1
|
Yin IX, Udduttulla A, Xu VW, Chen KJ, Zhang MY, Chu CH. Use of Antimicrobial Nanoparticles for the Management of Dental Diseases. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:209. [PMID: 39940185 PMCID: PMC11820271 DOI: 10.3390/nano15030209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/14/2025]
Abstract
Dental diseases represent a significant global health concern, with traditional treatment methods often proving costly and lacking in long-term efficacy. Emerging research highlights nanoparticles as a promising, cost-effective therapeutic alternative, owing to their unique properties. This review aims to provide a comprehensive overview of the application of antimicrobial and antioxidant nanoparticles in the management of dental diseases. Silver and gold nanoparticles have shown great potential for inhibiting biofilm formation and thus preventing dental caries, gingivitis, and periodontitis. Various dental products can integrate copper nanoparticles, known for their antimicrobial properties, to combat oral infections. Similarly, zinc oxide nanoparticles enhance the antimicrobial performance of dental materials, including adhesives and cements. Titanium dioxide and cerium oxide nanoparticles possess antimicrobial and photocatalytic properties, rendering them advantageous for dental materials and oral hygiene products. Chitosan nanoparticles are effective in inhibiting oral pathogens and reducing inflammation in periodontal tissues. Additionally, curcumin nanoparticles, with their antimicrobial, anti-inflammatory, and antioxidant properties, can enhance the overall performance of dental materials and oral care products. Incorporating these diverse nanoparticles into dental materials and oral care products holds the potential to significantly reduce the risk of infection, control biofilm formation, and improve overall oral health. This review underscores the importance of continued research and development in this promising field to realize the full potential of nanoparticles in dental care.
Collapse
Affiliation(s)
| | | | | | | | | | - Chun Hung Chu
- Faculty of Dentistry, University of Hong Kong, Hong Kong SAR 999077, China; (I.X.Y.); (A.U.); (V.W.X.); (K.J.C.); (M.Y.Z.)
| |
Collapse
|
2
|
Das R, Suryawanshi N, Burnase N, Barapatre A, Dharshini RS, Kumar B, Saravana Kumar P. Classification and bibliometric analysis of hydrogels in periodontitis treatment: Trends, mechanisms, advantages, and future research directions. Dent Mater 2025; 41:81-99. [PMID: 39510856 DOI: 10.1016/j.dental.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
OBJECTIVES The review assess the potential of hydrogel-based drug delivery systems in treating periodontitis. Hydrogels are classified based on source, composition, configuration, crosslinking methods, ionic charge, and response to stimuli. METHODS The methodology comprised of comprehensive data collection from WoS, Scopus and PubMed databases covering the period of 2004-2024 of 626 documents. A bibliometric analysis was conducted using VOS Viewer to identify research trends, key contributors, prominent topics, and leading journals. A comparative analysis was performed to examine the benefits of hydrogels over conventional periodontitis treatments. Current research and innovations in hydrogel formulations were reviewed, including ongoing clinical trials and commercial products. RESULTS China was found to be the leading contributor to hydrogel research in periodontitis, with key topics including "hydrogels," "nanoparticles," and "drug delivery." A detailed classification system for hydrogels was established, aiding in their application for targeted drug delivery and tissue regeneration. Hydrogels were found to offer controlled drug release, support for tissue regeneration, and improved clinical outcomes compared to traditional treatments. Innovations highlighted including the use of various polymers like nano-hydroxyapatite/collagen composites, PLGA-based materials, and chitosan gels in clinical trials, demonstrating enhanced cell proliferation and tissue regeneration. SIGNIFICANCE This review underscores the significant potential of hydrogel-based therapies in advancing the treatment of periodontitis. By providing a comprehensive bibliometric analysis and highlighting key research and innovations, it emphasizes the advantages of hydrogels in terms of targeted drug delivery, minimal invasiveness, and support for tissue regeneration. The findings suggest that with further clinical trials and regulatory approvals, hydrogels could become a mainstream, effective treatment option for periodontitis, offering improved patient outcomes and potentially transforming periodontal therapy.
Collapse
Affiliation(s)
- Reena Das
- Department of Oral and Maxillofacial Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamilnadu, India.
| | - Nisha Suryawanshi
- Department of Zoology, Government College, Rau, Indore 453331, Madhya Pradesh, India
| | - Nishant Burnase
- Molecular Virology Laboratory, Department of Microbiology, Chhattisgarh Institute of Medical Sciences, Bilaspur 495001, Chhattisgarh, India
| | - Anand Barapatre
- Central Instrumentation Facility, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak 484886, Madhya Pradesh, India
| | - Rajathirajan Siva Dharshini
- Microbiology Team, Cavinkare R& D Centre, 12, Poonamalle Road, Ekkattuthangal, Chennai 600032, Tamilnadu, India; Molecular Genetics Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, Tamilnadu, India
| | - Bikash Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore 453552, Madhya Pradesh, India.
| | - Pachaiyappan Saravana Kumar
- Department of Oral and Maxillofacial Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamilnadu, India; Department of Chemistry, School of Science and Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
3
|
Yang Z, Yin G, Sun S, Xu P. Medical applications and prospects of polylactic acid materials. iScience 2024; 27:111512. [PMID: 39759018 PMCID: PMC11699620 DOI: 10.1016/j.isci.2024.111512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Polylactic acid (PLA) is a biodegradable and bio-based polymer that has gained significant attention as an environmentally friendly alternative to traditional petroleum-based plastics. In clinical treatment, biocompatible and non-toxic PLA materials enhance safety and reduce tissue reactions, while the biodegradability allows it to breakdown over time naturally, avoiding a second surgery. With the emergence of nanotechnology and three-dimensional (3D) printing, medical utilized-PLA has been produced with more structural and biological properties at both micro and macro scales for clinical therapy. This review summarizes current applications of the PLA-based biomaterials in drug delivery systems, orthopedic treatment, tissue regenerative engineering, and surgery and medical devices, providing viewpoints regarding the prospective medical utilization.
Collapse
Affiliation(s)
- Zhenqi Yang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Guoyong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shuyang Sun
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
- Asia Pacific Graduate Institute of Shanghai Jiao Tong University, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| |
Collapse
|
4
|
Zhang M, Yan S, Wang J, Zhong Y, Wang C, Zhang T, Xing D, Shao Y. Rational design of multifunctional hydrogels targeting the microenvironment of diabetic periodontitis. Int Immunopharmacol 2024; 138:112595. [PMID: 38950455 DOI: 10.1016/j.intimp.2024.112595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
Periodontitis is a chronic inflammatory disease and is the primary contributor to adult tooth loss. Diabetes exacerbates periodontitis, accelerates periodontal bone resorption. Thus, effectively managing periodontitis in individuals with diabetes is a long-standing challenge. This review introduces the etiology and pathogenesis of periodontitis, and analyzes the bidirectional relationship between diabetes and periodontitis. In this review, we comprehensively summarize the four pathological microenvironments influenced by diabetic periodontitis: high glucose microenvironment, bacterial infection microenvironment, inflammatory microenvironment, and bone loss microenvironment. The hydrogel design strategies and latest research development tailored to the four microenvironments of diabetic periodontitis are mainly focused on. Finally, the challenges and potential solutions in the treatment of diabetic periodontitis are discussed. We believe this review will be helpful for researchers seeking novel avenues in the treatment of diabetic periodontitis.
Collapse
Affiliation(s)
- Miao Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Saisai Yan
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Jie Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Yingjie Zhong
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Tingting Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yingchun Shao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
5
|
Wang X, Chen Q, Li J, Tian W, Liu Z, Chen T. Recent adavances of functional modules for tooth regeneration. J Mater Chem B 2024; 12:7497-7518. [PMID: 39021127 DOI: 10.1039/d4tb01027b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Dental diseases, such as dental caries and periodontal disorders, constitute a major global health challenge, affecting millions worldwide and often resulting in tooth loss. Traditional dental treatments, though beneficial, typically cannot fully restore the natural functions and structures of teeth. This limitation has prompted growing interest in innovative strategies for tooth regeneration methods. Among these, the use of dental stem cells to generate functional tooth modules represents an emerging and promising approach in dental tissue engineering. These modules aim to closely replicate the intricate morphology and essential physiological functions of dental tissues. Recent advancements in regenerative research have not only enhanced the assembly techniques for these modules but also highlighted their therapeutic potential in addressing various dental diseases. In this review, we discuss the latest progress in the construction of functional tooth modules, especially on regenerating dental pulp, periodontal tissue, and tooth roots.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Qiuyu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jiayi Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Zhi Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Tian Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
6
|
Hu X, He Y, Tong Y, Sun N, Ma G, Liu H, Kou N. Fabrication and characterization of a multi-functional GBR membrane of gelatin-chitosan for osteogenesis and angiogenesis. Int J Biol Macromol 2024; 266:130978. [PMID: 38508565 DOI: 10.1016/j.ijbiomac.2024.130978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 03/01/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Guided bone regeneration (GBR) membranes are widely used to treat bone defects. In this study, sequential electrospinning and electrospraying techniques were used to prepare a dual-layer GBR membrane composed of gelatin (Gel) and chitosan (CS) containing simvastatin (Sim)-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres (Sim@PLGA/Gel-CS). As a GBR membrane, Sim@PLGA/Gel-CS could act as a barrier to prevent soft tissue from occupying regions of bone tissue. Furthermore, compared with traditional GBR membranes, Sim@PLGA/Gel-CS played an active role on stimulating osteogenesis and angiogenesis. Determination of the physical, chemical, and biological properties of Sim@PLGA/Gel-CS membranes revealed uniform sizes of the nanofibers and microspheres and appropriate morphologies. Fourier-transform infrared spectroscopy was used to characterize the interactions between Sim@PLGA/Gel-CS molecules and the increase in the number of amide groups in crosslinked membranes. The thermal stability and tensile strength of the membranes increased after N-(3-dimethylaminopropyl)-N9- ethylcarbodiimide/N-hydroxysuccinimide crosslinking. The increased fiber density of the barrier layer decreased fibroblast migration compared with that in the osteogenic layer. Osteogenic function was indicated by the increased alkaline phosphatase activity, calcium deposition, and neovascularization. In conclusion, the multifunctional effects of Sim@PLGA/Gel-CS on the barrier and bone microenvironment were achieved via its dual-layer structure and simvastatin coating. Sim@PLGA/Gel-CS has potential applications in bone tissue regeneration.
