1
|
Wu Y, Zhang J, Li D, Du S, Mu X, Liu C, Fang K, Feng T, Wang T, Li W, Ge Z. Optimizing the energy level alignment for achieving record-breaking efficiency in hot exciton deep red OLEDs. MATERIALS HORIZONS 2024; 11:3928-3934. [PMID: 38845573 DOI: 10.1039/d4mh00441h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
To effectively compete with the quenching process in long-wavelength regions like deep red (DR) and near-infrared (NIR), rapid radiative decay is urgently needed to address the challenges posed by the "energy gap law". Herein, we confirmed that it is crucial for hot exciton emitters to attain a narrow energy gap (ΔES1-T2) between the lowest singlet excited (S1) state and second triplet excited (T2) state, while ensuring that T2 slightly exceeds S1 in the energy level. Two proofs-of-concept of hot exciton DR emitters, namely αT-IPD and βT-IPD, were successfully designed and synthesized by coupling electron-acceptors N,N-diphenylnaphthalen-2-amine (αTPA) and N,N-diphenylnaphthalen-1-amine (βTPA) with an electron-withdrawing unit 5-(4-(tert-butyl) phenyl)-5H-pyrazino[2,3-b]indole-2,3-dicarbonitrile (IPD). Both emitters exhibited a narrow ΔES1-T2, with T2 being slightly higher than S1. Additionally, both emitters showed significantly large ΔET2-T1. Moreover, due to their aggregation-induced emission characteristics, J-aggregated packing modes, moderate strength intermolecular CN⋯H-C and C-H⋯π interactions, and unique, comparatively large center-to-center distances among trimers in the crystalline state, both αT-IPD and βT-IPD emitters exhibited remarkable photoluminescence quantum yields of 68.5% and 73.5%, respectively, in non-doped films. Remarkably, the corresponding non-doped DR-OLED based on βT-IPD achieved a maximum external quantum efficiency of 15.5% at an emission peak wavelength of 667 nm, representing the highest reported value for hot exciton DR-OLEDs.
Collapse
Affiliation(s)
- Yujie Wu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
- School of Materials Science and Engineering Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Jiasen Zhang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Deli Li
- Institute for Smart Materials & Engineering, University of Jinan, No. 336 Nanxin Zhuang West Road, Jinan 250022, P. R. China
| | - Songyu Du
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Xilin Mu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Chunyu Liu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Kaibo Fang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
- School of Materials Science and Engineering Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Tingting Feng
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Tao Wang
- School of Materials Science and Engineering Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Wei Li
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| |
Collapse
|
2
|
Polesiak E, Makowska-Janusik M, Drapala J, Zagorska M, Banasiewicz M, Kozankiewicz B, Kulszewicz-Bajer I, Pron A. Photophysical and redox properties of new donor-acceptor-donor (DAD) compounds containing benzothiadiazole (A) and dimethyldihydroacridine (D) units: a combined experimental and theoretical study. Phys Chem Chem Phys 2024. [PMID: 39041807 DOI: 10.1039/d4cp02322f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Four donor-acceptor-donor compounds consisting of 9,9-dimethyl-9,10-dihydroacridine donors differently linked to a benzothiadiazole acceptor were designed using DFT calculations and synthesized, namely 4,7-bis(4-(9,9-dimethyl-9,10-dihydroacridine)phenyl)benzo[c][1,2,5]thiadiazole (1), 4,7-bis(2,5-dimethyl-4-(9,9-dimethyl-9,10-dihydroacridine)phenyl)benzo[c][1,2,5]thiadiazole (2), 4,7-bis(3,5-di(9,9-dimethyl-9,10-dihydroacridine)phenyl)benzo[c][1,2,5]thiadiazole (3), and 4-(3,5-di(9,9-dimethyl-9,10-dihydroacridine)phenyl)-7-(thiophen-2-yl)benzo[c][1,2,5]thiadiazole (4). As predicted theoretically, all studied compounds were electrochemically active both in the reduction as well as in the oxidation modes. They underwent one electron quasi-reversible reduction. Oxidation of 1 and 2 involved a two electron process transforming them into dications and carrying out, in parallel, their dimerization. Oxidation of 3 and 4 resulted in their oligomerization (polymerization). The electrochemically determined ionisation potentials (IP) of 1-4 were similar, covering a narrow range of 5.28-5.33 eV and were consistent with DFT calculations. Larger differences were found for experimentally determined electron affinity (EA) values, being significantly lower for 2 (|EA| = 2.59 eV) as compared to 1, 3 and 4 whose |EA| values were higher by 0.15-0.25 eV, again consistent with DFT calculations. DFT calculations predict positive values of ΔE(S1-T1) for all compounds i.e. in the range of 0.18 eV to 0.43 eV for 1, 3 and 4 and a significantly lower value for 2 (0.06 eV), indicating a possible RISC process in this case. DFT calculations of ΔE(S1-T2) lead to negative and very small values for 2-4 implying a possible involvement of higher lying triplets in the generation of singlet excitons. The investigated derivatives exhibited fluorescence in the orange-red spectral range (550-770 nm) and were strongly dependent on the solvent polarity. The highest PLQY value of 37% was measured for 1 in toluene. The PLQY values significantly improved upon deoxygenation of the studied solutions. Solid state samples also exhibited higher PLQY values as compared to those determined for DCM solutions. These findings were rationalized by partial suppression of the vibrationally induced emission quenching in the solid state due to the intermolecular interaction confinement.
