department of Chemistry, Gedeon Richter Plc., Gyömrői u. 19-21, H-1103 Budapest, Hungary; (S.L.); (M.D.); (Z.B.); (A.K.)
- Correspondence: (G.T.B.); (A.H.); Tel.: +36-1-4632174 (G.T.B.); +36-62-546-456 (A.H.)
| | - Attila Hunyadi
- Institute of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, Eötvös str. 6, H-6720 Szeged, Hungary; (L.F.); (A.D.L.)
- Interdisciplinary Centre for Natural Products, University of Szeged, Eötvös str. 6, H-6720 Szeged, Hungary
- Correspondence: (G.T.B.); (A.H.); Tel.: +36-1-4632174 (G.T.B.); +36-62-546-456 (A.H.)
| |
Collapse
|
34
|
Gernet A, Sevrain N, Volle JN, Ayad T, Pirat JL, Virieux D. Diversity-Oriented Synthesis toward Aryl- and Phosphoryl-Functionalized Imidazo[1,2- a]pyridines. J Org Chem 2020; 85:14730-14743. [PMID: 33166470 DOI: 10.1021/acs.joc.0c02059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report herein an efficient synthesis of diversely polysubstituted imidazo[1,2-a]pyridines, a family of aza-heterocycles endowed with numerous biological properties, through a sequence involving two consecutive palladium-catalyzed cross-coupling reactions. First, we demonstrated that a Hirao coupling occurred straightforwardly in high yields at positions 3, 5, and 6 of imidazopyridine derivatives, giving access to a wide variety of substituted phosphonates, phosphinates, and phosphine oxides. In a second step, direct CH-arylation of phosphorylimidazopyridines with aryl halides was found to be effective and fully selective, leading to 3-aryl-substituted imidazopyridines in moderate to high yields depending on steric hindrance.
Collapse
Affiliation(s)
- Aurélie Gernet
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34296 Montpellier, France
| | - Nicolas Sevrain
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34296 Montpellier, France
| | - Jean-Noël Volle
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34296 Montpellier, France
| | - Tahar Ayad
- PSL University, Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, CSB2D Team, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Jean-Luc Pirat
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34296 Montpellier, France
| | - David Virieux
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34296 Montpellier, France
| |
Collapse
|
35
|
Srinivasulu V, Schilf P, Ibrahim S, Shehadi IA, Malik OG, Sieburth S, Khanfar MA, Hamad M, Abu-Yousef IA, Majdalawieh AF, Al-Tel TH. Divergent Strategy for Diastereocontrolled Synthesis of Small- and Medium-Ring Architectures. J Org Chem 2020; 85:10695-10708. [PMID: 32806094 DOI: 10.1021/acs.joc.0c01244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitrogen and oxygen medium rings, in particular nine-membered rings, epitomize a unique area of chemical space that occurs in many natural products and biologically appealing compounds. The scarcity of 8- to 12-membered rings among clinically approved drugs is indicative of the difficulties associated with their synthesis, principally owing to the unfavorable entropy and transannular strain. We report here a scandium triflate-catalyzed reaction that allows for a modular access to a diverse collection of nine-membered ring heterocycles in a one-pot cascade and with complete diastereocontrol. This cascade features an intramolecular addition of an acyl group-derived enol to a α,β-unsaturated carbonyl moiety, leading to N- and O-derived medium-ring systems. Computational studies using the density functional theory support the proposed mechanism. Additionally, a one-pot cascade leading to hexacyclic chromeno[3',4':2,3]indolizino[8,7-b]indole architectures, with six fused rings and four contiguous chiral centers, is reported. This novel cascade features many concerted events, including the formation of two azomethine ylides, [3 + 2]-cycloaddition, 1,3-sigmatropic rearrangement, Michael addition, and Pictet-Spengler reaction among others. Phenotypic screening of the resulting oxazonine collection identified chemical probes that regulate mitochondrial membrane potential, adenosine 5'-triphosphate contents, and reactive oxygen species levels in hepatoma cells (Hepa1-6), a promising approach for targeting cancer and metabolic disorders.