Collapse
Affiliation(s)
- Xiaofei Hu
- School of Stomatology, Dalian Medical University, Lvshun South Road, Dalian, China; Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian, China
| | - Yuzhu He
- School of Stomatology, Dalian Medical University, Lvshun South Road, Dalian, China; Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian, China
| | - Yunmeng Tong
- School of Stomatology, Dalian Medical University, Lvshun South Road, Dalian, China; Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian, China
| | - Na Sun
- School of Materials Science and Engineering, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, China
| | - Guowu Ma
- School of Stomatology, Dalian Medical University, Lvshun South Road, Dalian, China; Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian, China.
| | - Huiying Liu
- School of Stomatology, Dalian Medical University, Lvshun South Road, Dalian, China; Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian, China.
| | - Ni Kou
- School of Stomatology, Dalian Medical University, Lvshun South Road, Dalian, China; Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian, China.
| |
Collapse
|
7
|
Ali M, Mohd Noor SNF, Mohamad H, Ullah F, Javed F, Abdul Hamid ZA. Advances in guided bone regeneration membranes: a comprehensive review of materials and techniques. Biomed Phys Eng Express 2024; 10:032003. [PMID: 38224615 DOI: 10.1088/2057-1976/ad1e75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Guided tissue/bone regeneration (GTR/GBR) is a widely used technique in dentistry to facilitate the regeneration of damaged bone and tissue, which involves guiding materials that eventually degrade, allowing newly created tissue to take its place. This comprehensive review the evolution of biomaterials for guided bone regeneration that showcases a progressive shift from non-resorbable to highly biocompatible and bioactive materials, allowing for more effective and predictable bone regeneration. The evolution of biomaterials for guided bone regeneration GTR/GBR has marked a significant progression in regenerative dentistry and maxillofacial surgery. Biomaterials used in GBR have evolved over time to enhance biocompatibility, bioactivity, and efficacy in promoting bone growth and integration. This review also probes into several promising fabrication techniques like electrospinning and latest 3D printing fabrication techniques, which have shown potential in enhancing tissue and bone regeneration processes. Further, the challenges and future direction of GTR/GBR are explored and discussed.
Collapse
Affiliation(s)
- Mohammed Ali
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Siti Noor Fazliah Mohd Noor
- Dental Stimulation and Virtual Learning, Research Excellence Consortium, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Hasmaliza Mohamad
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Faheem Ullah
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
- Department of Biological Sciences, Biopolymer Research Centre (BRC), National University of Medical Sciences, 46000, Rawalpindi, Pakistan
| | - Fatima Javed
- Department of Chemistry, Shaheed Benazir Butto Women University Peshawar, Charsadda Road Laramma, 25000, Peshawar, Pakistan
| | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| |
Collapse
|
8
|
Lei M, Wan H, Song J, Lu Y, Chang R, Wang H, Zhou H, Zhang X, Liu C, Qu X. Programmable Electro-Assembly of Collagen: Constructing Porous Janus Films with Customized Dual Signals for Immunomodulation and Tissue Regeneration in Periodontitis Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305756. [PMID: 38189598 PMCID: PMC10987108 DOI: 10.1002/advs.202305756] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/22/2023] [Indexed: 01/09/2024]
Abstract
Currently available guided bone regeneration (GBR) films lack active immunomodulation and sufficient osteogenic ability- in the treatment of periodontitis, leading to unsatisfactory treatment outcomes. Challenges remain in developing simple, rapid, and programmable manufacturing methods for constructing bioactive GBR films with tailored biofunctional compositions and microstructures. Herein, the controlled electroassembly of collagen under the salt effect is reported, which enables the construction of porous films with precisely tunable porous structures (i.e., porosity and pore size). In particular, bioactive salt species such as the anti-inflammatory drug diclofenac sodium (DS) can induce and customize porous structures while enabling the loading of bioactive salts and their gradual release. Sequential electro-assembly under pre-programmed salt conditions enables the manufacture of a Janus composite film with a dense and DS-containing porous layer capable of multiple functions in periodontitis treatment, which provides mechanical support, guides fibrous tissue growth, and acts as a barrier preventing its penetration into bone defects. The DS-containing porous layer delivers dual bio-signals through its morphology and the released DS, inhibiting inflammation and promoting osteogenesis. Overall, this study demonstrates the potential of electrofabrication as a customized manufacturing platform for the programmable assembly of collagen for tailored functions to adapt to specific needs in regenerative medicine.
Collapse
Affiliation(s)
- Miao Lei
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
| | - Haoran Wan
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
| | - Jia Song
- Department of Dental Materials & Dental Medical Devices Testing CenterNMPA Key Laboratory for Dental MaterialsPeking University School and Hospital of StomatologyBeijing100081China
| | - Yanhui Lu
- Department of Dental Materials & Dental Medical Devices Testing CenterNMPA Key Laboratory for Dental MaterialsPeking University School and Hospital of StomatologyBeijing100081China
| | - Ronghang Chang
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
| | - Honglei Wang
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
| | - Hang Zhou
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing CenterNMPA Key Laboratory for Dental MaterialsPeking University School and Hospital of StomatologyBeijing100081China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistrySchool of materials science and engineeringEast China University of Science and TechnologyShanghai200237China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell MetabolismEast China University of Science and TechnologyShanghai200237China
- Wenzhou Institute of Shanghai UniversityWenzhou325000China
| |
Collapse
|
9
|
Wang T, Zhou Y, Zhang W, Xue Y, Xiao Z, Zhou Y, Peng X. Exosomes and exosome composite scaffolds in periodontal tissue engineering. Front Bioeng Biotechnol 2024; 11:1287714. [PMID: 38304105 PMCID: PMC10831513 DOI: 10.3389/fbioe.2023.1287714] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024] Open
Abstract
Promoting complete periodontal regeneration of damaged periodontal tissues, including dental cementum, periodontal ligament, and alveolar bone, is one of the challenges in the treatment of periodontitis. Therefore, it is urgent to explore new treatment strategies for periodontitis. Exosomes generated from stem cells are now a promising alternative to stem cell therapy, with therapeutic results comparable to those of their blast cells. It has great potential in regulating immune function, inflammation, microbiota, and tissue regeneration and has shown good effects in periodontal tissue regeneration. In addition, periodontal tissue engineering combines exosomes with biomaterial scaffolds to maximize the therapeutic advantages of exosomes. Therefore, this article reviews the progress, challenges, and prospects of exosome and exosome-loaded composite scaffolds in periodontal regeneration.
Collapse
Affiliation(s)
- Tingyu Wang
- The Second Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
- Department of Pathophysiology, Guangdong Medical University, Dongguan, China
| | - Yanxing Zhou
- Institute of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Wenwen Zhang
- The Second Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
| | - Yuanye Xue
- The Second Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
| | - Ziteng Xiao
- The Second Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
| | - Yanfang Zhou
- The Second Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
- Department of Pathophysiology, Guangdong Medical University, Dongguan, China
| | - Xinsheng Peng
- Biomedical Innovation Center, Guangdong Medical University, Dongguan, China
- Institute of Marine Medicine, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
10
|
Jahangirnezhad M, Mahmoudinezhad SS, Moradi M, Moradi K, Rohani A, Tayebi L. Bone Scaffold Materials in Periodontal and Tooth-supporting Tissue Regeneration: A Review. Curr Stem Cell Res Ther 2024; 19:449-460. [PMID: 36578254 DOI: 10.2174/1574888x18666221227142055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Periodontium is an important tooth-supporting tissue composed of both hard (alveolar bone and cementum) and soft (gingival and periodontal ligament) sections. Due to the multi-tissue architecture of periodontium, reconstruction of each part can be influenced by others. This review focuses on the bone section of the periodontium and presents the materials used in tissue engineering scaffolds for its reconstruction. MATERIALS AND METHODS The following databases (2015 to 2021) were electronically searched: ProQuest, EMBASE, SciFinder, MRS Online Proceedings Library, Medline, and Compendex. The search was limited to English-language publications and in vivo studies. RESULTS Eighty-three articles were found in primary searching. After applying the inclusion criteria, seventeen articles were incorporated into this study. CONCLUSION In complex periodontal defects, various types of scaffolds, including multilayered ones, have been used for the functional reconstruction of different parts of periodontium. While there are some multilayered scaffolds designed to regenerate alveolar bone/periodontal ligament/cementum tissues of periodontium in a hierarchically organized construct, no scaffold could so far consider all four tissues involved in a complete periodontal defect. The progress and material considerations in the regeneration of the bony part of periodontium are presented in this work to help investigators develop tissue engineering scaffolds suitable for complete periodontal regeneration.
Collapse
Affiliation(s)
- Mahmood Jahangirnezhad
- Department of Periodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sadaf Sadat Mahmoudinezhad
- Department of Periodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Melika Moradi
- Department of Periodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kooshan Moradi
- Department of Periodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Rohani
- Department of Periodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI, 53233, USA
| |
Collapse
|
11
|
Epicoco L, Pellegrino R, Madaghiele M, Friuli M, Giannotti L, Di Chiara Stanca B, Palermo A, Siculella L, Savkovic V, Demitri C, Nitti P. Recent Advances in Functionalized Electrospun Membranes for Periodontal Regeneration. Pharmaceutics 2023; 15:2725. [PMID: 38140066 PMCID: PMC10747510 DOI: 10.3390/pharmaceutics15122725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Periodontitis is a global, multifaceted, chronic inflammatory disease caused by bacterial microorganisms and an exaggerated host immune response that not only leads to the destruction of the periodontal apparatus but may also aggravate or promote the development of other systemic diseases. The periodontium is composed of four different tissues (alveolar bone, cementum, gingiva, and periodontal ligament) and various non-surgical and surgical therapies have been used to restore its normal function. However, due to the etiology of the disease and the heterogeneous nature of the periodontium components, complete regeneration is still a challenge. In this context, guided tissue/bone regeneration strategies in the field of tissue engineering and regenerative medicine have gained more and more interest, having as a goal the complete restoration of the periodontium and its functions. In particular, the use of electrospun nanofibrous scaffolds has emerged as an effective strategy to achieve this goal due to their ability to mimic the extracellular matrix and simultaneously exert antimicrobial, anti-inflammatory and regenerative activities. This review provides an overview of periodontal regeneration using electrospun membranes, highlighting the use of these nanofibrous scaffolds as delivery systems for bioactive molecules and drugs and their functionalization to promote periodontal regeneration.
Collapse
Affiliation(s)
- Luana Epicoco
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
- Institute of Medical Physics and Biophysics, University of Leipzig, 04103 Leipzig, Germany
| | - Rebecca Pellegrino
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
| | - Marta Madaghiele
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
| | - Marco Friuli
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
| | - Laura Giannotti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.G.); (B.D.C.S.); (L.S.)
| | - Benedetta Di Chiara Stanca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.G.); (B.D.C.S.); (L.S.)
| | - Andrea Palermo
- Implant Dentistry College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Luisa Siculella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.G.); (B.D.C.S.); (L.S.)
| | - Vuk Savkovic
- Clinic and Polyclinic for Oral and Maxillofacial Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Christian Demitri
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
| | - Paola Nitti
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (M.M.); (M.F.); (C.D.)
| |
Collapse
|
12
|
Li Y, Zou H, Zheng Z, Liu Z, Hu H, Wu W, Wang T. Advances in the Study of Bioactive Nanoparticles for the Treatment of HCC and Its Postoperative Residual Cancer. Int J Nanomedicine 2023; 18:2721-2735. [PMID: 37250475 PMCID: PMC10216871 DOI: 10.2147/ijn.s399146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Primary hepatocellular carcinoma (HCC, hepatocellular carcinoma) is the third leading cause of tumor death in the world and the second leading cause in China. The high recurrence rate at 5 years after surgery also seriously affects the long-term survival of HCC patients. For reasons such as poor liver function, large tumors, or vascular invasion, only relatively limited palliative treatment is available. Therefore, effective diagnostic and therapeutic strategies are needed to improve the complex microenvironment and block the mechanism of tumor development in order to treat the tumor and prevent recurrence. A variety of bioactive nanoparticles have been shown to have therapeutic effects on hepatocellular carcinoma and have the advantages of improving drug solubility, reducing drug side effects, preventing degradation in the blood, increasing drug exposure time, and reducing drug resistance. The development of bioactive nanoparticles is expected to complete the current clinical therapeutic approach. In this review, we discuss the therapeutic advances of different nanoparticles for hepatocellular carcinoma and discuss their potential for postoperative applications with respect to possible mechanisms of hepatocellular carcinoma recurrence. We further discuss the limitations regarding the application of NPs and the safety of NPs.
