1
|
Gajardo-Parra NF, Cea-Klapp E, Chandra A, Canales RI, Garrido JM, Held C, Guajardo N. Assessing the Effect of Deep Eutectic Solvents on α-Chymotrypsin Thermal Stability and Activity. CHEMSUSCHEM 2025; 18:e202401414. [PMID: 39402266 DOI: 10.1002/cssc.202401414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/30/2024] [Indexed: 11/27/2024]
Abstract
Optimizing the liquid reaction phase holds significant potential for enhancing the efficiency of biocatalytic processes since it determines reaction equilibrium and kinetics. This study investigates the influence of the addition of deep eutectic solvents on the stability and activity of α-chymotrypsin, a proteolytic enzyme with industrial relevance. Deep eutectic solvents, composed of choline chloride or betaine mixed with glycerol or sorbitol, were added in the reaction phase at various concentrations. Experimental techniques, including kinetic and fluorometry, were employed to assess the α-chymotrypsin activity, thermal stability, and unfolding reversibility. Atomistic molecular dynamics simulations were also conducted to assess the interactions and provide molecular-level insights between α-chymotrypsin and the solvent. The results showed that among all studied mixtures, adding choline chloride + sorbitol improved thermal stability up to 18 °C and reaction kinetic efficiency up to two-fold upon adding choline chloride + glycerol. Notably, the choline chloride + sorbitol system exhibited the most substantial stabilization effect, attributed to the surface preferential accumulation of sorbitol, as corroborated by the computational analyses. This work highlights the potential of tailoring liquid reaction phase of α-chymotrypsin catalyzed reaction using neoteric solvents such as deep eutectic solvents to enhance α-chymotrypsin performance and stability in industrial applications.
Collapse
Affiliation(s)
- Nicolás F Gajardo-Parra
- Escuela de Ingeniería Industrial, Facultad de Ingeniería y Ciencias, Universidad Diego Portales, Santiago, 8370191, Chile
| | - Esteban Cea-Klapp
- Departamento de Ingeniería Química, Universidad de Concepción, Víctor Lamas 1290, Concepción, Chile
| | - Anshu Chandra
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, 44227, Dortmund, Germany
| | - Roberto I Canales
- Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Avenida Vicũna Mackenna 4860, Macul, Santiago, Chile
| | - José Matías Garrido
- Departamento de Ingeniería Química, Universidad de Concepción, Víctor Lamas 1290, Concepción, Chile
| | - Christoph Held
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, 44227, Dortmund, Germany
| | - Nadia Guajardo
- Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Avenida Vicũna Mackenna 4860, Macul, Santiago, Chile
| |
Collapse
|
2
|
Guo H, Ma X, Chen Z, Guo J, Lu J. Efficient 5-hydroxymethylfurfural production in ChCl-based deep eutectic solvents using boric acid and metal chlorides. RSC Adv 2025; 15:3664-3671. [PMID: 39911549 PMCID: PMC11795258 DOI: 10.1039/d5ra00020c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025] Open
Abstract
Bio-based 5-hydroxymethylfurfural (5-HMF) production in DESs has garnered significant attention due to its effectiveness and environmental friendliness. In this study, acidic ChCl-based DESs and ChCl-fructose DES were compared in terms of 5-HMF production in the presence of four acids, namely boric acid, oxalic acid, citric acid, and p-toluenesulfonic acid. Simultaneously, two types of ChCl-fructose and ChCl-glucose DESs were explored in combination with boric acid for 5-HMF production respectively. The 5-HMF yield was optimized by varying parameters such as the mass ratio of ChCl to carbohydrate, catalyst usage, temperature, time, and water content. The results indicated that ChCl-fructose DES exhibits better performance in converting fructose to 5-HMF than acidic ChCl-based DES. A 5-HMF yield of 65.2% was obtained in ChCl-fructose DES (6 : 4 w/w) with 20% water and 80 mg boric acid at 120 °C for 120 minutes. Similarly, a 5-HMF yield of 33.7% from glucose was presented in ChCl-glucose DES (6 : 4 w/w) with 20% water, 120 mg boric acid, and 25 mg CrCl3·6H2O at 120 °C for 120 minutes. The addition of an appropriate amount of water is beneficial for promoting 5-HMF production in ChCl-fructose and ChCl-glucose DESs. The high viscosities of ChCl-fructose and ChCl-glucose DESs can be attributed to a strong intermolecular force, resulting in a large mass transfer resistance. Overall, this work provides an efficient and inexpensive approach for producing 5-HMF in ChCl-fructose and ChCl-glucose DESs.
