1
|
Zhang ZG, Shen X, Jiang SK, Lin JC, Yi Y, Ji XJ. Biocatalytic Hydrogenation of Biomass-Derived Furan Aldehydes to Alcohols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2266-2278. [PMID: 39808924 DOI: 10.1021/acs.jafc.4c11258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The biomass-derived furan aldehydes furfural (FF) and 5-hydroxymethylfurfural (HMF) are versatile platform chemicals used to produce various value-added chemicals through further valorization processes. Selectively reducing C═O in FF and HMF molecules to form furfuryl alcohol (FAL) and 2,5-bis(hydroxymethyl)furan (BHMF), represents an important research field in upgrading biomass-based furan compounds. Currently, the reduction of furan aldehydes to furan alcohols through chemical transformation often leads to unavoidable environmental issues and the formation of potential byproducts. Biocatalysis has demonstrated expanded applications in converting biomass-derived furan aldehydes into a diverse array of value-added chemicals. This process exhibits significant potential in organic synthesis and biotechnology due to its green and sustainable properties. The biocatalytic reduction of FF and HMF represents an especially important route for the selective synthesis of FAL and BHMF. This review discusses recent progress in the biosynthesis of FAL and BHMF from biomass-derived FF and HMF through biocatalytic processes. Recently discovered enzymes and whole cells used as biocatalysts for the production of furan alcohols are summarized. In addition, chemoenzymatic cascades for synthesizing furan alcohols from biomass hydrolysate and raw biomass materials are also discussed.
Collapse
Affiliation(s)
- Zhi-Gang Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Xi Shen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Shi-Kai Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Jia-Chun Lin
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Yan Yi
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
2
|
Chien Truong C, Kumar Mishra D, Hyeok Ko S, Jin Kim Y, Suh YW. Sustainable Catalytic Transformation of Biomass-Derived 5-Hydroxymethylfurfural to 2,5-Bis(hydroxymethyl)tetrahydrofuran. CHEMSUSCHEM 2022; 15:e202200178. [PMID: 35286783 DOI: 10.1002/cssc.202200178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/14/2022] [Indexed: 06/14/2023]
Abstract
5-Hydroxymethylfurfural (5-HMF), one of the most important platform molecules in biorefinery, can be directly obtained from a vast diversity of biomass materials. Owing to the reactive functional groups (-CHO and -CH2 OH) in the structure, this versatile building block undertakes several transformations to provide a wealth of high value-added products. Among numerous well-established paradigms, the catalytic hydrogenation of 5-HMF towards 2,5-bis(hydroxymethyl)tetrahydrofuran (BHMTHF) is of great interest because this downstream diol can be exploited in a wide range of industrial applications. Not surprisingly, incessant endeavors from both academia and industry to upgrade this catalytic process have been established over the years. The main aim of this Review was to provide a comprehensive overview on the development of heterogeneous metal catalysts for the 5-HMF-to-BHMTHF transformation. Herein, the rational design and utility of hydrogenating catalysts were elaborated in many aspects including metal types (Ni, Co, Pd, Ru, Pt, and bimetals), solid supports, preparation method, recyclability, operating conditions, and reaction regime (batch and continuous flow). In addition, the assessment of cooperative catalysts to convert carbohydrates into BHMTHF under one-pot cascade, tentative mechanism, as well as prospects and challenges for the chemo-selective hydrogenation of 5-HMF were also highlighted.
