1
|
Adams JS, Tanwar M, Chen H, Vijayaraghavan S, Ricciardulli T, Neurock M, Flaherty DW. Intentional Formation of Persistent Surface Redox Mediators by Adsorption of Polyconjugated Carbonyl Complexes to Pd Nanoparticles. J Am Chem Soc 2025. [PMID: 40181498 DOI: 10.1021/jacs.4c15874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Adsorbing polyconjugated carbonyl and aromatic species to Pd nanoparticles forms persistent intermediates that mediate reactions between hydrogen and oxygen-derived species. These surface redox mediators form in situ and increase selectivities toward H2O2 formation (∼65-85%) compared to unmodified Pd nanoparticles (∼45%). Infrared spectroscopy, temperature-programmed oxidation measurements, and ab initio calculations show that these species adsorb irreversibly to Pd surfaces and persist over extended periods of catalysis. Combined rates and kinetic isotope effect measurements and simulations suggest that carbonyl groups of bound organics react heterolytically with hydrogen to form partially hydrogenated oxygenated complexes. Subsequently, these organic species transfer proton-electron pairs to O2-derived surface species via pathways that favor H2O2 over H2O formation on Pd nanoparticles. Computational and experimental measurements show redox pathways mediated by partially hydrogenated carbonyl species form H2O2 with lower barriers than competing processes while also obstructing O-O bond dissociation during H2O formation. For example, adsorption and hydrogenation of hexaketocyclohexane on Pd forms species that react with oxygen with high H2O2 selectivities (85 ± 8%) for 130 h on stream in flowing water without additional promoters or cosolvents. These paths resemble the anthraquinone auto-oxidation process (AAOP) used for industrial H2O2 production. These surface-bound species form partially hydrogenated intermediates that mediate H2O2 formation with high rates and selectivities, comparable to AAOP but on a single catalytic nanoparticle in pure water without organic solvents or multiunit reaction-separation chains. The molecular insights developed herein provide strategies to avoid organic solvents in selective processes and circumvent their associated process costs and environmental impacts.
Collapse
Affiliation(s)
- Jason S Adams
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mayank Tanwar
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Haoyu Chen
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sucharita Vijayaraghavan
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Tomas Ricciardulli
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Matthew Neurock
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - David W Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Mao X, Ou M, Zhao W, Shi M, Zheng L. Enhanced durability of Pd/CeO 2-C via metal-support interaction for oxygen reduction reaction. NANOTECHNOLOGY 2024; 35:475701. [PMID: 39173656 DOI: 10.1088/1361-6528/ad726c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
It is a challenge to improve the long-term durability of Pd-based electrocatalysts for oxygen reduction reaction (ORR) in fuel cells. Herein, Pd/CeO2-C-T (T= 800 °C, 900 °C and 1000 °C) hybrid catalysts with metal-support interaction are prepared from Ce-based metal organic framework precursor. Abundant tiny CeO2nanoclusters are produced to form nanorod structures with uniformly distributed carbon through a calcination process. Meanwhile, both carbon and CeO2nanoclusters have good contact with the following deposited surfactant-free Pd nanoclusters. Benefited from the large specific surface area, good conductivity and structure integrity, Pd/CeO2-C-900 exhibits the best electrocatalytic ORR performance: onset potential of 0.968 V and half-wave potential of 0.857 V, outperforming those obtained on Pd/C counterpart. In addition, the half-wave potential only shifts 7 mV after 6000 cycles of accelerated durability testing, demonstrating robust durability.
Collapse
Affiliation(s)
- Xinbiao Mao
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, People's Republic of China
| | - Mingyu Ou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, People's Republic of China
| | - Wenjun Zhao
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, People's Republic of China
| | - Meiqin Shi
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, People's Republic of China
| | - Lingxia Zheng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, People's Republic of China
| |
Collapse
|
3
|
Kim D, Lim J, Lee JH, Choi J, Kwon SH, Yim SD, Sohn YJ, Lee SG. Investigation of Effect of Platinum Nanoparticle Shape on Oxygen Transport in PEMFC Catalyst Layer Using Molecular Dynamics Simulation. ACS OMEGA 2023; 8:31801-31810. [PMID: 37692235 PMCID: PMC10483685 DOI: 10.1021/acsomega.3c02886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023]
Abstract
For the widespread adoption of polymer electrolyte membrane fuel cells, it is compelling to investigate the influence of the Pt nanoparticle shapes on the electrocatalytic activity. In this study, a catalyst layer was modeled by incorporating four types of Pt nanoparticles: tetrahedron, cube, octahedron, and truncated octahedron, to investigate the relationship between the shapes of the nanoparticles and their impact on the oxygen transport properties using molecular dynamics simulations. The results of our study reveal that the free volume, which has a substantial impact on the oxygen transport properties, exhibited higher values in the sequence of the tetrahedron, cube, octahedron, and truncated octahedron model. The difference in free volume following the formation of less dense ionomers was also related to the surface adsorption of Pt nanoparticles. Consequently, this led to an improved facilitation of oxygen transport. To clarify the dependence of the oxygen transport on the shape of the Pt nanoparticles in detail, we analyzed the structural properties of different Pt shapes by dividing the Pt nanoparticle regions into corners, edges, and facets. Examination of the structural properties showed that the structure of the ionomer depended not only on the shape of the Pt nanoparticles but also on the number of corners and edges in the upper and side regions of the Pt nanoparticles.