Collapse
Affiliation(s)
- Hong Guo
- College of Textile Engineering, Taiyuan University of Technology Shanxi Jinzhong 030600 China
- College of Materials Science and Engineering, Taiyuan University of Technology Shanxi Taiyuan 030024 China
- Tongkun Group Co., Ltd Tongxiang Zhejiang 314500 China
| | - Xinyi Ma
- College of Textile Engineering, Taiyuan University of Technology Shanxi Jinzhong 030600 China
| | - Zhipeng Chen
- College of Textile Engineering, Taiyuan University of Technology Shanxi Jinzhong 030600 China
| | - Jing Guo
- College of Textile Engineering, Taiyuan University of Technology Shanxi Jinzhong 030600 China
| | - Jianjun Lu
- College of Textile Engineering, Taiyuan University of Technology Shanxi Jinzhong 030600 China
| |
Collapse
|
3
|
Song J, Yuan H, Mai Y, Hu Y, Qiu Q, Wu T, Lin X. Enhancing 5-Hydroxymethylfurfural Production from Fructose Using Triethylbenzylammonium Chloride-Based Acidic Deep Eutectic Solvents: Optimization and Acidity Impact. Chempluschem 2025; 90:e202400544. [PMID: 39364634 DOI: 10.1002/cplu.202400544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
5-Hydroxymethylfurfural (5-HMF) is an important biomass-based platform compound that links biomass feedstocks with petrochemical refinery products. In this work, we developed a novel approach using triethylbenzylammonium chloride (TEBAC)-based acidic deep eutectic solvents (ADESs) to synthesize 5-HMF through the dehydration of fructose. Our approach demonstrates significant improvements in both 5-HMF yield and process efficiency compared to conventional solvent systems. Under optimal experimental conditions (90 °C, 4.5 h), a maximum 5-HMF yield of 97.77±3.20 % was achieved at a TEBAC:acetic acid ratio of 2 : 3 with 1 wt % fructose loading, which represents a notable advancement over other methods. Notably, our system inhibits the formation of by-products such as levulinic acid (LA) and formic acid (FA), which are commonly detected in other dehydration processes. Additionally, higher 5-HMF yields of 76.67±0.33 % and 73.51±1.14 % were achieved with 10 wt % and 20 wt % fructose loadings, respectively, further highlighting the scalability of the process. The acidity of ADESs was found to significantly affect the dehydration rate and yield, as demonstrated through Hammett's acidity function analysis. The key innovation of our study lies in the strategic selection of hydrogen bond donors and acceptors in the DES, enabling both high efficiency and selectivity in 5-HMF production. These findings provide a promising pathway for large-scale biomass conversion with reduced by-product formation.
Collapse
Affiliation(s)
- Jiuhang Song
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, People's Republic of China
| | - Haotian Yuan
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, People's Republic of China
| | - Yinglin Mai
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, People's Republic of China
| | - Yinan Hu
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, People's Republic of China
| | - Quanyuan Qiu
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, People's Republic of China
| | - Ting Wu
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, People's Republic of China
| | - Xiaoqing Lin
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
4
|
Ren Y, Cheng L, Cheng Z, Liu Y, Li M, Yuan T, Shen Z. Molecular insight into the enhanced performance of CALB toward PBDF degradation. Int J Biol Macromol 2024; 262:130181. [PMID: 38360240 DOI: 10.1016/j.ijbiomac.2024.130181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Poly(butylene diglycolate-co-furandicarboxylate) (PBDF) is a newly developed biodegradable copolyester. Candida antarctica lipase B (CALB) has been identified as an effective catalyst for PBDF degradation. The mechanism is elucidated using a combination of molecular dynamics simulations and quantum chemistry approaches. The findings unveil a four-step catalytic reaction pathway. Furthermore, bond analysis, charge and interaction analysis are conducted to gain a more comprehensive understanding of the PBDF degradation process. Additionally, through the introduction of single-point mutations to crucial residues in CALB's active sites, two mutants, T138I and D134I, are discovered to exhibit improved catalytic efficiency. These significant findings contribute to the advancement of our comprehension concerning the molecular mechanism of underlying copolyesters degradation, while also presenting a novel approach for expediting the degradation rate by the CALB enzyme modification.