Collapse
Affiliation(s)
- Yanxu Li
- Medical College of Yangzhou University, Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Hao Zou
- Dalian Medical University, Affiliated Hospital of Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Zekun Zheng
- Dalian Medical University, Affiliated Hospital of Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Zhuoheng Liu
- Dalian Medical University, Affiliated Hospital of Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Huiyuan Hu
- Dalian Medical University, Affiliated Hospital of Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Wei Wu
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou City, Jiangsu Province, People’s Republic of China
| |
Collapse
|
13
|
Santos MS, Carvalho MS, Silva JC. Recent Advances on Electrospun Nanofibers for Periodontal Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1307. [PMID: 37110894 PMCID: PMC10141626 DOI: 10.3390/nano13081307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Periodontitis is an inflammatory infection caused by bacterial plaque accumulation that affects the periodontal tissues. Current treatments lack bioactive signals to induce tissue repair and coordinated regeneration of the periodontium, thus alternative strategies are needed to improve clinical outcomes. Electrospun nanofibers present high porosity and surface area and are able to mimic the natural extracellular matrix, which modulates cell attachment, migration, proliferation, and differentiation. Recently, several electrospun nanofibrous membranes have been fabricated with antibacterial, anti-inflammatory, and osteogenic properties, showing promising results for periodontal regeneration. Thus, this review aims to provide an overview of the current state of the art of these nanofibrous scaffolds in periodontal regeneration strategies. First, we describe the periodontal tissues and periodontitis, as well as the currently available treatments. Next, periodontal tissue engineering (TE) strategies, as promising alternatives to the current treatments, are addressed. Electrospinning is briefly explained, the characteristics of electrospun nanofibrous scaffolds are highlighted, and a detailed overview of electrospun nanofibers applied to periodontal TE is provided. Finally, current limitations and possible future developments of electrospun nanofibrous scaffolds for periodontitis treatment are also discussed.
Collapse
Affiliation(s)
- Mafalda S. Santos
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Marta S. Carvalho
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João C. Silva
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
14
|
Guo Q, Zheng J, Lin H, Han Z, Wang Z, Ren J, Zhai J, Zhao H, Du R, Li C. Conditioned media of deer antler stem cells accelerate regeneration of alveolar bone defects in rats. Cell Prolif 2023; 56:e13454. [PMID: 36929672 DOI: 10.1111/cpr.13454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
The destruction of periodontal alveolar bone (AB) caused by periodontitis is regarded as one of the major reasons for tooth loss. The inhibition of bone resorption and regeneration of lost AB are the desirable outcomes in clinical practice but remain in challenge. The use of mesenchymal stem cells (MSCs) is one current approach for achieving true restoration of AB defects (ABD). Antler stem cells (AnSC) are capable of renewing a huge mammalian bony appendage, the deer antler, suggesting an unparalleled potential for bone regeneration. Herein, we investigated the effectiveness of deer AnSCs conditioned medium (CM, AnSC-CM) for repair of surgically-created ABD using a rat model and sought to define the underlying mechanisms. The results showed that AnSC-CM effectively induced regeneration of AB tissue; the outcome was significantly better than human bone marrow mesenchymal stem cell conditioned medium (hBMSC-CM). AnSC-CM treatment upregulated osteogenic factors and downregulated osteoclastic differentiation factors; stimulated proliferation, migration and differentiation of resident MSCs toward osteogenic lineage cells; modulated macrophage polarization toward the M2 phenotype and suppressed osteoclastogenesis. That AnSC-CM resulted in better outcomes than hBMSC-CM in treating ABD was attributed to the cell compatibility as both AnSCs and AB tissue are neural crest-derived. In conclusion, the effects of AnSC-CM on AB tissue regeneration were achieved through both promotion of osteogenesis and inhibition of osteoclastogenesis. We believe that AnSC-CM is a candidate for effective treatment of ABD in dental clinical practice but will require investment in further development.
Collapse
Affiliation(s)
- Qianqian Guo
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, Jilin, China
| | - Junjun Zheng
- Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Hongbing Lin
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Zhongming Han
- Jilin Agricultural University, College of Chinese Medicinal Materials, Changchun, Jilin, 130118, China
| | - Zhen Wang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, Jilin, China
| | - Jing Ren
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, Jilin, China
| | - Jingjie Zhai
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Haiping Zhao
- Qingdao Agricultural University, College of Animal Science and Technology, Qingdao, Shandong, China
| | - Rui Du
- Jilin Agricultural University, College of Chinese Medicinal Materials, Changchun, Jilin, 130118, China
| | - Chunyi Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, Jilin, China
| |
Collapse
|
15
|
Tan Z, Luo Y, Yang L. Basic fibroblast growth factor/chitosan derivatives/collagen composite thermosensitive hydrogel promotes perio-dontal tissue regeneration in rats. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2023; 41:21-28. [PMID: 38596937 PMCID: PMC9988450 DOI: 10.7518/hxkq.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/26/2022] [Indexed: 04/11/2024]
Abstract
OBJECTIVES To investigate the feasibility of different thermosensitive composite hydrogels from chitosan derivatives as scaffold materials for periodontal tissue engineering. METHODS Three chitosan derivatives with different biological characteristics were prepared, namely, sulfonated chitosan (SCS), phosphorylated chitosan (PCS), and phosphorylated sulfonated chitosan (PSCS). Three thermosensitive composite hydrogels were constructed using basic fibroblast growth factor (bFGF), the chitosan derivatives, and collagen. Twenty male Wistar rats were randomly divided into control group, blank group, bFGF/SCS/collagen composite thermosensitive hydrogel group, bFGF/PCS/collagen compo-site thermosensitive hydrogel group, and bFGF/PSCS/collagen composite thermosensitive hydrogel group. Then, three-wall intrabony defects were established. The defects were treated with the different kinds of thermosensitive composite hydrogels. After 6 weeks of surgery, the animals were killed, and specimens were collected. Then, gross observation, hematoxylin-eosin staining, and Masson staining were performed. RESULTS The bFGF/chitosan derivatives/collagen composite thermosensitive hydrogel groups and the control group had statistical differences in the relative alveolar bone height, relative epithelial down growth and grading count score of periodontal tissue regeneration (P<0.05). CONCLUSIONS bFGF/chitosan derivatives/collagen composite thermosensitive hydrogels have good application prospects in periodontal tissue engineering.
Collapse
Affiliation(s)
- Zhongjuan Tan
- Dept. of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Yuanyuan Luo
- Dept. of Stomatology, Liaocheng People's Hospital, Liaocheng 252020, China
| | - Li Yang
- Dept. of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| |
Collapse
|
16
|
Fu Z, Li D, Lin K, Zhao B, Wang X. Enhancing the osteogenic differentiation of aligned electrospun poly(L-lactic acid) nanofiber scaffolds by incorporation of bioactive calcium silicate nanowires. Int J Biol Macromol 2023; 226:1079-1087. [PMID: 36436595 DOI: 10.1016/j.ijbiomac.2022.11.224] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Bone defects cause serious psychological and economic burden to patients. Artificially bone repairing materials bring hope to the treatment of bone defects. Electrospun technique has attracted great attention since it can fabricate fibers from nano- to micro- scale continuously. Scaffolds fabricated by electrospun can mimic the structure of extracellular matrix which is beneficial to cell adhesion and migration. Researches have showed that bioactive ions (such as silicon and calcium ions) can promote bone regeneration. In addition, physical cues can affect cellular behavior such as cell adhesion and differentiation. In this study, two kinds of calcium silicate - adopted poly (L-lactic acid) (CS-PLLA) electrospun scaffolds with random/aligned structures were prepared by electrospun to promote bone regeneration. The integration of CS nanowires improved the biological property of PLLA electrospun scaffolds. Furthermore, in vitro results indicated that aligned 1 wt% CS adopted PLLA (PCA1) electrospun scaffolds with better physical properties and facilitated cell adhesion, improved alkaline phosphate (ALP) activity and the expression of osteogenic genes (Osteopontin (OPN), Collagen type 1 (Col-1) and Bone morphogenetic protein-2 (BMP-2)) compared with random 1 wt% CS adopted PLLA (PCR1) electrospun scaffolds. In conclusion, the prepared PCA1 electrospun scaffolds might be a potential candidate for bone regeneration in defect areas.
Collapse
Affiliation(s)
- Zeyu Fu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, China; National Center for Stomatology, China; National Clinical Research Center for Oral Diseases, China; Shanghai Key Laboratory of Stomatology, China
| | - Dejian Li
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, China; National Center for Stomatology, China; National Clinical Research Center for Oral Diseases, China; Shanghai Key Laboratory of Stomatology, China; Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201301, China
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, China; National Center for Stomatology, China; National Clinical Research Center for Oral Diseases, China; Shanghai Key Laboratory of Stomatology, China.
| | - Bin Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xudong Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, China; National Center for Stomatology, China; National Clinical Research Center for Oral Diseases, China; Shanghai Key Laboratory of Stomatology, China.
| |
Collapse
|
17
|
Cui H, You Y, Cheng GW, Lan Z, Zou KL, Mai QY, Han YH, Chen H, Zhao YY, Yu GT. Advanced materials and technologies for oral diseases. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2156257. [PMID: 36632346 PMCID: PMC9828859 DOI: 10.1080/14686996.2022.2156257] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Oral disease, as a class of diseases with very high morbidity, brings great physical and mental damage to people worldwide. The increasing burden and strain on individuals and society make oral diseases an urgent global health problem. Since the treatment of almost all oral diseases relies on materials, the rapid development of advanced materials and technologies has also promoted innovations in the treatment methods and strategies of oral diseases. In this review, we systematically summarized the application strategies in advanced materials and technologies for oral diseases according to the etiology of the diseases and the comparison of new and old materials. Finally, the challenges and directions of future development for advanced materials and technologies in the treatment of oral diseases were refined. This review will guide the fundamental research and clinical translation of oral diseases for practitioners of oral medicine.