Collapse
Affiliation(s)
- Danah Kim
- School
of Chemical Engineering, Pusan National
University, Busan 46241, Republic
of Korea
| | - Jihoon Lim
- School
of Chemical Engineering, Pusan National
University, Busan 46241, Republic
of Korea
| | - Ji Hee Lee
- School
of Chemical Engineering, Pusan National
University, Busan 46241, Republic
of Korea
| | - Joohee Choi
- School
of Chemical Engineering, Pusan National
University, Busan 46241, Republic
of Korea
| | - Sung Hyun Kwon
- School
of Chemical Engineering, Pusan National
University, Busan 46241, Republic
of Korea
- Research
Institute of Industrial Technology, Pusan
National University, Busan 46241, Republic
of Korea
| | - Sung-Dae Yim
- Fuel
Cell Laboratory, Korea Institute of Energy
Research (KIER), Yuseong-gu, Daejeon 34129, Republic of Korea
- Hydrogen
Energy Engineering, University of Science
and Technology, Yuseong-gu, Daejeon 34113, Republic
of Korea
| | - Young-Jun Sohn
- Fuel
Cell Laboratory, Korea Institute of Energy
Research (KIER), Yuseong-gu, Daejeon 34129, Republic of Korea
- Hydrogen
Energy Engineering, University of Science
and Technology, Yuseong-gu, Daejeon 34113, Republic
of Korea
| | - Seung Geol Lee
- School
of Chemical Engineering, Pusan National
University, Busan 46241, Republic
of Korea
- Department
of Organic Material Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
4
|
Zhang J, Wan T, Yang X, Li Q, Xiang D, Yuan X, Sun Z, Li P, Zhu M. Ternary PdCoP nanoparticles with nanopore structures: synergic boosting of electrocatalytic activity for ethanol oxidation. Chem Commun (Camb) 2022; 58:10376-10379. [PMID: 36017783 DOI: 10.1039/d2cc03663k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PdCoP nanoparticles (PdCoP NPs) with nanopore structures were synthesized by a facile one-pot solvothermal approach. Due to their unique geometric structures and the electronic and synergistic effects among multiple components, the optimized PdCoP NPs (PdCoP-NPs-1) show superior mass activity (5.97 A mgPd-1) for the ethanol oxidation reaction under alkaline conditions.
Collapse
Affiliation(s)
- Jiacheng Zhang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China. .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Tingting Wan
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China. .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Xianlong Yang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China. .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Qiuyu Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China. .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Dong Xiang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Xiaoyou Yuan
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Zhenjie Sun
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Peng Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China. .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, P. R. China. .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
5
|
Le TXH, Gajdar J, Vilà N, Celzard A, Fierro V, Walcarius A, Lapicque F, Etienne M. Improved Productivity of NAD
+
Reduction under Forced Convection in Aerated Solutions. ChemElectroChem 2022. [DOI: 10.1002/celc.202101225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Julius Gajdar
- Université de Lorraine CNRS, LCPME 54000 Nancy France
| | - Neus Vilà
- Université de Lorraine CNRS, LCPME 54000 Nancy France
| | - Alain Celzard
- Université de Lorraine CNRS, IJL 88000 Epinal France
| | | | | | | | | |
Collapse
|
6
|
Wang Z, Ke X, Sui M. Recent Progress on Revealing 3D Structure of Electrocatalysts Using Advanced 3D Electron Tomography: A Mini Review. Front Chem 2022; 10:872117. [PMID: 35355785 PMCID: PMC8959462 DOI: 10.3389/fchem.2022.872117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Electrocatalysis plays a key role in clean energy innovation. In order to design more efficient, durable and selective electrocatalysts, a thorough understanding of the unique link between 3D structures and properties is essential yet challenging. Advanced 3D electron tomography offers an effective approach to reveal 3D structures by transmission electron microscopy. This mini-review summarizes recent progress on revealing 3D structures of electrocatalysts using 3D electron tomography. 3D electron tomography at nanoscale and atomic scale are discussed, respectively, where morphology, composition, porous structure, surface crystallography and atomic distribution can be revealed and correlated to the performance of electrocatalysts. (Quasi) in-situ 3D electron tomography is further discussed with particular focus on its impact on electrocatalysts' durability investigation and post-treatment. Finally, perspectives on future developments of 3D electron tomography for eletrocatalysis is discussed.