Collapse
Affiliation(s)
- Emilia Polesiak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Malgorzata Makowska-Janusik
- Faculty of Science and Technology, Jan Dlugosz University, Al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland
| | - Jakub Drapala
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Malgorzata Zagorska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Marzena Banasiewicz
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/44, 02-668, Warsaw, Poland
| | - Boleslaw Kozankiewicz
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/44, 02-668, Warsaw, Poland
| | - Irena Kulszewicz-Bajer
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Adam Pron
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| |
Collapse
|
3
|
Du S, Luo M, Li D, Lyu L, Li W, Zhao M, Wang Z, Zhang J, Liu D, Li Y, Su SJ, Ge Z. Hot-Exciton Mechanism and AIE Effect Boost the Performance of Deep-Red Emitters in Non-Doped OLEDs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303304. [PMID: 37354127 DOI: 10.1002/adma.202303304] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/29/2023] [Indexed: 06/26/2023]
Abstract
Luminescent materials possessing a "hot-exciton" mechanism and aggregation-induced emission (AIE) qualities are well-suited for use as emitting materials in nondoped organic light-emitting diodes (OLEDs), particularly in deep-red regions where their ground state and singlet excited state surfaces are in proximity, leading to the formation of multiple nonradiative channels. However, designing molecules that artificially combine the hot-exciton mechanism and AIE attributes remains a formidable task. In this study, a versatile strategy is presented to achieve hot-exciton fluorescence with AIE property by increasing the first singlet excited (S1 ) state through modulation of the conjugation length of the newly created acceptor unit, matching the energy level of high-lying triplet (Tn ) states, and enhancing exciton utilization efficiency by employing suitable donor moieties. This approach reduces the aggregation-caused quenching (ACQ) in the aggregate state, resulting in the proof-of-concept emitter DT-IPD, which produces an unprecedented external quantum efficiency (EQE) of 12.2% and Commission Internationale de I'Eclairage (CIE) coordinates of (0.69, 0.30) in a deep-red non-doped OLED at 685 nm, representing the highest performance among all deep-red OLEDs based on materials with hot-exciton mechanisms. This work provides novel insights into the design of more efficient hot-exciton emitters with AIE properties.
Collapse
Affiliation(s)
- Songyu Du
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ming Luo
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Deli Li
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, Guangdong Province, 510640, P. R. China
| | - Lingling Lyu
- Institute of New Energy Technology, Ningbo Dayang Technology Co., Ltd, Zhongguan Road 1219, Ningbo, 315000, P. R. China
| | - Wei Li
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mengyu Zhao
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhichuan Wang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiasen Zhang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Denghui Liu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, Guangdong Province, 510640, P. R. China
| | - Yong Li
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shi-Jian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Tianhe District, Guangzhou, Guangdong Province, 510640, P. R. China
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
4
|
Liang T, Jiang X, Wang J, Pan Y, Yang B. A theoretical study on the effects of intramolecular and intermolecular interactions on excited state properties of two NIR-TADF combined with AIE molecules. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.114000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
N-Phenylcarbazole substituted bis(hexylthiophen-2-yl)-benzothiadiazoles as deep red emitters for hole-transporting layer free solution-processed OLEDs. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113509] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Usta H, Cosut B, Alkan F. Understanding and Tailoring Excited State Properties in Solution-Processable Oligo( p-phenyleneethynylene)s: Highly Fluorescent Hybridized Local and Charge Transfer Character via Experiment and Theory. J Phys Chem B 2021; 125:11717-11731. [PMID: 34644090 DOI: 10.1021/acs.jpcb.1c07165] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rod-shaped oligo(p-phenyleneethynylene) (OPE) offers an attractive π-framework for the development of solution-processable highly fluorescent molecules having tunable hybridized local and charge transfer (HLCT) excited states and (reverse) intersystem crossing ((R)ISC) channels. Herein, an HLCT oligo(p-phenyleneethynylene) library was studied for the first time in the literature in detail systematically via experiment and theory. The design, synthesis, and full characterization of a new highly fluorescent (ΦPL-solution ∼ 1) sky blue emissive 4',4‴-((2,5-bis((2-ethylhexyl)oxy)-1,4-phenylene)bis(ethyne-2,1-diyl))bis(N,N-diphenyl-[1,1'-biphenyl]-4-amine) (2EHO-TPA-PE) was also reported. The new molecule consists of a D'-Ar-π-D-π-Ar-D' molecular architecture with an extended π-spacer and no acceptor unit, and detailed structural, physicochemical, single-crystal, and optoelectronic characterizations were performed. A high solid-state quantum efficiency (ΦPL-solid state ∼ 0.8) was achieved as a result of suppressed exciton-phonon/vibronic couplings (no π-π interactions and multiple (14 per dimeric form) strong C-H···π interactions). Strong solution-phase/solid-state dipole-dependent tunable excited state behavior (local excited (LE) → HLCT → charge transfer (CT)) and decay dynamics covering a wide spectral region were demonstrated, and the CT state was observed to be highly fluorescent despite extremely large Stokes shift (∼130 nm)/fwhm (∼125 nm) and significant charge separation (0.75 charge·nm). Employing the Lippert-Mataga model, along with detailed photophysical studies and TDDFT calculations, key relationships between molecular design-electronic structure-exciton characteristics were elucidated with regards to HLCT and hot exciton channel formations. The interstate coupling between CT and LE states and the interplay of this coupling with respect to medium polarity were explored. A key relationship between excited-state symmetry breaking process and the formation of HLCT state was discussed for TPA-ended rod-shaped OPE π-systems. (R)ISC-related delayed fluorescence (τ ∼ 2-6 ns) processes were evident following the prompt decays (∼0.4-0.9 ns) both in the solution and in the solid-state. As a unique observation, the delayed fluorescence could be tuned and facilitated via small dielectric changes in the medium. Our results and the molecular engineering perspectives presented in this study may provide unique insights into the structural and electronic factors governing tunable excited state and hot-exciton channel formations in OPEs for (un)conventional solution-processed luminescence applications.
Collapse
Affiliation(s)
- Hakan Usta
- Department of Nanotechnology Engineering, Abdullah Gül University, 38080 Kayseri, Turkey
| | - Bunyemin Cosut
- Department of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
| | - Fahri Alkan
- Department of Nanotechnology Engineering, Abdullah Gül University, 38080 Kayseri, Turkey
| |
Collapse
|
7
|
Kotwica K, Wielgus I, Proń A. Azaacenes Based Electroactive Materials: Preparation, Structure, Electrochemistry, Spectroscopy and Applications-A Critical Review. MATERIALS 2021; 14:ma14185155. [PMID: 34576378 PMCID: PMC8472324 DOI: 10.3390/ma14185155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/23/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022]
Abstract
This short critical review is devoted to the synthesis and functionalization of various types of azaacenes, organic semiconducting compounds which can be considered as promising materials for the fabrication of n-channel or ambipolar field effect transistors (FETs), components of active layers in light emitting diodes (LEDs), components of organic memory devices and others. Emphasis is put on the diversity of azaacenes preparation methods and the possibility of tuning their redox and spectroscopic properties by changing the C/N ratio, modifying the nitrogen atoms distribution mode, functionalization with electroaccepting or electrodonating groups and changing their molecular shape. Processability, structural features and degradation pathways of these compounds are also discussed. A unique feature of this review concerns the listed redox potentials of all discussed compounds which were normalized vs. Fc/Fc+. This required, in frequent cases, recalculation of the originally reported data in which these potentials were determined against different types of reference electrodes. The same applied to all reported electron affinities (EAs). EA values calculated using different methods were recalculated by applying the method of Sworakowski and co-workers (Org. Electron. 2016, 33, 300-310) to yield, for the first time, a set of normalized data, which could be directly compared.
Collapse
Affiliation(s)
- Kamil Kotwica
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
- Correspondence:
| | - Ireneusz Wielgus
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warszawa, Poland; (I.W.); (A.P.)
| | - Adam Proń
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warszawa, Poland; (I.W.); (A.P.)