Collapse
Affiliation(s)
- Cong Chien Truong
- Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering, University of Toyama, Toyama, 930-8555, Japan
| | - Dinesh Kumar Mishra
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute of Industrial Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sang Hyeok Ko
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yong Jin Kim
- Green Chemistry & Material Group, Korea Institute of Industrial Technology, Cheonan, 31056, Republic of Korea
| | - Young-Woong Suh
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute of Industrial Science, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
3
|
Duan Y, Wang R, Liu Q, Qin X, Li Z. Tungsten Promoted Ni/Al2O3 as a Noble-Metal-Free Catalyst for the Conversion of 5-Hydroxymethylfurfural to 1-Hydroxy-2,5-Hexanedione. Front Chem 2022; 10:857199. [PMID: 35355788 PMCID: PMC8959628 DOI: 10.3389/fchem.2022.857199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
The conversion of 5-hydroxymethylfurfural (HMF) to 1-hydroxy-2,5-hexanedione (HHD) represented a typical route for high-value utilization of biomass. However, this reaction was often catalyzed by the noble metal catalyst. In this manuscript, W promoted Ni/Al2O3 was prepared as a noble-metal-free catalyst for this transformation. The catalysts were characterized by XRD, XPS, NH3-TPD, TEM, and EDS-mapping to study the influence of the introduction of W. There was an interaction between Ni and W, and strong acid sites were introduced by the addition of W. The W promoted Ni/Al2O3 showed good selectivity to HHD when used as a catalyst for the hydrogenation of HMF in water. The influences of the content of W, temperature, H2 pressure, reaction time, and acetic acid (AcOH) were studied. NiWOx/Al2O3-0.5 (mole ratio of W:Ni = 0.5) was found to be the most suitable catalyst. The high selectivity to HHD was ascribed to the acid sites introduced by W. This was proved by the fact that the selectivity to HHD was increased a lot when AcOH was added just using Ni/Al2O3 as catalysts. 59% yield of HHD was achieved on NiWOx/Al2O3-0.5 at 393 K, 4 MPa H2 reacting for 6 h, which was comparable to the noble metal catalyst, showing the potential application in the production of HHD from HMF.
Collapse
Affiliation(s)
- Ying Duan
- College of Food and Drug, Luoyang Normal University, Luoyang, China
- Henan Key Laboratory of Function-Oriented Porous Material, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, China
- *Correspondence: Ying Duan,
| | - Rui Wang
- College of Food and Drug, Luoyang Normal University, Luoyang, China
| | - Qihang Liu
- Henan Key Laboratory of Function-Oriented Porous Material, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, China
| | - Xuya Qin
- Henan Key Laboratory of Function-Oriented Porous Material, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, China
| | - Zuhuan Li
- Henan Key Laboratory of Function-Oriented Porous Material, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, China
| |
Collapse
|
4
|
Li C, Meng Y, Yang S, Li H. ZIF‐67 Derived Co/NC Nanoparticles Enable Catalytic Leuckart‐type Reductive Amination of Bio‐based Carbonyls to
N
‐Formyl Compounds. ChemCatChem 2021. [DOI: 10.1002/cctc.202100977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Chuanhui Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering Key Laboratory of Green Pesticide & Agricultural Bioengineering Ministry of Education State-Local Joint Laboratory for Comprehensive Utilization of Biomass Center for Research & Development of Fine Chemicals Guizhou University Huaxi district avenue Guiyang, Guizhou 550025 P. R. China
| | - Ye Meng
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering Key Laboratory of Green Pesticide & Agricultural Bioengineering Ministry of Education State-Local Joint Laboratory for Comprehensive Utilization of Biomass Center for Research & Development of Fine Chemicals Guizhou University Huaxi district avenue Guiyang, Guizhou 550025 P. R. China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering Key Laboratory of Green Pesticide & Agricultural Bioengineering Ministry of Education State-Local Joint Laboratory for Comprehensive Utilization of Biomass Center for Research & Development of Fine Chemicals Guizhou University Huaxi district avenue Guiyang, Guizhou 550025 P. R. China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering Key Laboratory of Green Pesticide & Agricultural Bioengineering Ministry of Education State-Local Joint Laboratory for Comprehensive Utilization of Biomass Center for Research & Development of Fine Chemicals Guizhou University Huaxi district avenue Guiyang, Guizhou 550025 P. R. China