Collapse
Affiliation(s)
| | - Xiaoxing Ke
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China
| | - Manling Sui
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China
| |
Collapse
|
7
|
Timakwe S, Silwana B, Matoetoe MC. Electrochemistry as a Complementary Technique for Revealing the Influence of Reducing Agent Concentration on AgNPs. ACS OMEGA 2022; 7:4921-4931. [PMID: 35187311 PMCID: PMC8851659 DOI: 10.1021/acsomega.1c05374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/23/2021] [Indexed: 05/23/2023]
Abstract
The synthesis process of AgNPs has been attracting a lot of attention in the fields of biosensors/sensors, diagnostics, and therapeutic applications. An attempt to understand the effect of different concentrations of reducing agents on the synthetic design process has been made. In this paper, we gather information on voltammetry studies and relate it with UV-vis and scanning electron microscopy (SEM) analyses. Given the kinetics, localized surface plasmon absorption (LSPR) band, and narrow size distribution of these methods, it was possible to compare the obtained measurements and clearly distinguish sizes and aggregation. AgNPs measured by SEM showed a statistically significant reduction of the nanoparticle sizes from 65 to 37.5 nm as the reducing agent increased. Well-matched d-spacing data calculated from selected area electron diffraction (SAED) patterns and X-ray diffraction (XRD) were obtained for all of the samples. The UV-vis studies showed that the SPR bands shift toward the blue region as the reducing agent concentration is increased, indicating a decrease in particle sizes. It is worth emphasizing that cyclic voltammetry (CV) and differential pulse voltammetry (DPV) coincide well with SEM on the aggregation of AgNPs at higher concentrations. A 10 mM reducing agent concentration resulted in uniform outcomes for producing AgNPs with the smallest size in terms of full width at half-maximum (FWHM) in all of the methods used in this study, while UV-vis band gaps increase with increasing reducing agent concentration. In agreement with all of the methods investigated, the results suggested that the best concentration of the reducing agents is 10 mM for a target application. These findings suggest the usefulness of voltammetry as a complementary method that can be used as a qualitative guide to identify the size and aggregation of NPs.
Collapse
|
8
|
Fortunato GV, Bezerra LS, Cardoso ESF, Kronka MS, Santos AJ, Greco AS, Júnior JLR, Lanza MRV, Maia G. Using Palladium and Gold Palladium Nanoparticles Decorated with Molybdenum Oxide for Versatile Hydrogen Peroxide Electroproduction on Graphene Nanoribbons. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6777-6793. [PMID: 35080174 DOI: 10.1021/acsami.1c22362] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrocatalytic production of H2O2 via a two-electron oxygen reduction reaction (ORR-2e-) is regarded as a highly promising decentralized and environmentally friendly mechanism for the production of this important chemical commodity. However, the underlying challenges related to the development of catalytic materials that contain zero or low content of noble metals and that are relatively more active, selective, and resistant for long-term use have become a huge obstacle for the electroproduction of H2O2 on commercial and industrial scales. The present study reports the synthesis and characterization of low metal-loaded (≤6.4 wt %) catalysts and their efficiency in H2O2 electroproduction. The catalysts were constructed using gold palladium molybdenum oxide (AuPdMoOx) and palladium molybdenum oxide (PdMoOx) nanoparticles supported on graphene nanoribbons. Based on the application of a rotating ring-disk electrode, we conducted a thorough comparative analysis of the electrocatalytic performance of the catalysts in the ORR under acidic and alkaline media. The proposed catalysts exhibited high catalytic activity (ca. 0.08 mA gnoble metal-1 in an acidic medium and ca. 6.6 mA gnoble metal-1 in an alkaline medium), good selectivity (over 80%), and improved long-term stability toward ORR-2e-. The results obtained showed that the enhanced ORR activity presented by the catalysts, which occurred preferentially via the two-electron pathway, was promoted by a combination of factors including geometry, Pd content, interparticle distance, and site-blocking effects, while the electrochemical stability of the catalysts may have been enhanced by the presence of MoOx.