Collapse
Affiliation(s)
- Vunnam Srinivasulu
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Paul Schilf
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, Lübeck 23538, Germany
| | - Saleh Ibrahim
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, Lübeck 23538, Germany
| | - Ihsan A Shehadi
- College of Science, Department of Chemistry, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Omar G Malik
- College of Science, Department of Chemistry, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Scott Sieburth
- Department of Chemistry, Temple University, 201 Beury Hall, Philadelphia, Pennsylvania 19122, United States
| | - Monther A Khanfar
- College of Science, Department of Chemistry, University of Sharjah, P.O. Box 27272, Sharjah, UAE.,Department of Chemistry, University of Jordan, Amman 11942, Jordan
| | - Mohamad Hamad
- College of Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Imad A Abu-Yousef
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, UAE
| | - Amin F Majdalawieh
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, UAE
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| |
Collapse
|
36
|
Li Q. Application of Fragment-Based Drug Discovery to Versatile Targets. Front Mol Biosci 2020; 7:180. [PMID: 32850968 PMCID: PMC7419598 DOI: 10.3389/fmolb.2020.00180] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022] Open
Abstract
Fragment-based drug discovery (FBDD) is a powerful method to develop potent small-molecule compounds starting from fragments binding weakly to targets. As FBDD exhibits several advantages over high-throughput screening campaigns, it becomes an attractive strategy in target-based drug discovery. Many potent compounds/inhibitors of diverse targets have been developed using this approach. Methods used in fragment screening and understanding fragment-binding modes are critical in FBDD. This review elucidates fragment libraries, methods utilized in fragment identification/confirmation, strategies applied in growing the identified fragments into drug-like lead compounds, and applications of FBDD to different targets. As FBDD can be readily carried out through different biophysical and computer-based methods, it will play more important roles in drug discovery.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Guangdong Provincial Bioengineering Institute, Guangzhou Sugarcane Industry Research Institute, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
37
|
Downes TD, Jones SP, Klein HF, Wheldon MC, Atobe M, Bond PS, Firth JD, Chan NS, Waddelove L, Hubbard RE, Blakemore DC, De Fusco C, Roughley SD, Vidler LR, Whatton MA, Woolford AJ, Wrigley GL, O'Brien P. Design and Synthesis of 56 Shape-Diverse 3D Fragments. Chemistry 2020; 26:8969-8975. [PMID: 32315100 PMCID: PMC7496344 DOI: 10.1002/chem.202001123] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/16/2020] [Indexed: 12/13/2022]
Abstract
Fragment-based drug discovery is now widely adopted for lead generation in the pharmaceutical industry. However, fragment screening collections are often predominantly populated with flat, 2D molecules. Herein, we describe a workflow for the design and synthesis of 56 3D disubstituted pyrrolidine and piperidine fragments that occupy under-represented areas of fragment space (as demonstrated by a principal moments of inertia (PMI) analysis). A key, and unique, underpinning design feature of this fragment collection is that assessment of fragment shape and conformational diversity (by considering conformations up to 1.5 kcal mol-1 above the energy of the global minimum energy conformer) is carried out prior to synthesis and is also used to select targets for synthesis. The 3D fragments were designed to contain suitable synthetic handles for future fragment elaboration. Finally, by comparing our 3D fragments with six commercial libraries, it is clear that our collection has high three-dimensionality and shape diversity.