Collapse
Affiliation(s)
- Yuanyang Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Luwei Cheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhiwen Cheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200240, China
| | - Yawei Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Mingyue Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Tao Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200240, China.
| | - Zhemin Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
5
|
Huynh QT, Huang Q, Leu SY, Lin YC, Liao CS, Chang KL. Combination of deep eutectic solvent and functionalized metal-organic frameworks as a green process for the production of 5-hydroxymethylfurfural and furfural from sugars. CHEMOSPHERE 2023; 342:140126. [PMID: 37690555 DOI: 10.1016/j.chemosphere.2023.140126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Biomass is an abundant and sustainable resource that can be converted into energy and chemicals. Therefore, the development of efficient methods for the conversion of biomass into platform intermediates is crucial. In this study, the one-pot conversion of sugars into 5-hydroxymethylfurfural (HMF) and furfural was achieved using the metal-organic framework combined with metal ions [MIL-101(Cr)] as a high-activity catalyst, and a deep eutectic solvent (choline chloride and lactic acid) as a green solvent. The optimal temperature, time, amount of catalyst used, and amount of deep eutectic solvent used were all determined. The highest HMF yield of 49.74% and furfural yield of 55.90% were obtained. The recyclability of the catalysts and deep eutectic solvent was also investigated. After three reaction runs, the HMF yield was still nearly 30.00%. Finally, the MIL-101(Cr) catalytic system was selected to study the kinetic mechanism underlying the conversion of glucose into HMF.
Collapse
Affiliation(s)
- Quang Tam Huynh
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Qing Huang
- Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan, 570228, China
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Chien-Sen Liao
- Department of Biological Science & Technology, I Shou University, Kaohsiung, 84001, Taiwan
| | - Ken-Lin Chang
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
| |
Collapse
|
6
|
Huynh QT, Zhong CT, Huang Q, Lin YC, Chen KF, Liao CS, Dong CD, Chang KL. Highly effective synthesis of 5-hydroxymethylfurfural from lignocellulosic biomass over a green and one-pot reaction in biphasic system. BIORESOURCE TECHNOLOGY 2023; 387:129590. [PMID: 37532059 DOI: 10.1016/j.biortech.2023.129590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
In this study, different types of lignocellulosic biomas were used as substrates for the conversion to 5-HMF via biphasic reaction system that is composed of a reaction phase (aqueous phase) and an extraction phase (organic phase) under the catalysis of various metal salts. Deep eutectic solvents (DESs), ionic liquid [BMIM]Cl, aqueous choline chloride, aqueous betaine hydrochloride, and ethylamine hydrochloride were used as the reaction phase in the combination of dimethyl sulfoxide (DMSO) as organic solvents. The highest yields of 5-HMF obtained from pineapple stems in reactions with DES were 40.98%, 37.26%, and 23.44% for ChCl:Lac, ChCl:OA, and EaCl:Lac, respectively. Moreover, the combination of dimethyl sulfoxide, betaine hydrochloride aqueous solution, and AlCl3·6H2O with the pineapple stem conversion system resulted in a maximum yield of 61.04% ± 0.55% of 5-HMF. This study also demonstrated that AlCl3·6H2O and betaine hydrochloride could be effectively reused four times, which indicates a green and effective process.