Collapse
Affiliation(s)
- Guilherme V Fortunato
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, SP 13566-590, Brazil
- Institute of Chemistry, Federal University of Mato Grosso do Sul; Av. Senador Filinto Muller, 1555; Campo Grande, MS 79074-460, Brazil
| | - Leticia S Bezerra
- Institute of Chemistry, Federal University of Mato Grosso do Sul; Av. Senador Filinto Muller, 1555; Campo Grande, MS 79074-460, Brazil
| | - Eduardo S F Cardoso
- Institute of Chemistry, Federal University of Mato Grosso do Sul; Av. Senador Filinto Muller, 1555; Campo Grande, MS 79074-460, Brazil
| | - Matheus S Kronka
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, SP 13566-590, Brazil
| | - Alexsandro J Santos
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, SP 13566-590, Brazil
| | - Anderson S Greco
- Faculty of Exact Sciences and Technology, Federal University of Grande Dourados, Highway Dourados-Itahum, km 12, Dourados, MS 79804-970, Brazil
| | - Jorge L R Júnior
- Institute of Chemistry, Federal University of Mato Grosso do Sul; Av. Senador Filinto Muller, 1555; Campo Grande, MS 79074-460, Brazil
| | - Marcos R V Lanza
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, SP 13566-590, Brazil
| | - Gilberto Maia
- Institute of Chemistry, Federal University of Mato Grosso do Sul; Av. Senador Filinto Muller, 1555; Campo Grande, MS 79074-460, Brazil
| |
Collapse
|
9
|
|
10
|
Kim H, Yoo TY, Bootharaju MS, Kim JH, Chung DY, Hyeon T. Noble Metal-Based Multimetallic Nanoparticles for Electrocatalytic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104054. [PMID: 34791823 PMCID: PMC8728832 DOI: 10.1002/advs.202104054] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/13/2021] [Indexed: 05/08/2023]
Abstract
Noble metal-based multimetallic nanoparticles (NMMNs) have attracted great attention for their multifunctional and synergistic effects, which offer numerous catalytic applications. Combined experimental and theoretical studies have enabled formulation of various design principles for tuning the electrocatalytic performance through controlling size, composition, morphology, and crystal structure of the nanoparticles. Despite significant advancements in the field, the chemical synthesis of NMMNs with ideal characteristics for catalysis, including high activity, stability, product-selectivity, and scalability is still challenging. This review provides an overview on structure-based classification and the general synthesis of NMMN electrocatalysts. Furthermore, postsynthetic treatments, such as the removal of surfactants to optimize the activity, and utilization of NMMNs onto suitable support for practical electrocatalytic applications are highlighted. In the end, future direction and challenges associated with the electrocatalysis of NMMNs are covered.
Collapse
Affiliation(s)
- Hyunjoong Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Tae Yong Yoo
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Megalamane S. Bootharaju
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Dong Young Chung
- Department of ChemistryGwangju Institute of Science and Technology (GIST)Gwangju61005Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| |
Collapse
|
11
|
Strasser JW, Hersbach TJP, Liu J, Lapp AS, Frenkel AI, Crooks RM. Electrochemical Cleaning Stability and Oxygen Reduction Reaction Activity of 1‐2 nm Dendrimer‐Encapsulated Au Nanoparticles. ChemElectroChem 2021. [DOI: 10.1002/celc.202100549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Juliette W. Strasser
- Department of Chemistry and Texas Materials Institute The University of Texas at Austin 2506 Speedway, Stop A5300 Austin TX 78712-1224, U.S.A
| | - Thomas J. P. Hersbach
- Department of Chemistry and Texas Materials Institute The University of Texas at Austin 2506 Speedway, Stop A5300 Austin TX 78712-1224, U.S.A
| | - Jing Liu
- Department of Physics Manhattan College Riverdale NY 10471 USA
| | - Aliya S. Lapp
- Department of Chemistry and Texas Materials Institute The University of Texas at Austin 2506 Speedway, Stop A5300 Austin TX 78712-1224, U.S.A
| | - Anatoly I. Frenkel
- Department of Materials Science and Chemical Engineering Stony Brook University Stony Brook NY 11794 USA
- Division of Chemistry Brookhaven National Laboratory Upton NY 11973 USA
| | - Richard M. Crooks
- Department of Chemistry and Texas Materials Institute The University of Texas at Austin 2506 Speedway, Stop A5300 Austin TX 78712-1224, U.S.A
| |
Collapse
|
12
|
Affiliation(s)
- Linfang Lu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Shihui Zou