Collapse
Affiliation(s)
- Thomas D. Downes
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - S. Paul Jones
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Hanna F. Klein
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Mary C. Wheldon
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Masakazu Atobe
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
- Asahi Kasei Pharma Corporation632-1 Mifuku, IzunokuniShizuoka410-2321Japan
| | - Paul S. Bond
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - James D. Firth
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Ngai S. Chan
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Laura Waddelove
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Roderick E. Hubbard
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
- Vernalis (R&D) LtdGranta Park, AbingtonCambridgeCB21 6GBUK
| | | | | | | | - Lewis R. Vidler
- Eli Lilly and Company LimitedErl Wood Manor, Sunninghill RoadWindleshamSurreyGU20 6PHUK
| | - Maria Ann Whatton
- Eli Lilly and Company LimitedErl Wood Manor, Sunninghill RoadWindleshamSurreyGU20 6PHUK
| | | | - Gail L. Wrigley
- Medicinal Chemistry, Oncology R&DAstraZenecaCB4 0WGCambridgeUK
| | - Peter O'Brien
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| |
Collapse
|
38
|
Troelsen NS, Clausen MH. Library Design Strategies To Accelerate Fragment‐Based Drug Discovery. Chemistry 2020; 26:11391-11403. [DOI: 10.1002/chem.202000584] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/26/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Nikolaj S. Troelsen
- Center for Nanomedicine and Theranostics Department of Chemistry Technical University of Denmark Kemitorvet 207 2800 Kongens Lyngby Denmark
| | - Mads H. Clausen
- Center for Nanomedicine and Theranostics Department of Chemistry Technical University of Denmark Kemitorvet 207 2800 Kongens Lyngby Denmark
| |
Collapse
|
39
|
Osberger TJ, Kidd SL, King TA, Spring DR. C(sp 3)-H arylation to construct all-syn cyclobutane-based heterobicyclic systems: a novel fragment collection. Chem Commun (Camb) 2020; 56:7423-7426. [PMID: 32490454 DOI: 10.1039/d0cc03237a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
All-syn fused cyclobutanes remain an elusive chemotype and thus present an interesting synthetic challenge. Herein, we report the successful application of Pd-catalysed C(sp3)-H arylation of cyclobutane compounds to generate all-syn heterobicyclic fragments using an innovative 'inside-out' approach. Through this strategy we generate a virtual collection of 90 fragments, which we demonstrate to have enhanced three-dimensionality and superior fragment-like properties compared to existing collections.
Collapse
Affiliation(s)
- Thomas J Osberger
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. and Department of Chemistry and Biochemistry, California State Polytechnic University, Pomona, CA, USA
| | - Sarah L Kidd
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Thomas A King
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
40
|
François B, Eberlin L, Berrée F, Whiting A, Carboni B. Generating Skeletal Diversity and Complexity from Boron-Substituted 1,3-Dienes and Enophiles. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Benjamin François
- Univ Rennes; CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226; 35000 Rennes France
| | - Ludovic Eberlin
- Univ Rennes; CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226; 35000 Rennes France
| | - Fabienne Berrée
- Univ Rennes; CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226; 35000 Rennes France
| | - Andrew Whiting
- Department of Chemistry; Durham University; Science Laboratories; South Road DH1 3LE Durham U.K
| | - Bertrand Carboni
- Univ Rennes; CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226; 35000 Rennes France
| |
Collapse
|
41
|
Prosser K, Stokes RW, Cohen SM. Evaluation of 3-Dimensionality in Approved and Experimental Drug Space. ACS Med Chem Lett 2020; 11:1292-1298. [PMID: 32551014 PMCID: PMC7294711 DOI: 10.1021/acsmedchemlett.0c00121] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/18/2020] [Indexed: 11/28/2022] Open
Abstract
The 3-dimensional (3D) structure of therapeutics and other bioactive molecules is an important factor in determining the strength and selectivity of their protein-ligand interactions. Previous efforts have considered the strain introduced and tolerated through conformational changes induced upon protein binding. Herein, we present an analysis of 3-dimentionality for energy-minimized structures from the DrugBank and ligands bound to proteins identified in the Protein Data Bank (PDB). This analysis reveals that the majority of molecules found in both the DrugBank and the PDB tend toward linearity and planarity, with few molecules having highly 3D conformations. Decidedly 3D geometries have been historically difficult to achieve, likely due to the synthetic challenge of making 3D organic molecules, and other considerations, such as adherence to the 'rule-of-five'. This has resulted in the dominance of planar and/or linear topologies of the molecules described here. Strategies to address the generally flat nature of these data sets are explored, including the use of 3D organic fragments and inorganic scaffolds as a means of accessing privileged 3D space. This work highlights the potential utility of libraries with greater 3D topological diversity so that the importance of molecular shape to biological behavior can be more fully understood in drug discovery campaigns.