Collapse
Affiliation(s)
- Hao Cui
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yan You
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Wang Cheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhou Lan
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Ke-Long Zou
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Qiu-Ying Mai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan-Hua Han
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hao Chen
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yu-Yue Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Guang-Tao Yu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Wang X, Chen J, Tian W. Strategies of cell and cell-free therapies for periodontal regeneration: the state of the art. Stem Cell Res Ther 2022; 13:536. [PMID: 36575471 PMCID: PMC9795760 DOI: 10.1186/s13287-022-03225-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Periodontitis often causes irrevocable destruction of tooth-supporting tissues and eventually leads to tooth loss. Currently, stem cell-based tissue engineering has achieved a favorable result in regenerating periodontal tissues. Moreover, cell-free therapies that aim to facilitate the recruitment of resident repair cell populations to injured sites by promoting cell mobilization and homing have become alternative options to cell therapy. MAIN TEXT Cell aggregates (e.g., cell sheets) retain a large amount of extracellular matrix which can improve cell viability and survival rates after implantation in vivo. Electrostatic spinning and 3D bioprinting through fabricating specific alignments and interactions scaffold structures have made promising outcomes in the construction of a microenvironment conducive to periodontal regeneration. Cell-free therapies with adding biological agents (growth factors, exosomes and conditioned media) to promote endogenous regeneration have somewhat addressed the limitations of cell therapy. CONCLUSION Hence, this article reviews the progress of stem cell-based tissue engineering and advanced strategies for endogenous regeneration based on stem cell derivatives in periodontal regeneration.
Collapse
Affiliation(s)
- Xiuting Wang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, People’s Republic of China ,grid.13291.380000 0001 0807 1581National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, People’s Republic of China ,grid.13291.380000 0001 0807 1581Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China
| | - Jinlong Chen
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, People’s Republic of China ,grid.13291.380000 0001 0807 1581National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, People’s Republic of China ,grid.13291.380000 0001 0807 1581Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China
| | - Weidong Tian
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, People’s Republic of China ,grid.13291.380000 0001 0807 1581National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, People’s Republic of China ,grid.13291.380000 0001 0807 1581Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China
| |
Collapse
|
19
|
Chen H, Zhang Y, Yu T, Song G, Xu T, Xin T, Lin Y, Han B. Nano-Based Drug Delivery Systems for Periodontal Tissue Regeneration. Pharmaceutics 2022; 14:2250. [PMID: 36297683 PMCID: PMC9612159 DOI: 10.3390/pharmaceutics14102250] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/15/2022] Open
Abstract
Periodontitis is a dysbiotic biofilm-induced and host-mediated inflammatory disease of tooth supporting tissues that leads to progressive destruction of periodontal ligament and alveolar bone, thereby resulting in gingival recession, deep periodontal pockets, tooth mobility and exfoliation, and aesthetically and functionally compromised dentition. Due to the improved biopharmaceutical and pharmacokinetic properties and targeted and controlled drug release, nano-based drug delivery systems have emerged as a promising strategy for the treatment of periodontal defects, allowing for increased efficacy and safety in controlling local inflammation, establishing a regenerative microenvironment, and regaining bone and attachments. This review provides an overview of nano-based drug delivery systems and illustrates their practical applications, future prospects, and limitations in the field of periodontal tissue regeneration.
Collapse
Affiliation(s)
- Huanhuan Chen
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Yunfan Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tingting Yu
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Guangying Song
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tianmin Xu
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tianyi Xin
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Yifan Lin
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Bing Han
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| |
Collapse
|
20
|
Li M, Lv J, Yang Y, Cheng G, Guo S, Liu C, Ding Y. Advances of Hydrogel Therapy in Periodontal Regeneration-A Materials Perspective Review. Gels 2022; 8:gels8100624. [PMID: 36286125 PMCID: PMC9602018 DOI: 10.3390/gels8100624] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 11/04/2022] Open
Abstract
Hydrogel, a functional polymer material, has emerged as a promising technology for therapies for periodontal diseases. It has the potential to mimic the extracellular matrix and provide suitable attachment sites and growth environments for periodontal cells, with high biocompatibility, water retention, and slow release. In this paper, we have summarized the main components of hydrogel in periodontal tissue regeneration and have discussed the primary construction strategies of hydrogels as a reference for future work. Hydrogels provide an ideal microenvironment for cells and play a significant role in periodontal tissue engineering. The development of intelligent and multifunctional hydrogels for periodontal tissue regeneration is essential for future research.
Collapse
|
21
|
Nanofibrous chitosan/polyethylene oxide silver/hydroxyapatite/silica composite as a potential biomaterial for local treatment of periodontal disease. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
22
|
Nanomaterials in Scaffolds for Periodontal Tissue Engineering: Frontiers and Prospects. Bioengineering (Basel) 2022; 9:bioengineering9090431. [PMID: 36134977 PMCID: PMC9495816 DOI: 10.3390/bioengineering9090431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/15/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022] Open
Abstract
The regeneration of periodontium represents important challenges to controlling infection and achieving functional regeneration. It has been recognized that tissue engineering plays a vital role in the treatment of periodontal defects, profiting from scaffolds that create the right microenvironment and deliver signaling molecules. Attributable to the excellent physicochemical and antibacterial properties, nanomaterials show great potential in stimulating tissue regeneration in tissue engineering. This article reviewed the up-to-date development of nanomaterials in scaffolds for periodontal tissue engineering. The paper also represented the merits and defects of different materials, among which the biocompatibility, antibacterial properties, and regeneration ability were discussed in detail. To optimize the project of choosing materials and furthermore lay the foundation for constructing a series of periodontal tissue engineering scaffolds, various nanomaterials and their applications in periodontal regeneration were introduced.
Collapse
|
23
|
Cui J, Yu X, Yu B, Yang X, Fu Z, Wan J, Zhu M, Wang X, Lin K. Coaxially Fabricated Dual-Drug Loading Electrospinning Fibrous Mat with Programmed Releasing Behavior to Boost Vascularized Bone Regeneration. Adv Healthc Mater 2022; 11:e2200571. [PMID: 35668705 DOI: 10.1002/adhm.202200571] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/22/2022] [Indexed: 01/24/2023]
Abstract
In clinical treatment, the bone regeneration of critical-size defects is desiderated to be solved, and the regeneration of large bone segment defects depends on early vascularization. Therefore, overcoming insufficient vascularization in artificial bone grafts may be a promising strategy for critical-size bone regeneration. Herein, a novel dual-drug programmed releasing electrospinning fibrous mat (EFM) with a deferoxamine (DFO)-loaded shell layer and a dexamethasone (DEX)-loaded core layer is fabricated using coaxial electrospinning technology, considering the temporal sequence of vascularization and bone repair. DFO acts as an angiogenesis promoter and DEX is used as an osteogenesis inducer. The results demonstrate that the early and rapid release of DFO promotes angiogenesis in human umbilical vascular endothelial cells and the sustained release of DEX enhances the osteogenic differentiation of rat bone mesenchymal stem cells. DFO and DEX exert synergetic effects on osteogenic differentiation via the Wnt/β-catenin signaling pathway, and the dual-drug programmed releasing EFM acquired perfect vascularized bone regeneration ability in a rat calvarial defect model. Overall, the study suggests a low-cost strategy to enhance vascularized bone regeneration by adjusting the behavior of angiogenesis and osteogenesis in time dimension.
Collapse
Affiliation(s)
- Jinjie Cui
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Xingge Yu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Bin Yu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Xiuyi Yang
- Department of Orthodontics, Affiliated Stomatological Hospital of Soochow University, Suzhou, 215005, China
| | - Zeyu Fu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Jianyu Wan
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Min Zhu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Xudong Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| |
Collapse
|
24
|
Varghese J, Rajagopal A, Shanmugasundaram S. Role of Biomaterials Used for Periodontal Tissue Regeneration-A Concise Evidence-Based Review. Polymers (Basel) 2022; 14:3038. [PMID: 35956553 PMCID: PMC9370319 DOI: 10.3390/polym14153038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/04/2022] [Accepted: 07/06/2022] [Indexed: 12/14/2022] Open
Abstract
Periodontal infections are noncommunicable chronic inflammatory diseases of multifactorial origin that can induce destruction of both soft and hard tissues of the periodontium. The standard remedial modalities for periodontal regeneration include nonsurgical followed by surgical therapy with the adjunctive use of various biomaterials to achieve restoration of the lost tissues. Lately, there has been substantial development in the field of biomaterial, which includes the sole or combined use of osseous grafts, barrier membranes, growth factors and autogenic substitutes to achieve tissue and bone regeneration. Of these, bone replacement grafts have been widely explored for their osteogenic potential with varied outcomes. Osseous grafts are derived from either human, bovine or synthetic sources. Though the biologic response from autogenic biomaterials may be better, the use of bone replacement synthetic substitutes could be practical for clinical practice. This comprehensive review focuses initially on bone graft replacement substitutes, namely ceramic-based (calcium phosphate derivatives, bioactive glass) and autologous platelet concentrates, which assist in alveolar bone regeneration. Further literature compilations emphasize the innovations of biomaterials used as bone substitutes, barrier membranes and complex scaffold fabrication techniques that can mimic the histologically vital tissues required for the regeneration of periodontal apparatus.
Collapse
Affiliation(s)
- Jothi Varghese
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (A.R.); (S.S.)
| | | | | |
Collapse
|
25
|
A Bibliometric Analysis of Electrospun Nanofibers for Dentistry. J Funct Biomater 2022; 13:jfb13030090. [PMID: 35893458 PMCID: PMC9326643 DOI: 10.3390/jfb13030090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Electrospun nanofibers have been widely used in dentistry due to their excellent properties, such as high surface area and high porosity, this bibliometric study aimed to review the application fields, research status, and development trends of electrospun nanofibers in different fields of dentistry in recent years. All of the data were obtained from the Web of Science from 2004 to 2021. Origin, Microsoft Excel, VOSviewer, and Carrot2 were used to process, analyze, and evaluate the publication year, countries/region, affiliations, authors, citations, keywords, and journal data. After being refined by the year of publication, document types and research fields, a total of 378 publications were included in this study, and an increasing number of publications was evident. Through linear regression calculations, it is predicted that the number of published articles in 2022 will be 66. The most published journal about electrospun dental materials is Materials Science & Engineering C-Materials for Biological Applications, among the six core journals identified, the percent of journals with Journal Citation Reports (JCR) Q1 was 60%. A total of 17.60% of the publications originated from China, and the most productive institution was the University of Sheffield. Among all the 1949 authors, the most productive author was Marco C. Bottino. Most electrospun dental nanofibers are used in periodontal regeneration, and Polycaprolactone (PCL) is the most frequently used material in all studies. With the global upsurge in research on electrospun dental materials, bone regeneration, tissue regeneration, and cell differentiation and proliferation will still be the research hotspots of electrospun dental materials in recent years. Extensive collaboration and citations among authors, institutions and countries will also reach a new level.
Collapse
|
26
|
PLA Nanofibers for Microenvironmental-Responsive Quercetin Release in Local Periodontal Treatment. Molecules 2022; 27:molecules27072205. [PMID: 35408602 PMCID: PMC9000246 DOI: 10.3390/molecules27072205] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 01/10/2023] Open
Abstract
The management of periodontitis remains a vital clinical challenge due to the interplay between the microorganisms of the dental biofilm and the host inflammatory response leading to a degenerative process in the surrounding tissues. Quercetin (QUE), a natural flavonol found in many foods, including apples, onions and tea, has exhibited prolonged and strong antibiofilm and anti-inflammatory effects both in vitro and in vivo. However, its clinical application is limited by its poor stability and water solubility, as well as its low bioavailability. Thus, in the present study, electrospun polylactic acid (PLA) nanofibers loaded with different amounts (5−10% w/w) of QUE were produced to rapidly respond to the acidic microenvironment typical of periodontal pockets during periodontal disease. This strategy demonstrated that PLA-QUE membranes can act as a drug reservoir releasing high QUE concentrations in the presence of oral bacterial infection (pH < 5.5), and thus limiting Pseudomonas aeruginosa PAO1 and Streptococcus mutans biofilm maturation. In addition, released QUE exerts antioxidant and anti-inflammatory effects on P. gingivalis Lipopolysaccharide (LPS)-stimulated human gingival fibroblast (HGFs). The reported results confirmed that PLA-QUE membranes could inhibit subgingival biofilm maturation while reducing interleukin release, thereby limiting host inflammatory response. Overall, this study provided an effective pH-sensitive drug delivery system as a promising strategy for treating periodontitis.