| |
Collapse
|
5
|
Antunes MM, Silva AF, Bernardino CD, Fernandes A, Ribeiro F, Valente AA. Catalytic Transfer Hydrogenation and Acid Reactions of Furfural and 5-(Hydroxymethyl)furfural over Hf-TUD-1 Type Catalysts. Molecules 2021; 26:7203. [PMID: 34885785 PMCID: PMC8658772 DOI: 10.3390/molecules26237203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Heterogeneous catalysis, which has served well the petrochemical industry, may valuably contribute towards a bio-based economy by sustainably enabling selective reactions to renewable chemicals. Carbohydrate-containing matter may be obtained from various widespread sources and selectively converted to furanic platform chemicals: furfural (Fur) and 5-(hydroxymethyl)furfural (Hmf). Valuable bioproducts may be obtained from these aldehydes via catalytic transfer hydrogenation (CTH) using alcohols as H-donors under relatively moderate reaction conditions. Hafnium-containing TUD-1 type catalysts were the first of ordered mesoporous silicates explored for the conversion of Fur and Hmf via CTH/alcohol strategies. The materials promoted CTH and acid reactions leading to the furanic ethers. The bioproducts spectrum was broader for the reaction of Fur than of Hmf. A Fur reaction mechanism based on literature data was discussed and supported by kinetic modelling. The influence of the Hf loading and reaction conditions (catalyst load, type of alcohol H-donor, temperature, initial substrate concentration) on the reaction kinetics was studied. The reaction conditions were optimized to maximize the yields of 2-(alkoxymethyl)furan ethers formed from Fur; up to 63% yield was reached at 88% Fur conversion, 4 h/150 °C, using Hf-TUD-1(75), which was a stable catalyst. The Hf-TUD-1(x) catalysts promoted the selective conversion of Hmf to bis(2-alkoxymethyl)furan; e.g., 96% selectivity at 98% Hmf conversion, 3 h/170 °C for Hf-TUD-1(50).
Collapse
Affiliation(s)
- Margarida M. Antunes
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.F.S.); (C.D.B.)
| | - Andreia F. Silva
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.F.S.); (C.D.B.)
| | - Carolina D. Bernardino
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.F.S.); (C.D.B.)
| | - Auguste Fernandes
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.F.); (F.R.)
| | - Filipa Ribeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.F.); (F.R.)
| | - Anabela A. Valente
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.F.S.); (C.D.B.)
| |
Collapse
|
6
|
Chandrashekhar VG, Natte K, Alenad AM, Alshammari AS, Kreyenschulte C, Jagadeesh RV. Reductive Amination, Hydrogenation and Hydrodeoxygenation of 5‐Hydroxymethylfurfural using Silica‐supported Cobalt‐ Nanoparticles. ChemCatChem 2021. [DOI: 10.1002/cctc.202101234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Kishore Natte
- Chemical and Material Science Division CSIR - Indian Institute of Petroleum Haridwar road Mohkampur, Dehradun 248005 India
| | - Asma M. Alenad
- Chemistry Department College of Science Jouf University P.O. Box: 2014 Sakaka Kingdom of Saudi Arabia
| | - Ahmad S. Alshammari
- King Abdulaziz City for Science and Technology P.O. Box 6086 Riyadh 1442 Kingdom of Saudi Arabia
| | | | | |
Collapse
|
7
|
Homogeneous Catalyzed Valorization of Furanics: A Sustainable Bridge to Fuels and Chemicals. Catalysts 2021. [DOI: 10.3390/catal11111371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The development of efficient biomass valorization is imperative for the future sustainable production of chemicals and fuels. Particularly, the last decade has witnessed the development of a plethora of effective and selective transformations of bio-based furanics using homogeneous organometallic catalysis under mild conditions. In this review, we describe some of the advances regarding the conversion of target furanics into value chemicals, monomers for high-performance polymers and materials, and pharmaceutical key intermediates using homogeneous catalysis. Finally, the incorporation of furanic skeletons into complex chemical architectures by multifunctionalization routes is also described.