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Baizeng Fang
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
13
|
Sinha S, Mirica LM. Electrocatalytic O 2 Reduction by an Organometallic Pd(III) Complex via a Binuclear Pd(III) Intermediate. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Soumalya Sinha
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Liviu M. Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
14
|
Zhang J, Zhang L, Cui Z. Strategies to enhance the electrochemical performances of Pt-based intermetallic catalysts. Chem Commun (Camb) 2021; 57:11-26. [PMID: 33295889 DOI: 10.1039/d0cc05170e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The need for improving the energy conversion efficiency of proton exchange membrane fuel cells (PEMFCs) has motivated the development of advanced electrocatalysts with desirable activity and durability. Pt-Based intermetallic compounds, featuring atomically ordered structures, have long been considered to be very promising alternatives to widely employed Pt and Pt alloy (solid solutions) catalysts. To facilitate the practical application of Pt-based intermetallics in PEMFCs, effective strategies have been developed to further improve their catalytic activity and durability over the last decade. This feature article overviews the recent advances on the strategies for enhancing the electrochemical performances of Pt-based intermetallic catalysts, which include size control, surface engineering, and composition tuning. Thermodynamic and kinetic perspectives on the formation of the intermetallic phases are summarized to better design the synthesis conditions and realize the size control. After this, the size-control approaches (e.g. coating protection, matrix protection) are illustrated and discussed. We highlight the positive effect of surface engineering and discuss the recently developed methods for surface engineering. Finally, we discuss the thermodynamic feasibility of composition tuning and recent work based on composition-tunable intermetallic electrocatalysts.
Collapse
Affiliation(s)
- Jiaxi Zhang
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | | | | |
Collapse
|
15
|
Ribeiro EL, Davis EM, Mokhtarnejad M, Hu S, Mukherjee D, Khomami B. MOF-derived PtCo/Co 3O 4 nanocomposites in carbonaceous matrices as high-performance ORR electrocatalysts synthesized via laser ablation techniques. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02099k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ZIF-67-derived carbon-based bimetallic nanocomposites with reduced Pt-loading via laser ablation synthesis in solution (LASiS) as a superior electrocatalyst for oxygen reduction reaction (ORR).
Collapse
Affiliation(s)
- Erick L. Ribeiro
- Department of Chemical & Biomolecular Engineering
- University of Tennessee
- Knoxville
- USA
- Material Research and Innovation Laboratory (MRAIL)
| | - Elijah M. Davis
- Department of Chemical & Biomolecular Engineering
- University of Tennessee
- Knoxville
- USA
- Nano-BioMaterials Laboratory for Energy, Energetics & Environment (nbml-E3)
| | - Mahshid Mokhtarnejad
- Department of Chemical & Biomolecular Engineering
- University of Tennessee
- Knoxville
- USA
- Material Research and Innovation Laboratory (MRAIL)
| | - Sheng Hu
- Department of Chemical & Biomolecular Engineering
- University of Tennessee
- Knoxville
- USA
- Nano-BioMaterials Laboratory for Energy, Energetics & Environment (nbml-E3)
| | - Dibyendu Mukherjee
- Department of Chemical & Biomolecular Engineering
- University of Tennessee
- Knoxville
- USA
- Material Research and Innovation Laboratory (MRAIL)
| | - Bamin Khomami
- Department of Chemical & Biomolecular Engineering
- University of Tennessee
- Knoxville
- USA
- Material Research and Innovation Laboratory (MRAIL)
| |
Collapse
|
16
|
Sridharan M, Maiyalagan T. Enhanced oxygen reduction activity of bimetallic Pd–Ag alloy-supported on mesoporous cerium oxide electrocatalysts in alkaline media. NEW J CHEM 2021. [DOI: 10.1039/d1nj04102a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Currently, the rational design and fabrication of Pt-free electrocatalysts towards the oxygen reduction reaction for extensive applications in fuel cells is a challenging task.
Collapse
Affiliation(s)
- M. Sridharan
- Electrochemical Energy Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India
| | - T. Maiyalagan
- Electrochemical Energy Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India
| |
Collapse
|