Collapse
|
27
|
Bee SL, Hamid ZAA. Asymmetric resorbable-based dental barrier membrane for periodontal guided tissue regeneration and guided bone regeneration: A review. J Biomed Mater Res B Appl Biomater 2022; 110:2157-2182. [PMID: 35322931 DOI: 10.1002/jbm.b.35060] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 02/28/2022] [Accepted: 03/12/2022] [Indexed: 12/24/2022]
Abstract
Guided tissue regeneration (GTR) and guided bone regeneration (GBR) are two common dental regenerative treatments targeted at reconstructing damaged periodontal tissue and bone caused by periodontitis. During GTR/GBR treatment, a barrier membrane is placed in the interface between the soft tissue and the periodontal defect to inhibit soft tissue ingrowth and creating a space for the infiltration of slow-growing bone cells into the defect site. Recently, asymmetric resorbable-based barrier membrane has received a considerable attention as a new generation of GTR/GBR membrane. Despite numerous literatures about asymmetric-based membrane that had been published, there is lacks comprehensive review on asymmetric barrier membrane that particularly highlight the importance of membrane structure for periodontal regeneration. In this review, we systematically cover the latest development and advancement of various kinds of asymmetric barrier membranes used in periodontal GTR/GBR application. Herein, the ideal requirements for constructing a barrier membrane as well as the rationale behind the asymmetric design, are firstly presented. Various innovative methods used in fabricating asymmetric barrier membrane are being further discussed. Subsequently, the application and evaluation of various types of asymmetric barrier membrane used for GTR/GBR are compiled and extensively reviewed based on the recent literatures reported. Based on the existing gap in this field, the future research directions of asymmetric resorbable-based barrier membrane such as its combination potential with bone grafts, are also presented.
Collapse
Affiliation(s)
- Soo-Ling Bee
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Penang, Malaysia
| | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
28
|
Fraser D, Caton J, Benoit DSW. Periodontal Wound Healing and Regeneration: Insights for Engineering New Therapeutic Approaches. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.815810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Periodontitis is a widespread inflammatory disease that leads to loss of the tooth supporting periodontal tissues. The few therapies available to regenerate periodontal tissues have high costs and inherent limitations, inspiring the development of new approaches. Studies have shown that periodontal tissues have an inherent capacity for regeneration, driven by multipotent cells residing in the periodontal ligament (PDL). The purpose of this review is to describe the current understanding of the mechanisms driving periodontal wound healing and regeneration that can inform the development of new treatment approaches. The biologic basis underlying established therapies such as guided tissue regeneration (GTR) and growth factor delivery are reviewed, along with examples of biomaterials that have been engineered to improve the effectiveness of these approaches. Emerging therapies such as those targeting Wnt signaling, periodontal cell delivery or recruitment, and tissue engineered scaffolds are described in the context of periodontal wound healing, using key in vivo studies to illustrate the impact these approaches can have on the formation of new cementum, alveolar bone, and PDL. Finally, design principles for engineering new therapies are suggested which build on current knowledge of periodontal wound healing and regeneration.
Collapse
|
29
|
Yadalam PK, Kalaivani V, Fageeh HI, Ibraheem W, Al-Ahmari MM, Khan SS, Ahmed ZH, Abdulkarim HH, Baeshen HA, Balaji TM, Bhandi S, Raj AT, Patil S. Future Drug Targets in Periodontal Personalised Medicine-A Narrative Review. J Pers Med 2022; 12:371. [PMID: 35330371 PMCID: PMC8955099 DOI: 10.3390/jpm12030371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 02/08/2023] Open
Abstract
Periodontal disease is an infection-driven inflammatory disease characterized by the destruction of tooth-supporting tissues. The establishment of chronic inflammation will result in progressive destruction of bone and soft tissue changes. Severe periodontitis can lead to tooth loss. The disease has complex pathogenesis with an interplay between genetic, environmental, and host factors and pathogens. Effective management consists of plaque control and non-surgical interventions, along with adjuvant strategies to control inflammation and disrupt the pathogenic subgingival biofilms. Recent studies have examined novel approaches for managing periodontal diseases such as modulating microbial signaling mechanisms, tissue engineering, and molecular targeting of host inflammatory substances. Mounting evidence suggests the need to integrate omics-based approaches with traditional therapy to address the disease. This article discusses the various evolving and future drug targets, including proteomics, gene therapeutics, vaccines, and nanotechnology in personalized periodontal medicine for the effective management of periodontal diseases.
Collapse
Affiliation(s)
- Pradeep Kumar Yadalam
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602117, India;
| | - V. Kalaivani
- Department of Periodontics, SRM Kattankulathur Dental College & Hospital, SRM Nagar, Chennai 603203, India;
| | - Hammam Ibrahim Fageeh
- Department of Preventive Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (H.I.F.); (W.I.)
| | - Wael Ibraheem
- Department of Preventive Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (H.I.F.); (W.I.)
| | - Manea Musa. Al-Ahmari
- Department of Periodontics and Community Medical Science, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia;
| | - Samar Saeed Khan
- Department of Maxillofacial Surgery & Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia;
| | - Zeeshan Heera Ahmed
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hesham H. Abdulkarim
- Advanced Periodontal and Dental Implant Care, Missouri School of Dentistry and Oral Health, A. T. Still University, St. Louis, MO 63104, USA;
| | - Hosam Ali Baeshen
- Department of Orthodontics, College of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | | | - Shilpa Bhandi
- Department of Restorative Dental Sciences, Division of Operative Dentistry, College of dentistry, Jazan University, Jazan 45142, Saudi Arabia;
| | - A. Thirumal Raj
- Department of Oral Pathology and Microbiology, Sri Venkateswara Dental College and Hospital, Chennai 600130, India;
| | - Shankargouda Patil
- Department of Maxillofacial Surgery & Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia;
| |
Collapse
|
30
|
Advances in Modification Methods Based on Biodegradable Membranes in Guided Bone/Tissue Regeneration: A Review. Polymers (Basel) 2022; 14:polym14050871. [PMID: 35267700 PMCID: PMC8912280 DOI: 10.3390/polym14050871] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Guided tissue/bone regeneration (GTR/GBR) is commonly applied in dentistry to aid in the regeneration of bone/tissue at a defective location, where the assistive material eventually degrades to be substituted with newly produced tissue. Membranes separate the rapidly propagating soft tissue from the slow-growing bone tissue for optimal tissue regeneration results. A broad membrane exposure area, biocompatibility, hardness, ductility, cell occlusion, membrane void ratio, tissue integration, and clinical manageability are essential functional properties of a GTR/GBR membrane, although no single modern membrane conforms to all of the necessary characteristics. This review considers ongoing bone/tissue regeneration engineering research and the GTR/GBR materials described in this review fulfill all of the basic ISO requirements for human use, as determined through risk analysis and rigorous testing. Novel modified materials are in the early stages of development and could be classified as synthetic polymer membranes, biological extraction synthetic polymer membranes, or metal membranes. Cell attachment, proliferation, and subsequent tissue development are influenced by the physical features of GTR/GBR membrane materials, including pore size, porosity, and mechanical strength. According to the latest advances, key attributes of nanofillers introduced into a polymer matrix include suitable surface area, better mechanical capacity, and stability, which enhances cell adhesion, proliferation, and differentiation. Therefore, it is essential to construct a bionic membrane that satisfies the requirements for the mechanical barrier, the degradation rate, osteogenesis, and clinical operability.
Collapse
|
31
|
Wei YW, Sayed SM, Zhu WW, Xu KF, Wu FG, Xu J, Nie HP, Wang YL, Lu XL, Ma Q. Antibacterial and Fluorescence Staining Properties of an Innovative GTR Membrane Containing 45S5BGs and AIE Molecules In Vitro. NANOMATERIALS 2022; 12:nano12040641. [PMID: 35214970 PMCID: PMC8874606 DOI: 10.3390/nano12040641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/04/2022]
Abstract
This study aimed to add two functional components-antibacterial 45S5BGs particles and AIE nanoparticles (TPE-NIM+) with bioprobe characteristics-to the guided tissue regeneration (GTR) membrane, to optimize the performance. The PLGA/BG/TPE-NIM+ membrane was synthesized. The static water contact angle, morphologies, and surface element analysis of the membrane were then characterized. In vitro biocompatibility was tested with MC3T3-E1 cells using CCK-8 assay, and antibacterial property was evaluated with Streptococcus mutans and Porphyromonas gingivalis by the LIVE/DEAD bacterial staining and dilution plating procedure. The fluorescence staining of bacteria was observed by Laser Scanning Confocal Microscope. The results showed that the average water contact angle was 46°. In the cytotoxicity test, except for the positive control group, there was no significant difference among the groups (p > 0.05). The antibacterial effect in the PLGA/BG/TPE-NIM+ group was significantly (p < 0.01), while the sterilization rate was 99.99%, better than that in the PLGA/BG group (98.62%) (p < 0.01). Confocal images showed that the membrane efficiently distinguished G+ bacteria from G- bacteria. This study demonstrated that the PLGA/BG/TPE-NIM+ membrane showed good biocompatibility, efficient sterilization performance, and surface mineralization ability and could be used to detect pathogens in a simple, fast, and wash-free protocol.
Collapse
Affiliation(s)
- Yu-Wen Wei
- Jiangsu Province Key Laboratory of Oral Diseases, Department of General Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China; (Y.-W.W.); (W.-W.Z.); (J.X.); (H.-P.N.); (Y.-L.W.)
| | - Sayed Mir Sayed
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China; (S.M.S.); (K.-F.X.); (F.-G.W.)
| | - Wei-Wen Zhu
- Jiangsu Province Key Laboratory of Oral Diseases, Department of General Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China; (Y.-W.W.); (W.-W.Z.); (J.X.); (H.-P.N.); (Y.-L.W.)
| | - Ke-Fei Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China; (S.M.S.); (K.-F.X.); (F.-G.W.)
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China; (S.M.S.); (K.-F.X.); (F.-G.W.)
| | - Jing Xu
- Jiangsu Province Key Laboratory of Oral Diseases, Department of General Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China; (Y.-W.W.); (W.-W.Z.); (J.X.); (H.-P.N.); (Y.-L.W.)
| | - He-Peng Nie
- Jiangsu Province Key Laboratory of Oral Diseases, Department of General Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China; (Y.-W.W.); (W.-W.Z.); (J.X.); (H.-P.N.); (Y.-L.W.)
| | - Yu-Li Wang
- Jiangsu Province Key Laboratory of Oral Diseases, Department of General Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China; (Y.-W.W.); (W.-W.Z.); (J.X.); (H.-P.N.); (Y.-L.W.)
| | - Xiao-Lin Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China; (S.M.S.); (K.-F.X.); (F.-G.W.)