Collapse
|
8
|
Lluna‐Galán C, Izquierdo‐Aranda L, Adam R, Cabrero‐Antonino JR. Catalytic Reductive Alcohol Etherifications with Carbonyl-Based Compounds or CO 2 and Related Transformations for the Synthesis of Ether Derivatives. CHEMSUSCHEM 2021; 14:3744-3784. [PMID: 34237201 PMCID: PMC8518999 DOI: 10.1002/cssc.202101184] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Indexed: 05/27/2023]
Abstract
Ether derivatives have myriad applications in several areas of chemical industry and academia. Hence, the development of more effective and sustainable protocols for their production is highly desired. Among the different methodologies reported for ether synthesis, catalytic reductive alcohol etherifications with carbonyl-based moieties (aldehydes/ketones and carboxylic acid derivatives) have emerged in the last years as a potential tool. These processes constitute appealing routes for the selective production of both symmetrical and asymmetrical ethers (including O-heterocycles) with an increased molecular complexity. Likewise, ester-to-ether catalytic reductions and hydrogenative alcohol etherifications with CO2 to dialkoxymethanes and other acetals, albeit in less extent, have undergone important advances, too. In this Review, an update of the recent progresses in the area of catalytic reductive alcohol etherifications using carbonyl-based compounds and CO2 have been described with a special focus on organic synthetic applications and catalyst design. Complementarily, recent progress made in catalytic acetal/ketal-to-ether or ester-to-ether reductions and other related transformations have been also summarized.
Collapse
Affiliation(s)
- Carles Lluna‐Galán
- Instituto de Tecnología QuímicaUniversitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC)Avda. de los Naranjos s/n46022ValenciaSpain
| | - Luis Izquierdo‐Aranda
- Instituto de Tecnología QuímicaUniversitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC)Avda. de los Naranjos s/n46022ValenciaSpain
| | - Rosa Adam
- Instituto de Tecnología QuímicaUniversitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC)Avda. de los Naranjos s/n46022ValenciaSpain
| | - Jose R. Cabrero‐Antonino
- Instituto de Tecnología QuímicaUniversitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC)Avda. de los Naranjos s/n46022ValenciaSpain
| |
Collapse
|
9
|
Exploring the potential of biomass-templated Nb/ZnO nanocatalysts for the sustainable synthesis of N-heterocycles. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.06.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Brosnahan JT, Zhang Z, Yin Z, Zhang S. Electrocatalytic reduction of furfural with high selectivity to furfuryl alcohol using AgPd alloy nanoparticles. NANOSCALE 2021; 13:2312-2316. [PMID: 33464266 DOI: 10.1039/d0nr07676g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
AgPd alloy nanoparticles were applied for the electrocatalytic reduction of furfural (2-furfuraldehyde). Constant potential electrolysis experiments were carried out and furfural conversions and product selectivities to furfuryl alcohol were systematically investigated to elucidate the alloy composition-catalytic property relationship. AgPd catalysts exhibited faradaic efficiencies to furfuryl alcohol over 95% for Ag60Pd40 at low overpotentials in neutral, aqueous electrolyte.
Collapse
Affiliation(s)
- John T Brosnahan
- University of Virginia, Department of Chemistry, Charlottesville, VA 22904, USA.
| | - Zhiyong Zhang
- University of Virginia, Department of Chemistry, Charlottesville, VA 22904, USA.
| | - Zhouyang Yin
- University of Virginia, Department of Chemistry, Charlottesville, VA 22904, USA.
| | - Sen Zhang
- University of Virginia, Department of Chemistry, Charlottesville, VA 22904, USA.