Collapse
Affiliation(s)
- Kathleen
E. Prosser
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Ryjul W. Stokes
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Seth M. Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
42
|
Smedley CJ, Li G, Barrow AS, Gialelis TL, Giel MC, Ottonello A, Cheng Y, Kitamura S, Wolan DW, Sharpless KB, Moses JE. Diversity Oriented Clicking (DOC): Divergent Synthesis of SuFExable Pharmacophores from 2-Substituted-Alkynyl-1-Sulfonyl Fluoride (SASF) Hubs. Angew Chem Int Ed Engl 2020; 59:12460-12469. [PMID: 32301265 PMCID: PMC7572632 DOI: 10.1002/anie.202003219] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Indexed: 01/08/2023]
Abstract
Diversity Oriented Clicking (DOC) is a unified click-approach for the modular synthesis of lead-like structures through application of the wide family of click transformations. DOC evolved from the concept of achieving "diversity with ease", by combining classic C-C π-bond click chemistry with recent developments in connective SuFEx-technologies. We showcase 2-Substituted-Alkynyl-1-Sulfonyl Fluorides (SASFs) as a new class of connective hub in concert with a diverse selection of click-cycloaddition processes. Through the selective DOC of SASFs with a range of dipoles and cyclic dienes, we report a diverse click-library of 173 unique functional molecules in minimal synthetic steps. The SuFExable library comprises 10 discrete heterocyclic core structures derived from 1,3- and 1,5-dipoles; while reaction with cyclic dienes yields several three-dimensional bicyclic Diels-Alder adducts. Growing the library to 278 discrete compounds through late-stage modification was made possible through SuFEx click derivatization of the pendant sulfonyl fluoride group in 96 well-plates-demonstrating the versatility of the DOC approach for the rapid synthesis of diverse functional structures. Screening for function against MRSA (USA300) revealed several lead hits with improved activity over methicillin.
Collapse
Affiliation(s)
- Christopher J Smedley
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Gencheng Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Andrew S Barrow
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Timothy L Gialelis
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Marie-Claire Giel
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Alessandra Ottonello
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Yunfei Cheng
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Seiya Kitamura
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Dennis W Wolan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - K Barry Sharpless
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - John E Moses
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.,Cancer Center, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
| |
Collapse
|
43
|
Diversity Oriented Clicking (DOC): Divergent Synthesis of SuFExable Pharmacophores from 2‐Substituted‐Alkynyl‐1‐Sulfonyl Fluoride (SASF) Hubs. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003219] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Jafarpour F, Azizzade M, Golpazir-Sorkheh Y, Navid H, Rajai-Daryasarei S. Divergent Synthesis of α-Aroyloxy Ketones and Indenones: A Controlled Domino Radical Reaction for Di- and Trifunctionalization of Alkynes. J Org Chem 2020; 85:8287-8294. [DOI: 10.1021/acs.joc.0c00967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Farnaz Jafarpour
- School of Chemistry, College of Science, University of Tehran, Tehran 14155-6619, Iran
| | - Meysam Azizzade
- School of Chemistry, College of Science, University of Tehran, Tehran 14155-6619, Iran
| | | | - Hamed Navid
- School of Chemistry, College of Science, University of Tehran, Tehran 14155-6619, Iran
| | | |
Collapse
|
45
|
Lowe RA, Taylor D, Chibale K, Nelson A, Marsden SP. Synthesis and evaluation of the performance of a small molecule library based on diverse tropane-related scaffolds. Bioorg Med Chem 2020; 28:115442. [PMID: 32209295 DOI: 10.1016/j.bmc.2020.115442] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/02/2020] [Accepted: 03/12/2020] [Indexed: 12/20/2022]
Abstract
A unified synthetic approach was developed that enabled the synthesis of diverse tropane-related scaffolds. The key intermediates that were exploited were cycloadducts formed by reaction between 3-hydroxy-pyridinium salts and vinyl sulfones or sulfonamides. The diverse tropane-related scaffolds were formed by addition of substituents to, cyclisation reactions of, and fusion of additional ring(s) to the key bicyclic intermediates. A set of 53 screening compounds was designed, synthesised and evaluated in order to determine the biological relevance of the scaffolds accessible using the synthetic approach. Two inhibitors of Hedgehog signalling, and four compounds with weak activity against the parasite P. falciparum, were discovered. Three of the active compounds may be considered to be indotropane or pyrrotropane pseudo natural products in which a tropane is fused with a fragment from another natural product class. It was concluded that the unified synthetic approach had yielded diverse scaffolds suitable for the design of performance-diverse screening libraries.