- Correspondence: (Q.M.); (X.-L.L.); Tel.: +86-13770963117 (Q.M.)
| | - Qian Ma
- Jiangsu Province Key Laboratory of Oral Diseases, Department of General Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China; (Y.-W.W.); (W.-W.Z.); (J.X.); (H.-P.N.); (Y.-L.W.)
- Correspondence: (Q.M.); (X.-L.L.); Tel.: +86-13770963117 (Q.M.)
| |
Collapse
|
32
|
Silk sericin/PLGA electrospun scaffolds with anti-inflammatory drug-eluting properties for periodontal tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112723. [DOI: 10.1016/j.msec.2022.112723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/22/2022] [Accepted: 02/15/2022] [Indexed: 12/13/2022]
|
33
|
Wang Y, Liu Y, Zhang X, Liu N, Yu X, Gao M, Wang W, Wu T. Engineering Electrospun Nanofibers for the Treatment of Oral Diseases. Front Chem 2022; 9:797523. [PMID: 34988063 PMCID: PMC8721107 DOI: 10.3389/fchem.2021.797523] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
With the increase of consumption of high-sugar foods, beverages, tobacco, and alcohol, the incidence rate of oral diseases has been increasing year by year. Statistics showed that the prevalence of oral diseases such as dental caries, dental pulpal disease, and periodontal disease has reached as high as 97% in 2015 in China. It is thus urgent to develop functional materials or products for the treatment of oral diseases. Electrospinning has been a widely used technology that is capable of utilizing polymer solution to generate micro/nano fibers under an appropriate high voltage condition. Owing to their excellent structures and biological performances, materials prepared by electrospinning technology have been used for a wide range of oral-related applications, such as tissue restoration, controlled drug release, anti-cancer, etc. In this regard, this article reviews the application and progress of electrospun nanofibers to various oral diseases in recent years. Firstly, engineering strategies of a variety of nanofiber structures together with their resultant functions will be introduced. Then, biological functions of electrospun nanofibers as well as their applications in the treatment of oral diseases are summarized and demonstrated. Finally, the development viewpoint of functional nanofibers is prospected, which is expected to lay the foundation and propose the direction for further clinical application.
Collapse
Affiliation(s)
- Yuanfei Wang
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yingnan Liu
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
| | - Xiaopei Zhang
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China.,Qingdao Medical College, Qingdao University, Qingdao, China
| | - Na Liu
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China.,Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xixi Yu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Meihua Gao
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Wanchun Wang
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
| | - Tong Wu
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China.,Qingdao Medical College, Qingdao University, Qingdao, China.,Department of Cosmetic and Plastic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
34
|
Li H, Xu J, Hu J, Hu Q, Fang X, Sun ZJ, Xu Z, Zhang L. Sustained release of chlorogenic acid-loaded nanomicelles alleviates bone loss in mouse periodontitis. Biomater Sci 2022; 10:5583-5595. [DOI: 10.1039/d2bm01099b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract Periodontitis is a prevalent chronic inflammatory disease that destroys the periodontal supporting tissues, impinges on oral health, and is correlative with an increased risk of systemic disease. Currently, the...
Collapse
|
35
|
Fornazier M, Gontijo de Melo P, Pasquini D, Otaguro H, Pompêu GCS, Ruggiero R. Additives Incorporated in Cellulose Acetate Membranes to Improve Its Performance as a Barrier in Periodontal Treatment. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.776887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, we prepared cellulose acetate membranes, by means of casting mold, incorporated with two additives, sodium carboxymethyl lignin and calcium glycerophosphate, in order to improve properties for periodontal applications. The membranes were characterized from the morphological, structural, thermal and mechanical point of view, as well as by physiological pH tests. The results showed that membranes with additives improve the physical-chemical and mechanical properties, especially when the two additives are present in the same membrane, which can be attributed to the important synergy between them. The most significant effects occur in increasing the thickness and decreasing the density, which reflects in the porosity of the membranes, although the added amounts do not exceed 1.4%. A 1% increase in lignin concentration does not change the thickness and density of the membrane, but that amount of lignin plus 0.4% calcium glycerophosphate increases the thickness of the membrane by 42% and decreases the density by about 6%. Although there is a decrease in mechanical properties, as observed in Young's modulus and crystallinity, the significant and intermittent increase in sample weight loss with both additives in physiological solution indicates that, in the long run, it can be used as a degradable barrier.
Collapse
|
36
|
Polymeric Scaffolds for Dental, Oral, and Craniofacial Regenerative Medicine. Molecules 2021; 26:molecules26227043. [PMID: 34834134 PMCID: PMC8621873 DOI: 10.3390/molecules26227043] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 01/10/2023] Open
Abstract
Dental, oral, and craniofacial (DOC) regenerative medicine aims to repair or regenerate DOC tissues including teeth, dental pulp, periodontal tissues, salivary gland, temporomandibular joint (TMJ), hard (bone, cartilage), and soft (muscle, nerve, skin) tissues of the craniofacial complex. Polymeric materials have a broad range of applications in biomedical engineering and regenerative medicine functioning as tissue engineering scaffolds, carriers for cell-based therapies, and biomedical devices for delivery of drugs and biologics. The focus of this review is to discuss the properties and clinical indications of polymeric scaffold materials and extracellular matrix technologies for DOC regenerative medicine. More specifically, this review outlines the key properties, advantages and drawbacks of natural polymers including alginate, cellulose, chitosan, silk, collagen, gelatin, fibrin, laminin, decellularized extracellular matrix, and hyaluronic acid, as well as synthetic polymers including polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), poly (ethylene glycol) (PEG), and Zwitterionic polymers. This review highlights key clinical applications of polymeric scaffolding materials to repair and/or regenerate various DOC tissues. Particularly, polymeric materials used in clinical procedures are discussed including alveolar ridge preservation, vertical and horizontal ridge augmentation, maxillary sinus augmentation, TMJ reconstruction, periodontal regeneration, periodontal/peri-implant plastic surgery, regenerative endodontics. In addition, polymeric scaffolds application in whole tooth and salivary gland regeneration are discussed.
Collapse
|
37
|
Elements of 3D Bioprinting in Periodontal Regeneration: Frontiers and Prospects. Processes (Basel) 2021. [DOI: 10.3390/pr9101724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Periodontitis is a chronic infectious disease worldwide, caused by the accumulation of bacterial plaque, which can lead to the destruction of periodontal supporting tissue and eventually tooth loss. The goal of periodontal treatment is to remove pathogenic factors and control the periodontal inflammation. However, the complete regeneration of periodontal supporting tissue is still a major challenge according to current technology. Tissue engineering recovers the injured tissue through seed cells, bio-capable scaffold and bioactive factors. Three-D-bioprinting is an emerging technology in regeneration medicine/tissue engineering, because of its high accuracy and high efficiency, providing a new strategy for periodontal regeneration. This article represents the materials of 3D bioprinting in periodontal regeneration from three aspects: oral seed cell, bio-scaffold and bio-active factors.
Collapse
|
38
|
He C, Wang T, Wang Y, Xu T, Zhao S, Shi H, Zou R. ILK regulates osteogenic differentiation of Human Periodontal Ligament Stem Cells through YAP-mediated Mechanical Memory. Oral Dis 2021; 29:274-284. [PMID: 34370371 DOI: 10.1111/odi.13997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 11/25/2022]
Abstract
Mechanical memory meant the mechanical properties of the matrix could influence the cell fate even after the matrix was changed and has been justified in many kinds of cells. To utilize the phenomenon to improve periodontal tissue engineering, we studied whether mechanical memory existed in human periodontal ligament stem cells and testified if ILK plays a role in this process. The substrate of different stiffness was fabricated by gelatin methacrylate hydrogel. Two groups of hPDLSCs with stiff (St) and soft (So) matrix respectively were cultivated. Then half of the cells exchanged their matrix stiffness in the fourth passage and therefore So, St, So-St and St-So were formed. Morphology of hPDLSCs and intracellular location of YAP was observed via fluorescence staining, osteogenic differentiation of hPDLSCs was assessed by Real-Time PCR, ALP staining and western blot. Then all these were reassessed after the ILK gene had been knocked down. The results showed that morphology and YAP location of hPDLSCs were different between matrix changed and unchanged groups; osteogenic genes expression, ALP staining and western blot also varied. After the ILK gene had been knocked down, the YAP location and osteogenic activity of hPDLSCs were significantly influenced. Thus, it could be concluded that mechanical memory exists in hPDLSCs; ILK is involved in this process.
Collapse
Affiliation(s)
- Chuan He
- Dentofacial Development Management Center, Hospital of Stomatology, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an Jiaotong University, Xi'an, China
| | - Tairan Wang
- Dentofacial Development Management Center, Hospital of Stomatology, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an Jiaotong University, Xi'an, China
| | - Yijie Wang
- Dentofacial Development Management Center, Hospital of Stomatology, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an Jiaotong University, Xi'an, China
| | - Tongtong Xu
- Dentofacial Development Management Center, Hospital of Stomatology, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an Jiaotong University, Xi'an, China
| | - Shuyang Zhao
- School of medicine, Xi'an Jiaotong University, Xi'an, China
| | - Haoyu Shi
- School of medicine, Xi'an Jiaotong University, Xi'an, China
| | - Rui Zou
- Dentofacial Development Management Center, Hospital of Stomatology, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
39
|
Pedrosa MCG, dos Anjos SA, Mavropoulos E, Bernardo PL, Granjeiro JM, Rossi AM, Dias ML. Structure and biological compatibility of polycaprolactone/zinc-hydroxyapatite electrospun nanofibers for tissue regeneration. J BIOACT COMPAT POL 2021. [DOI: 10.1177/08839115211022448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although guided tissue regeneration (GTR) is a useful tool for regenerating lost tissue as bone and periodontal tissue, a biocompatible membrane capable of regenerating large defects has yet to be discovered. This study aimed to characterize the physicochemical properties and biological compatibility of polycaprolactone (PCL) membranes associated with or without nanostructured hydroxyapatite (HA) (PCL/HA) and Zn-doped HA (PCL/ZnHA), produced by electrospinning. PCL, PCL/HA, and PCL/ZnHA were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC). Nanoparticles of HA or ZnHA were homogeneously distributed and dispersed inside the PCL fibers, which decreased the fiber thickness. At 1 wt% of HA or ZnHA, these nanoparticles acted as nucleating agents. Moreover, HA and ZnHA increased the onset of the degradation temperature and thermal stability of the electrospun membrane. All tested membranes showed no cytotoxicity and allowed murine pre-osteoblast adhesion and spreading; however, higher concentrations of PCL/ZnHA showed less cells and an irregular cell morphology compared to PCL and PCL/HA. This article presents a cytocompatible, electrospun, nanocomposite membrane with a novel morphology and physicochemical properties that make it eligible as a scaffold for GTR.