Collapse
Affiliation(s)
- Quang Tam Huynh
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Chong-Ting Zhong
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Qing Huang
- Key Laboratory for Environmental Toxicology of Haikou, Hainan University, Haikou, Hainan 570228, China
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ku-Fan Chen
- Department of Civil Engineering, National Chi Nan University, Nantou 545, Taiwan
| | - Chien-Sen Liao
- Department of Biological Science & Technology, I Shou University, Kaohsiung 840, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Ken-Lin Chang
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
7
|
Raabe JC, Poller MJ, Voß D, Albert J. H 8 [PV 5 Mo 7 O 40 ] - A Unique Polyoxometalate for Acid and RedOx Catalysis: Synthesis, Characterization, and Modern Applications in Green Chemical Processes. CHEMSUSCHEM 2023; 16:e202300072. [PMID: 37129162 DOI: 10.1002/cssc.202300072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Polyoxometalates (POMs) are a fascinating group of anionic metal-oxide clusters with a broad variety of structural properties and several catalytic applications, especially in the conversion of bio-derived platform chemicals. H8 [PV5 Mo7 O40 ] (HPA-5) is a unique POM catalyst that ideally links numerous fascinating research fields for the following reasons: a) HPA-5 can be synthesized by rational design approaches; b) HPA-5 can be well characterized using multiple analytical tools explaining its catalytic properties; and c) HPA-5 is suitable for multiple important catalytic transformations of bio-based feedstock. This Review combines the fields of synthesis, spectroscopic, electrochemical, and crystallographic characterization of HPA-5 with those of sustainable catalysis and green chemistry. Selected catalytic applications include esterification, dehydration, and delignification of biomass as well as selective oxidation and fractionation of bio-based feedstock. The unique HPA-5 is a fascinating POM that has a broad application scope for biomass valorization.
Collapse
Affiliation(s)
- Jan-Christian Raabe
- Institute of Technical and Macromolecular Chemistry, Universität Hamburg, Bundesstr. 45, 20146, Hamburg, Germany
| | - Maximilian J Poller
- Institute of Technical and Macromolecular Chemistry, Universität Hamburg, Bundesstr. 45, 20146, Hamburg, Germany
| | - Dorothea Voß
- Institute of Technical and Macromolecular Chemistry, Universität Hamburg, Bundesstr. 45, 20146, Hamburg, Germany
| | - Jakob Albert
- Institute of Technical and Macromolecular Chemistry, Universität Hamburg, Bundesstr. 45, 20146, Hamburg, Germany
| |
Collapse
|
8
|
Li Q, Ma CL, He YC. Effective one-pot chemoenzymatic cascade catalysis of biobased feedstock for synthesizing 2,5-diformylfuran in a sustainable reaction system. BIORESOURCE TECHNOLOGY 2023; 378:128965. [PMID: 36990332 DOI: 10.1016/j.biortech.2023.128965] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
2,5-Diformylfuran, which can be prepared via the oxidation of biobased HMF, has received considerable attention because of its potential applications in producing furan-based chemicals and functional materials, such as biofuels, polymers, fluorescent material, vitrimers, surfactants, antifungal agents and medicines. This work aimed to develop an efficient one-pot process for chemoenzymatic transformation of biobased substrate to 2,5-diformylfuran with deep eutectic solvent (DES) Betaine:Lactic acid ([BA][LA]) catalyst and oxidase biocatalyst in [BA][LA]-H2O. Using waste bread (50 g/L) and D-fructose (18.0 g/L) as feedstocks in [BA][LA]-H2O (15:85, vol/vol), the yields of HMF were 32.8% (15 min) and 91.6% (90 min) at 150 °C, respectively. These prepared HMF could be biologically oxidized to 2,5-diformylfuran by Escherichia coli pRSFDuet-GOase, achieving a productivity of 0.631 g 2,5-diformylfuran/(g fructose) and 0.323 g 2,5-diformylfuran/(g bread) after 6 h under the mild performance condition. This bioresourced intermediate 2,5-diformylfuran was effectively synthesized from biobased feedstock in an environmentally-friendly system.
Collapse
Affiliation(s)
- Qing Li
- School of Pharmacy, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou 213164, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Cui-Luan Ma
- School of Pharmacy, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou 213164, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yu-Cai He
- School of Pharmacy, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou 213164, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
9
|
Antenucci A, Bonomo M, Ghinato S, Blangetti M, Dughera S. Design of a New Chiral Deep Eutectic Solvent Based on 3-Amino-1,2-propanediol and Its Application in Organolithium Chemistry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238566. [PMID: 36500673 PMCID: PMC9738533 DOI: 10.3390/molecules27238566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
A chiral glycerol derivative, namely 3-amino-1,2-propanediol, was employed for as the hydrogen bond donor (HBD) in the design of a new deep eutectic solvent (DES) with choline chloride acting as the hydrogen bond acceptor (HBA). The novel mixture was characterized and unambiguously classified as a DES. Furthermore, its synthetic usefulness was demonstrated in the room-temperature n-butyllithium-addition under air to carbonyl compounds and benzyl chloride. In some cases, pure products (100% conversion) were obtained by a simple extractive work-up in up to 72% isolated yield, thus suggesting the potential practical usefulness of this procedure as a green alternative to the classical Schenk procedure in volatile organic solvents for the synthesis of tertiary alcohols. The chirality of the HBD, bearing an interesting basic primary amino group, is an intriguing feature currently under investigation for further exploitation.