| |
Collapse
|
8
|
Kaiyasuan C, Chasing P, Nalaoh P, Wongkaew P, Sudyoadsuk T, Kongpatpanich K, Promarak V. Twisted Phenanthro[9,10-d]imidazole Derivatives as Non-doped Emitters for Efficient Electroluminescent Devices with Ultra-Deep Blue Emission and High Exciton Utilization Efficiency. Chem Asian J 2021; 16:2328-2337. [PMID: 34184404 DOI: 10.1002/asia.202100559] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/28/2021] [Indexed: 01/26/2023]
Abstract
Herein, two deep-blue emissive molecules (SAF-PI and SAF-DPI) are designed and synthesized using spiro[acridine-9,9'-fluorene] as a donor (D) substituted with 2-(3-methylphenyl)-1-phenyl-phenanthro[9,10-d]imidazole as an acceptor (A), forming twisted D-A and A-D-A structures, respectively. The photophysical studies and density functional theory (DFT) calculations reveal that both molecules exhibit hybridized local excited and charge transfer (HLCT) characteristics with deep blue emission color. They are effectively applied as non-doped emitters in OLEDs. Particularly, SAF-PI-based device achieves the high-definition television (HDTV) standard blue color emission peaked at 428 nm with CIE coordinate of (0.156, 0.053), a narrow full width at half maximum of 55 nm, a maximum external quantum efficiency (EQEmax ) of 4.57% and an exciton utilization efficiency of 65%.
Collapse
Affiliation(s)
- Chokchai Kaiyasuan
- Department of Materials Science and Engineering School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong, 21210, Thailand
| | - Pongsakorn Chasing
- Department of Materials Science and Engineering School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong, 21210, Thailand
| | - Phattananawee Nalaoh
- Department of Materials Science and Engineering School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong, 21210, Thailand
| | - Praweena Wongkaew
- Department of Materials Science and Engineering School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong, 21210, Thailand
| | - Taweesak Sudyoadsuk
- Department of Materials Science and Engineering School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong, 21210, Thailand
| | - Kanokwan Kongpatpanich
- Department of Materials Science and Engineering School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong, 21210, Thailand
| | - Vinich Promarak
- Department of Materials Science and Engineering School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong, 21210, Thailand.,Research Network of, NANOTEC-VISTEC on Nanotechnology for Energy Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong, 21210, Thailand
| |
Collapse
|
9
|
Abstract
Near ultraviolet (NUV) light-emitting materials and devices are significant due to unique applications in anti-counterfeit, manufacturing industries, and hygienic treatments. However, the development of high-efficiency NUV electroluminescent devices encounters great challenges and is far behind their RGB emitter counterparts. Besides the photoluminescence quantum yields (PLQYs) of NUV materials being higher than 40%, charge injection and lopsided carrier transport also determine the device performance, leading to great efforts in optimizing the frontier molecular orbitals to fit the adjacent function layer. In the exploration of NUV materials, organic molecules are one of the primary candidates, given their preparative facility and structural variability. Recently, all-inorganic quantum-dot light-emitting diodes (QLEDs) of Cd-based, ZnSe, graphene and inorganic perovskite emitters and organic-inorganic hybrid lead halide perovskite nanocrystals (NCs) were demonstrated for achieving NUV electroluminescence. Owing to the great efforts devoted to NUV material engineering and device configuration, NUV materials and devices have achieved great advances over the last two decades. In this review, we retrospect the development of NUV materials and devices covering all promising systems, which may inspire the enthusiasm of researchers to explore the huge potential in the NUV region.
Collapse
Affiliation(s)
- Shuo Chen
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China.
| | | |
Collapse
|
10
|
Zhang Y, Song J, Qu J, Qian PC, Wong WY. Recent progress of electronic materials based on 2,1,3-benzothiadiazole and its derivatives: synthesis and their application in organic light-emitting diodes. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9901-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Xu Y, Xu P, Hu D, Ma Y. Recent progress in hot exciton materials for organic light-emitting diodes. Chem Soc Rev 2020; 50:1030-1069. [PMID: 33231588 DOI: 10.1039/d0cs00391c] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
According to Kasha's rule, high-lying excited states usually have little effect on fluorescence. However, in some molecular systems, the high-lying excited states partly or even mainly contribute to the photophysical properties, especially in the process of harvesting triplet excitons in organic electroluminescent devices. In the current review, we focus on a type of organic light-emitting diode (OLED) materials called "hot exciton" materials, which can effectively harness the non-radiative triplet excitons via reverse intersystem crossing (RISC) from high-lying triplet states to singlet states (Tn→ Sm; n≥ 2, m≥ 1). Since Ma and Yang proposed the hot exciton mechanism for OLED material design in 2012, there have been many reports aiming at the design and synthesis of novel hot exciton luminogens. Herein, we present a comprehensive review of the recent progress in hot exciton materials. The developments of the hot exciton mechanism are reviewed, the fundamental principles regarding molecular design are discussed, and representative reported hot exciton luminogens are summarized and analyzed, along with their structure-property relationships and OLED applications.
Collapse
Affiliation(s)
- Yuwei Xu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
| | | | | | | |
Collapse
|