Collapse
Affiliation(s)
- Maria Clara Guimaraes Pedrosa
- Instituto de Macromoléculas Professora Eloisa Mano (IMA), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Elena Mavropoulos
- Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
| | | | - José Mauro Granjeiro
- Directory of Life Sciences Applied Metrology, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ, Brazil
| | | | - Marcos Lopes Dias
- Instituto de Macromoléculas Professora Eloisa Mano (IMA), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
40
|
Zhuang Y, Zhang C, Cheng M, Huang J, Liu Q, Yuan G, Lin K, Yu H. Challenges and strategies for in situ endothelialization and long-term lumen patency of vascular grafts. Bioact Mater 2021; 6:1791-1809. [PMID: 33336112 PMCID: PMC7721596 DOI: 10.1016/j.bioactmat.2020.11.028] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
Vascular diseases are the most prevalent cause of ischemic necrosis of tissue and organ, which even result in dysfunction and death. Vascular regeneration or artificial vascular graft, as the conventional treatment modality, has received keen attentions. However, small-diameter (diameter < 4 mm) vascular grafts have a high risk of thrombosis and intimal hyperplasia (IH), which makes long-term lumen patency challengeable. Endothelial cells (ECs) form the inner endothelium layer, and are crucial for anti-coagulation and thrombogenesis. Thus, promoting in situ endothelialization in vascular graft remodeling takes top priority, which requires recruitment of endothelia progenitor cells (EPCs), migration, adhesion, proliferation and activation of EPCs and ECs. Chemotaxis aimed at ligands on EPC surface can be utilized for EPC homing, while nanofibrous structure, biocompatible surface and cell-capturing molecules on graft surface can be applied for cell adhesion. Moreover, cell orientation can be regulated by topography of scaffold, and cell bioactivity can be modulated by growth factors and therapeutic genes. Additionally, surface modification can also reduce thrombogenesis, and some drug release can inhibit IH. Considering the influence of macrophages on ECs and smooth muscle cells (SMCs), scaffolds loaded with drugs that can promote M2 polarization are alternative strategies. In conclusion, the advanced strategies for enhanced long-term lumen patency of vascular grafts are summarized in this review. Strategies for recruitment of EPCs, adhesion, proliferation and activation of EPCs and ECs, anti-thrombogenesis, anti-IH, and immunomodulation are discussed. Ideal vascular grafts with appropriate surface modification, loading and fabrication strategies are required in further studies.
Collapse
Affiliation(s)
- Yu Zhuang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Chenglong Zhang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Mengjia Cheng
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jinyang Huang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Qingcheng Liu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Kaili Lin
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Hongbo Yu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
41
|
Toledano-Osorio M, Manzano-Moreno FJ, Toledano M, Osorio R, Medina-Castillo AL, Costela-Ruiz VJ, Ruiz C. Doxycycline-doped membranes induced osteogenic gene expression on osteoblastic cells. J Dent 2021; 109:103676. [PMID: 33891990 DOI: 10.1016/j.jdent.2021.103676] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/18/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES To analyze how novel developed silicon dioxide composite membranes, functionalized with zinc or doxycycline, can modulate the expression of genes related to the osteogenic functional capacity of osteoblastic cells. METHODS The composite nanofibers membranes were manufactured by using a novel polymeric blend and 20 nm silicon dioxide nanoparticles (SiO2-NPs). To manufacture the membranes, 20 nm SiO2-NPs were added to the polymer solution and the resulting suspension was processed by electrospinning. In a second step, the membranes were functionalized with zinc or doxycycline. Then, they were subjected to MG63 osteoblast-like cells culturing for 48 h. After this time, real-time quantitative polymerase chain reaction (RT-qPCR) was carried out to study the expression of Runx-2, OSX, ALP, OSC, OPG, RANKL, Col-I, BMP-2, BMP-7, TGF-β1, VEGF, TGF-βR1, TGF- βR2, and TGF-βR3. Mean comparisons were conducted by One-way ANOVA and Tukey tests (p < 0.05). RESULTS In general, the blending of SiO2-NPs in the tested non-resorbable polymeric scaffold improves the expression of osteogenic genes over the control membranes. Doxycycline doping of experimental scaffolds attained the best results, encountering up-regulation of BMP-2, ALP, OPG, TGFβ-1 and TGFβ-R1. Membranes with zinc induced a significant increase in the expression of Col-I, ALP and TGF β1. Both, zinc and doxycycline functionalized membranes enormously down-regulated the expression of RANKL. CONCLUSIONS Zinc and doxycycline doped membranes are bioactive inducing overexpression of several osteogenic gene markers. CLINICAL SIGNIFICANCE Doxycycline doped membranes may be a potential candidate for use in GBR procedures in several challenging pathologies, including periodontal diseases.
Collapse
Affiliation(s)
- Manuel Toledano-Osorio
- Biomaterials in Dentistry Research Group, Department of Stomatology, School of Dentistry, University of Granada, Spain; Medicina Clínica y Salud Pública PhD Programme, Spain
| | - Francisco Javier Manzano-Moreno
- Biomedical Group (BIO277), Department of Stomatology, School of Dentistry, University of Granada, Spain; Instituto Investigación Biosanitaria, ibs, Granada, Granada, Spain
| | - Manuel Toledano
- Biomaterials in Dentistry Research Group, Department of Stomatology, School of Dentistry, University of Granada, Spain.
| | - Raquel Osorio
- Biomaterials in Dentistry Research Group, Department of Stomatology, School of Dentistry, University of Granada, Spain
| | - Antonio L Medina-Castillo
- NanoMyP®, Nanomateriales y Polimeros S.L., Spin-Off company of the University of Granada, Edificio BIC-Granada. Av. Innovación 1. 18016 - Armilla, Granada, Spain
| | - Víctor J Costela-Ruiz
- Instituto Investigación Biosanitaria, ibs, Granada, Granada, Spain; Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Spain
| | - Concepción Ruiz
- Instituto Investigación Biosanitaria, ibs, Granada, Granada, Spain; Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Spain; Institute of Neuroscience, University of Granada, Centro de Investigación Biomédica (CIBM), Parque de Tecnológico de la Salud (PTS), Granada, Spain
| |
Collapse
|
42
|
d’Avanzo N, Bruno MC, Giudice A, Mancuso A, Gaetano FD, Cristiano MC, Paolino D, Fresta M. Influence of Materials Properties on Bio-Physical Features and Effectiveness of 3D-Scaffolds for Periodontal Regeneration. Molecules 2021; 26:1643. [PMID: 33804244 PMCID: PMC7999474 DOI: 10.3390/molecules26061643] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Periodontal diseases are multifactorial disorders, mainly due to severe infections and inflammation which affect the tissues (i.e., gum and dental bone) that support and surround the teeth. These pathologies are characterized by bleeding gums, pain, bad breath and, in more severe forms, can lead to the detachment of gum from teeth, causing their loss. To date it is estimated that severe periodontal diseases affect around 10% of the population worldwide thus making necessary the development of effective treatments able to both reduce the infections and inflammation in injured sites and improve the regeneration of damaged tissues. In this scenario, the use of 3D scaffolds can play a pivotal role by providing an effective platform for drugs, nanosystems, growth factors, stem cells, etc., improving the effectiveness of therapies and reducing their systemic side effects. The aim of this review is to describe the recent progress in periodontal regeneration, highlighting the influence of materials' properties used to realize three-dimensional (3D)-scaffolds, their bio-physical characteristics and their ability to provide a biocompatible platform able to embed nanosystems.
Collapse
Affiliation(s)
- Nicola d’Avanzo
- Department of Health Science, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy; (N.d.); (M.C.B.); (A.G.); (A.M.)
- Department of Pharmacy, University of Chieti−Pescara “G. d’Annunzio”, I-66100 Chieti, Italy
| | - Maria Chiara Bruno
- Department of Health Science, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy; (N.d.); (M.C.B.); (A.G.); (A.M.)
| | - Amerigo Giudice
- Department of Health Science, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy; (N.d.); (M.C.B.); (A.G.); (A.M.)
| | - Antonia Mancuso
- Department of Health Science, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy; (N.d.); (M.C.B.); (A.G.); (A.M.)
| | - Federica De Gaetano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy;
| | - Maria Chiara Cristiano
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy;
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy;
| | - Massimo Fresta
- Department of Health Science, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy; (N.d.); (M.C.B.); (A.G.); (A.M.)
| |
Collapse
|
43
|
Structurally optimized suture resistant polylactic acid (PLA)/poly (є-caprolactone) (PCL) blend based engineered nanofibrous mats. J Mech Behav Biomed Mater 2021; 116:104331. [PMID: 33517099 DOI: 10.1016/j.jmbbm.2021.104331] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/15/2020] [Accepted: 01/12/2021] [Indexed: 12/23/2022]
Abstract
The structural fabrication and optimization of polylactic acid (PLA)/poly (є-caprolactone) (PCL) blend-based bead-free electrospun nanofibrous mats (ENMs) has been carried out by using Response Surface Methodology (RSM) and Taguchi design of experiments (DoE). From the three control parameters i.e., PCL content, N, N- dimethylformamide (DMF) content, and electrospinning solution concentration, the optimal parametric combinations for minimizing the bead defects amongst ENMs were obtained. The parametric optimization outcomes remained identical, from both RSM and Taguchi approaches, irrespective of the difference in the number of experimental trials. The experimental validation of the predicted results from Taguchi-design showed an excellent agreement with >95% accuracy concerning minimization of bead defects and average fiber diameter. The solution concentration was a key determinant in controlling the gross fiber morphology. The quasi-static mechanical response of the optimally designed ENMs showed a distinct role in structural aspects of fibers. The failure responses revealed the role of the structural network of ENMs in controlling the failure stress and network collapse that was also reiterated upon the outcomes of suture retention strength assessment. The optimally designed ENM structures showed a correspondingly optimal level of suture resistance, where fine fibers offered higher resistance to suture failure due to the cooperative network effects unlike the relatively coarse fiber-based ENMs undergoing collapse attributed to fiber buckling and fiber slippage in the labile structural network.
Collapse
|
44
|
Toledano-Osorio M, Manzano-Moreno FJ, Ruiz C, Toledano M, Osorio R. Testing active membranes for bone regeneration: A review. J Dent 2021; 105:103580. [PMID: 33417978 DOI: 10.1016/j.jdent.2021.103580] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Maxillofacial bone defects are the main hindering conditions for traditional dental implant strategies. Guided Bone Regeneration (GBR) is used to handle this situation. The principle of GBR is to use a membrane to prevent the colonization of soft tissue cells of the bone defect and favors the migration of osteogenic linages. Current membranes do not completely fulfill the requirements that an optimal membrane should have, sometimes resulting in non-predictable results. Thus, the need to develop an ideal membrane to perform this duty is clear. Recent developments in bio-manufacturing are driving innovations in membranes technology permitting the active participation of the membrane in the healing and regenerative process trough native tissue mimicking, drug-delivery and cells interaction, away from being a passive barrier. New membranes features need specific evaluation techniques, beyond the International Standard for membrane materials (last reviewed in 2004), being this the rationale for the present review. Nanotechnology application has completely shifted the way of analyzing structural characterization. New progresses on osteoimmmunomodulation have also switched the understanding of cells-membranes interaction. DATA AND SOURCES To propose an updated protocol for GBR membranes evaluation, critical reading of the relevant published literature was carried out after a MEDLINE/PubMed database search. CONCLUSIONS The main findings are that a potential active membrane should be assessed in its nanostructure, physicochemical and nanomechanical properties, bioactivity and antibacterial, osteoblasts proliferation, differentiation and mineralization. Immunomodulation testing for macrophages recruitment and M2 phenotype promotion in osteoblasts co-culture has to be achieved to completely analyze membranes/tissue interactions.