Collapse
Affiliation(s)
- Robert A Lowe
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - Dale Taylor
- H3D Drug Discovery and Development Center, University of Cape Town, Private Bag, Rondebosch 7700, South Africa
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa; South African Medical Research Council, Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
| | - Adam Nelson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Chemistry, University of Leeds, Leeds LS2 9JT, UK.
| | | |
Collapse
|
46
|
Morrison CN, Prosser KE, Stokes RW, Cordes A, Metzler-Nolte N, Cohen SM. Expanding medicinal chemistry into 3D space: metallofragments as 3D scaffolds for fragment-based drug discovery. Chem Sci 2019; 11:1216-1225. [PMID: 34123246 PMCID: PMC8148059 DOI: 10.1039/c9sc05586j] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/12/2019] [Indexed: 01/02/2023] Open
Abstract
Fragment-based drug discovery (FBDD) is a powerful strategy for the identification of new bioactive molecules. FBDD relies on fragment libraries, generally of modest size, but of high chemical diversity. Although good chemical diversity in FBDD libraries has been achieved in many respects, achieving shape diversity - particularly fragments with three-dimensional (3D) structures - has remained challenging. A recent analysis revealed that >75% of all conventional, organic fragments are predominantly 1D or 2D in shape. However, 3D fragments are desired because molecular shape is one of the most important factors in molecular recognition by a biomolecule. To address this challenge, the use of inert metal complexes, so-called 'metallofragments' (mFs), to construct a 3D fragment library is introduced. A modest library of 71 compounds has been prepared with rich shape diversity as gauged by normalized principle moment of inertia (PMI) analysis. PMI analysis shows that these metallofragments occupy an area of fragment space that is unique and highly underrepresented when compared to conventional organic fragment libraries that are comprised of orders of magnitude more molecules. The potential value of this metallofragment library is demonstrated by screening against several different types of proteins, including an antiviral, an antibacterial, and an anticancer target. The suitability of the metallofragments for future hit-to-lead development was validated through the determination of IC50 and thermal shift values for select fragments against several proteins. These findings demonstrate the utility of metallofragment libraries as a means of accessing underutilized 3D fragment space for FBDD against a variety of protein targets.