| |
Collapse
|
11
|
Xu C, Paone E, Rodríguez-Padrón D, Luque R, Mauriello F. Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chem Soc Rev 2021; 49:4273-4306. [PMID: 32453311 DOI: 10.1039/d0cs00041h] [Citation(s) in RCA: 277] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Furans represent one of the most important classes of intermediates in the conversion of non-edible lignocellulosic biomass into bio-based chemicals and fuels. At present, bio-furan derivatives are generally obtained from cellulose and hemicellulose fractions of biomass via the acid-catalyzed dehydration of their relative C6-C5 sugars and then converted into a wide range of products. Furfural (FUR) and 5-hydroxymethylfurfural (HMF) are surely the most used furan-based feedstocks since their chemical structure allows the preparation of various high-value-added chemicals. Among several well-established catalytic approaches, hydrogenation and oxygenation processes have been efficiently adopted for upgrading furans; however, harsh reaction conditions are generally required. In this review, we aim to discuss the conversion of biomass derived FUR and HMF through unconventional (transfer hydrogenation, photocatalytic and electrocatalytic) catalytic processes promoted by heterogeneous catalytic systems. The reaction conditions adopted, the chemical nature and the physico-chemical properties of the most employed heterogeneous systems in enhancing the catalytic activity and in driving the selectivity to desired products are presented and compared. At the same time, the latest results in the production of FUR and HMF through novel environmental friendly processes starting from lignocellulose as well as from wastes and by-products obtained in the processing of biomass are also overviewed.
Collapse
Affiliation(s)
- C Xu
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Dongfeng Road 5, Zhengzhou, P. R. China
| | - E Paone
- Dipartimento DICEAM, Università Mediterranea di Reggio Calabria, Loc. Feo di Vito, I-89122 Reggio Calabria, Italy. and Dipartimento di Ingegneria Industriale, Università degli Studi di Firenze, Firenze, Italy
| | - D Rodríguez-Padrón
- Departamento de Química Orgánica, Universidad de Córdoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, 14014 Córdoba, Spain.
| | - R Luque
- Departamento de Química Orgánica, Universidad de Córdoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, 14014 Córdoba, Spain. and Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str., Moscow, 117198, Russian Federation
| | - F Mauriello
- Dipartimento DICEAM, Università Mediterranea di Reggio Calabria, Loc. Feo di Vito, I-89122 Reggio Calabria, Italy.
| |
Collapse
|
12
|
Pischetola C, Francis SM, Grillo F, Baddeley CJ, Cárdenas-Lizana F. Phenylacetylene hydrogenation coupled with benzyl alcohol dehydrogenation over Cu/CeO2: A consideration of Cu oxidation state. J Catal 2021. [DOI: 10.1016/j.jcat.2020.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
13
|
Plucksacholatarn A, Tharat B, Suthirakun S, Faungnawakij K, Junkaew A. Theoretical insight into the interaction on Ni and Cu surfaces for HMF hydrogenation: a density functional theory study. NEW J CHEM 2021. [DOI: 10.1039/d1nj04154a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Different chemistry, structural, and electronic charge properties result in different selectivity of the HMF hydrogenation in Ni and Cu.