Collapse
Affiliation(s)
- Manuel Toledano-Osorio
- Biomaterials in Dentistry Research Group, Department of Stomatology, School of Dentistry, University of Granada, Spain; Medicina Clínica y Salud Pública PhD Programme, Spain
| | - Francisco Javier Manzano-Moreno
- Biomedical Group (BIO277), Department of Stomatology, School of Dentistry, University of Granada, Spain; Instituto Investigación Biosanitaria, ibs. Granada, Granada, Spain
| | - Concepción Ruiz
- Instituto Investigación Biosanitaria, ibs. Granada, Granada, Spain; Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences. University of Granada, Spain; Institute of Neuroscience, University of Granada, Centro de Investigación Biomédica (CIBM), Parque Tecnológico de la Salud (PTS), Granada, Spain
| | - Manuel Toledano
- Biomaterials in Dentistry Research Group, Department of Stomatology, School of Dentistry, University of Granada, Spain.
| | - Raquel Osorio
- Biomaterials in Dentistry Research Group, Department of Stomatology, School of Dentistry, University of Granada, Spain
| |
Collapse
|
45
|
Zeng WY, Ning Y, Huang X. Advanced technologies in periodontal tissue regeneration based on stem cells: Current status and future perspectives. J Dent Sci 2021; 16:501-507. [PMID: 33384839 PMCID: PMC7770316 DOI: 10.1016/j.jds.2020.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/18/2020] [Indexed: 12/13/2022] Open
Abstract
Periodontitis is a progressive inflammation disease, the clinical management of which remains a challenge. The traditional management may control periodontal inflammation, but failed to regenerate functional periodontium. This review summarizes the most advancing regenerative techniques regarding stem cell culture and scaffold fabrication, such as cell sheeting, spheroid culture, electrospinning and 3D printing. The applications of different techniques manifest tremendous potential of regenerating the complete and functional periodontium. Albeit promising, new technologies have met with their own drawbacks such as insufficient vascularization and precision, which necessitate deeper modification. Thus, this review also points out the potential perspectives and methods aiming at their disadvantages, illuminating the directions of future researches to successful clinical scenarios.
Collapse
Affiliation(s)
- Wen-Yi Zeng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yang Ning
- Department of Periodontology, Guanghua School and Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Xin Huang
- Department of Periodontology, Guanghua School and Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
46
|
The effects of alignment and diameter of electrospun fibers on the cellular behaviors and osteogenesis of BMSCs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111787. [PMID: 33545913 DOI: 10.1016/j.msec.2020.111787] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/05/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022]
Abstract
Electrospun fiber scaffolds, due to their mimicry of bone extracellular matrix (ECM), have become an important biomaterial widely applied in bone tissue engineering in recent years. While topographic cues of electrospun membranes such as alignment and diameter played vital roles in determining cellular behaviors. Yet few researches about the effects of these two significant parameters on osteogenesis have been reported. Thus, the present work explored the influence of aligned and random poly (L-lactic acid) (PLLA) fiber matrices with diameters of nanoscale (0.6 μm) and microscale (1.2 μm), respectively, on cellular responses of bone marrow mesenchymal stem cells (BMSCs), such as cell adhesion, migration, proliferation and osteogenesis. Our results revealed that aligned nanofibers (AN) could affect cell morphology and promote the migration of BMSCs after 24 h of cell culturing. Besides, AN group was observed to possess excellent biocompatibility and have significantly improved cell growth comparing with random nanofibers. More importantly, in vitro osteogenesis researches including ALP and Alizarin Red S staining, qRT-PCR and immunofluorescence staining demonstrated that BMSCs culturing on AN group exhibited higher osteogenic induction proficiency than that on aligned microfibers (AM) and random fiber substrates (RN and RM). Accordingly, aligned nanofiber scaffolds have greater application potential in bone tissue engineering.
Collapse
|
47
|
Lee J, Lee J, Lee S, Ahmad T, Madhurakkat Perikamana SK, Kim EM, Lee SW, Shin H. Bioactive Membrane Immobilized with Lactoferrin for Modulation of Bone Regeneration and Inflammation. Tissue Eng Part A 2020; 26:1243-1258. [DOI: 10.1089/ten.tea.2020.0015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jinkyu Lee
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul, Republic of Korea
| | - Jinki Lee
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul, Republic of Korea
| | - Sangmin Lee
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul, Republic of Korea
| | - Taufiq Ahmad
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul, Republic of Korea
| | - Sajeesh Kumar Madhurakkat Perikamana
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul, Republic of Korea
| | - Eun Mi Kim
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul, Republic of Korea
| | - Sang Won Lee
- School of Biomedical Engineering, Korea University, Seoul, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
48
|
Kim MG, Park CH. Tooth-Supporting Hard Tissue Regeneration Using Biopolymeric Material Fabrication Strategies. Molecules 2020; 25:molecules25204802. [PMID: 33086674 PMCID: PMC7587995 DOI: 10.3390/molecules25204802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/08/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
The mineralized tissues (alveolar bone and cementum) are the major components of periodontal tissues and play a critical role to anchor periodontal ligament (PDL) to tooth-root surfaces. The integrated multiple tissues could generate biological or physiological responses to transmitted biomechanical forces by mastication or occlusion. However, due to periodontitis or traumatic injuries, affect destruction or progressive damage of periodontal hard tissues including PDL could be affected and consequently lead to tooth loss. Conventional tissue engineering approaches have been developed to regenerate or repair periodontium but, engineered periodontal tissue formation is still challenging because there are still limitations to control spatial compartmentalization for individual tissues and provide optimal 3D constructs for tooth-supporting tissue regeneration and maturation. Here, we present the recently developed strategies to induce osteogenesis and cementogenesis by the fabrication of 3D architectures or the chemical modifications of biopolymeric materials. These techniques in tooth-supporting hard tissue engineering are highly promising to promote the periodontal regeneration and advance the interfacial tissue formation for tissue integrations of PDL fibrous connective tissue bundles (alveolar bone-to-PDL or PDL-to-cementum) for functioning restorations of the periodontal complex.
Collapse
Affiliation(s)
- Min Guk Kim
- Department of Dental Science, Graduate School, Kyungpook National University, Daegu 41940, Korea;
- Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Chan Ho Park
- Department of Dental Science, Graduate School, Kyungpook National University, Daegu 41940, Korea;
- Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
- Institute for Biomaterials Research and Development, Kyungpook National University, Daegu 41940, Korea
- Correspondence: ; Tel.: +82-53-660-6890
| |
Collapse
|
49
|
Ding Q, Cui J, Shen H, He C, Wang X, Shen SGF, Lin K. Advances of nanomaterial applications in oral and maxillofacial tissue regeneration and disease treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1669. [PMID: 33090719 DOI: 10.1002/wnan.1669] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/20/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022]
Abstract
Using bioactive nanomaterials in clinical treatment has been widely aroused. Nanomaterials provide substantial improvements in the prevention and treatment of oral and maxillofacial diseases. This review aims to discuss new progresses in nanomaterials applied to oral and maxillofacial tissue regeneration and disease treatment, focusing on the use of nanomaterials in improving the quality of oral and maxillofacial healthcare, and discuss the perspectives of research in this arena. Details are provided on the tissue regeneration, wound healing, angiogenesis, remineralization, antitumor, and antibacterial regulation properties of nanomaterials including polymers, micelles, dendrimers, liposomes, nanocapsules, nanoparticles and nanostructured scaffolds, etc. Clinical applications of nanomaterials as nanocomposites, dental implants, mouthwashes, biomimetic dental materials, and factors that may interact with nanomaterials behaviors and bioactivities in oral cavity are addressed as well. In the last section, the clinical safety concerns of their usage as dental materials are updated, and the key knowledge gaps for future research with some recommendation are discussed. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Qinfeng Ding
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jinjie Cui
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hangqi Shen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Chuanglong He
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Xudong Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Steve G F Shen
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
- Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
50
|
Porta M, Tonda-Turo C, Pierantozzi D, Ciardelli G, Mancuso E. Towards 3D Multi-Layer Scaffolds for Periodontal Tissue Engineering Applications: Addressing Manufacturing and Architectural Challenges. Polymers (Basel) 2020; 12:polym12102233. [PMID: 32998365 PMCID: PMC7599927 DOI: 10.3390/polym12102233] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Reduced periodontal support, deriving from chronic inflammatory conditions, such as periodontitis, is one of the main causes of tooth loss. The use of dental implants for the replacement of missing teeth has attracted growing interest as a standard procedure in clinical practice. However, adequate bone volume and soft tissue augmentation at the site of the implant are important prerequisites for successful implant positioning as well as proper functional and aesthetic reconstruction of patients. Three-dimensional (3D) scaffolds have greatly contributed to solve most of the challenges that traditional solutions (i.e., autografts, allografts and xenografts) posed. Nevertheless, mimicking the complex architecture and functionality of the periodontal tissue represents still a great challenge. In this study, a porous poly(ε-caprolactone) (PCL) and Sr-doped nano hydroxyapatite (Sr-nHA) with a multi-layer structure was produced via a single-step additive manufacturing (AM) process, as a potential strategy for hard periodontal tissue regeneration. Physicochemical characterization was conducted in order to evaluate the overall scaffold architecture, topography, as well as porosity with respect to the original CAD model. Furthermore, compressive tests were performed to assess the mechanical properties of the resulting multi-layer structure. Finally, in vitro biological performance, in terms of biocompatibility and osteogenic potential, was evaluated by using human osteosarcoma cells. The manufacturing route used in this work revealed a highly versatile method to fabricate 3D multi-layer scaffolds with porosity levels as well as mechanical properties within the range of dentoalveolar bone tissue. Moreover, the single step process allowed the achievement of an excellent integrity among the different layers of the scaffold. In vitro tests suggested the promising role of the ceramic phase within the polymeric matrix towards bone mineralization processes. Overall, the results of this study demonstrate that the approach undertaken may serve as a platform for future advances in 3D multi-layer and patient-specific strategies that may better address complex periodontal tissue defects.
Collapse
Affiliation(s)
- Marta Porta
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 29, 10129 Turin, Italy; (M.P.); (C.T.-T.); (G.C.)
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Shore Road, Newtownabbey BT37 0QB, UK;
| | - Chiara Tonda-Turo
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 29, 10129 Turin, Italy; (M.P.); (C.T.-T.); (G.C.)
| | - Daniele Pierantozzi
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Shore Road, Newtownabbey BT37 0QB, UK;
| | - Gianluca Ciardelli
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 29, 10129 Turin, Italy; (M.P.); (C.T.-T.); (G.C.)
| | - Elena Mancuso
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Shore Road, Newtownabbey BT37 0QB, UK;
- Correspondence:
| |
Collapse
|