Collapse
Affiliation(s)
- Christine N Morrison
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Kathleen E Prosser
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Ryjul W Stokes
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Anna Cordes
- Lehrstuhl für Anorganische Chemie 1, Bioanorganische Chemie, Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Nils Metzler-Nolte
- Lehrstuhl für Anorganische Chemie 1, Bioanorganische Chemie, Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| |
Collapse
|
47
|
Sebastian A, Srinivasulu V, Abu-Yousef IA, Gorka O, Al-Tel TH. Domino Transformations of Ene/Yne Tethered Salicylaldehyde Derivatives: Pluripotent Platforms for the Construction of High sp 3 Content and Privileged Architectures. Chemistry 2019; 25:15710-15735. [PMID: 31365773 DOI: 10.1002/chem.201902596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/30/2019] [Indexed: 12/23/2022]
Abstract
Diversity-oriented synthesis (DOS) has become a powerful synthetic tool that facilitates the construction of nature-inspired and privileged chemical space, particularly for sp3 -rich non-flat scaffolds, which are needed for phenotypic screening campaigns. These diverse compound collections led to the discovery of novel chemotypes that can modulate the protein function in underrepresented biological space. In this context, starting material-driven DOS is one of the most important tools used to build diverse compound libraries with rich stereochemical and scaffold diversity. To this end, ene/yne tethered salicylaldehyde derivatives have emerged as a pluripotent chemical platform, the products of which led to the construction of a privileged chemical space with significant biological activities. In this review, various domino transformations employing o-alkene/alkyne tethered aryl aldehyde/ketone platforms are described and discussed, with emphasis on the period from 2011 to date.
Collapse
Affiliation(s)
- Anusha Sebastian
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Vunnam Srinivasulu
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Imad A Abu-Yousef
- College of Arts and Sciences, Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, UAE
| | - Orive Gorka
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, UAE.,College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| |
Collapse
|
48
|
Kasatkina S, Stepanova E, Dmitriev M, Mokrushin I, Maslivets A. Divergent synthesis of (quinoxalin-2-yl)-1,3-oxazines and pyrimido[1,6-a]quinoxalines via the cycloaddition reaction of acyl(quinoxalinyl)ketenes. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Dantas RF, Evangelista TCS, Neves BJ, Senger MR, Andrade CH, Ferreira SB, Silva-Junior FP. Dealing with frequent hitters in drug discovery: a multidisciplinary view on the issue of filtering compounds on biological screenings. Expert Opin Drug Discov 2019; 14:1269-1282. [DOI: 10.1080/17460441.2019.1654453] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Rafael Ferreira Dantas
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Tereza Cristina Santos Evangelista
- LaSOPB – Laboratório de Síntese Orgânica e Prospecção Biológica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Junior Neves
- LabChem – Laboratory of Cheminformatics, Centro Universitário de Anápolis, UniEVANGÉLICA, Anápolis, Brazil
| | - Mario Roberto Senger
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Carolina Horta Andrade
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, Brazil
| | - Sabrina Baptista Ferreira
- LaSOPB – Laboratório de Síntese Orgânica e Prospecção Biológica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Floriano Paes Silva-Junior
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
50
|
Vojacek S, Schulig L, Wössner N, Geist N, Langel W, Jung M, Schade D, Link A. Tetrahydroindoles as Multipurpose Screening Compounds and Novel Sirtuin Inhibitors. ChemMedChem 2019; 14:853-864. [DOI: 10.1002/cmdc.201900054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Steffen Vojacek
- Institute of PharmacyUniversity of Greifswald Friedrich-Ludwig-Jahn-Strasse 17 17489 Greifswald Germany
| | - Lukas Schulig
- Institute of PharmacyUniversity of Greifswald Friedrich-Ludwig-Jahn-Strasse 17 17489 Greifswald Germany
| | - Nathalie Wössner
- Institute of Pharmaceutical SciencesUniversity of Freiburg Albertstrasse 25 79104 Freiburg Germany
| | - Norman Geist
- Institute of BiochemistryUniversity of Greifswald Felix-Hausdorff-Strasse 4 17487 Greifswald Germany
| | - Walter Langel
- Institute of BiochemistryUniversity of Greifswald Felix-Hausdorff-Strasse 4 17487 Greifswald Germany
| | - Manfred Jung
- Institute of Pharmaceutical SciencesUniversity of Freiburg Albertstrasse 25 79104 Freiburg Germany
| | - Dennis Schade
- Department of Pharmaceutical ChemistryPharmaceutical InstituteChristian Albrechts University of Kiel 24118 Kiel Germany
| | - Andreas Link
- Institute of PharmacyUniversity of Greifswald Friedrich-Ludwig-Jahn-Strasse 17 17489 Greifswald Germany
| |
Collapse
|