Collapse
Affiliation(s)
- Aunyamanee Plucksacholatarn
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | - Bunrat Tharat
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Suwit Suthirakun
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Kajornsak Faungnawakij
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | - Anchalee Junkaew
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| |
Collapse
|
14
|
Feng Y, Long S, Yan G, Chen B, Sperry J, Xu W, Sun Y, Tang X, Zeng X, Lin L. Manganese catalyzed transfer hydrogenation of biomass-derived aldehydes: Insights to the catalytic performance and mechanism. J Catal 2020. [DOI: 10.1016/j.jcat.2020.05.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Hydrogenation of Furfural to Furfuryl Alcohol over Ru Particles Supported on Mildly Oxidized Biochar. Catalysts 2020. [DOI: 10.3390/catal10080934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Catalytic hydrogenation of aldehydes is required as the stabilizing step in bio-oils conversion. Ruthenium supported on carbon was used in the present work for hydrogenation of furfural (FF) to furfuryl alcohol (FA). Converting a biochar with no surface area and low carboxyl groups surface density to an outstanding catalyst support using a very simple mild air/steam oxidation is the original contribution of this work. The mildly oxidized biochar is impregnated with a targeted loading of 2.5 wt.% Ru via ion-exchange, using Ru(NH3)6Cl2 precursor. ICP analysis shows that the mild oxidation increases Ru adsorption capacity of untreated biochar from 1.2 to 2.2 wt.%. H2 chemisorption and TEM analysis indicate that the preliminary mild oxidation leads to higher Ru dispersion. XPS analysis also shows that the treatment prevents Ru from surface segregation. The highest value of 93% FA selectivity at 53% FF conversion was obtained in a batch autoclave reactor under optimized conditions.
Collapse
|
16
|
Zhang Q, Ling D, Lei D, Wang J, Liu X, Zhang Y, Ma P. Green and Facile Synthesis of Metal-Organic Framework Cu-BTC-Supported Sn (II)-Substituted Keggin Heteropoly Composites as an Esterification Nanocatalyst for Biodiesel Production. Front Chem 2020; 8:129. [PMID: 32257993 PMCID: PMC7094214 DOI: 10.3389/fchem.2020.00129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/12/2020] [Indexed: 11/13/2022] Open
Abstract
In the present study, metal-organic framework Cu-BTC-supported Sn (II)-substituted Keggin heteropoly nanocomposite (Sn1.5PW/Cu-BTC) was successfully prepared by a simple impregnation method and applied as a novel nanocatalyst for producing biodiesel from oleic acid (OA) through esterification. The nanocatalyst was characterized by Fourier transform infrared spectrometry (FTIR), wide-angle X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption-desorption, thermogravimetrics (TG), and NH3-temperature-programmed desorption (NH3-TPD). Accordingly, the synthesized nanocatalyst with a Sn1.5PW/Cu-BTC weight ratio of 1 exhibited a relatively large specific surface area, appropriate pore size, and high acidity. Moreover, an OA conversion of 87.7% was achieved under optimum reaction conditions. The nanocatalyst was reused seven times, and the OA conversion remained at more than 80% after three uses. Kinetic study showed that the esterification reaction followed first-order kinetics, and the activation energy (E a ) was calculated to be 38.3 kJ/mol.
Collapse
Affiliation(s)
- Qiuyun Zhang
- School of Chemistry and Chemical Engineering, Anshun University, Anshun, China
- Engineering Technology Center of Control and Remediation of Soil Contamination of Provincial Science & Technology Bureau, Anshun University, Anshun, China
| | - Dan Ling
- School of Chemistry and Chemical Engineering, Anshun University, Anshun, China
| | - Dandan Lei
- School of Chemistry and Chemical Engineering, Anshun University, Anshun, China
| | - Jialu Wang
- School of Resource and Environmental Engineering, Anshun University, Anshun, China
| | - Xiaofang Liu
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Yutao Zhang
- Engineering Technology Center of Control and Remediation of Soil Contamination of Provincial Science & Technology Bureau, Anshun University, Anshun, China
- School of Resource and Environmental Engineering, Anshun University, Anshun, China
| | - Peihua Ma
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, China
| |
Collapse
|
17
|
Kirchhecker S, Spiegelberg B, de Vries JG. Homogenous Iridium Catalysts for Biomass Conversion. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Affiliation(s)
- Hu Li
- Center for R&D of Fine Chemicals Guizhou University Guiyang 550025, Guizhou, China
| | - Xing Tang
- College of Energy Xiamen University Xiamen 361005, Fujian, China
| | - Song Yang
- Center for R&D of Fine Chemicals Guizhou University Guiyang 550025, Guizhou, China
| |
Collapse
|