Collapse
Affiliation(s)
- Achille Antenucci
- Department of Chemistry, Università degli Studi di Torino, Via Pietro Giuria 7, 10125 Torino, Italy
- Centro Ricerche per la Chimica Fine s.r.l. for Silvateam s.p.a., Via Torre 7, 12080 San Michele Mondovì, Italy
- Correspondence: (A.A.); (M.B.); (S.D.)
| | - Matteo Bonomo
- Department of Chemistry, Università degli Studi di Torino, Via Pietro Giuria 7, 10125 Torino, Italy
- NIS Interdepartmental Centre and INSTM Reference Centre, Università degli Studi di Torino, Via Gioacchino Quarello 15/a, 10125 Torino, Italy
- Correspondence: (A.A.); (M.B.); (S.D.)
| | - Simone Ghinato
- Department of Chemistry, Università degli Studi di Torino, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Marco Blangetti
- Department of Chemistry, Università degli Studi di Torino, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Stefano Dughera
- Department of Chemistry, Università degli Studi di Torino, Via Pietro Giuria 7, 10125 Torino, Italy
- Correspondence: (A.A.); (M.B.); (S.D.)
| |
Collapse
|
10
|
Zhang H, Liu X, Han M, Zhang R. Conversion of bio-carbohydrates to 5-hydroxymethylfurfural in three-component deep eutectic solvent. RSC Adv 2022; 12:14957-14963. [PMID: 35702210 PMCID: PMC9115872 DOI: 10.1039/d2ra01688e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
5-Hydroxymethylfurfural (HMF) is a valuable platform chemical derived from biomass and lots of research focuses on the synthesis of HMF from fructose and glucose. Herein, conversion of bio-carbohydrates to 5-hydroxymethylfurfural (HMF) was studied in the three-component deep eutectic solvent (DES) system, which was composed of choline chloride (ChCl), boric acid and substrates such as fructose, glucose and sucrose. Bio-carbohydrates handled under typical reaction conditions gave satisfactory conversion (44% for fructose and 31% for glucose) and yield of HMF (35% for fructose and 21% for glucose) in 1 h. Moreover, owing to the benefits of DES, the initial substrate content could be higher and the reaction temperature could be reduced, thus side reactions were effectively avoided and the selectivity of HMF was better (ranging from 79% to 100% for fructose and from 65% to 100% for glucose). We believe this method could provide a promising alternative for conversion of bio-carbohydrates to HMF and a better utilization of biomass.
Collapse
Affiliation(s)
- Hongtao Zhang
- Engineering Research Center of Large Scale Reactor Engineering and Technology Ministry of Education, School of Chemical Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Xiao Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 China
| | - Miaomiao Han
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 China
| | - Rui Zhang
- Engineering Research Center of Large Scale Reactor Engineering and Technology Ministry of Education, School of Chemical Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, School of Chemistry and Molecular Engineering Shanghai 200062 China
| |
Collapse
|
11
|
Wu M, Bai Y, Wang Q, Wang G. Silica-gel-supported deep eutectic solvent (DES) as an efficient novel catalytic system for synthesis of 1,10-phenanthroline. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04726-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Sanchez B, Campodónico PR, Contreras R. Gutmann’s Donor and Acceptor Numbers for Ionic Liquids and Deep Eutectic Solvents. Front Chem 2022; 10:861379. [PMID: 35433634 PMCID: PMC9008452 DOI: 10.3389/fchem.2022.861379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 11/26/2022] Open
Abstract
An experimental and computational methodology for the analysis of the Lewis acid/base responses of ionic liquids (ILs) and deep eutectic solvents (DES) is proposed. It is based on the donor and acceptor of the electronic charge ability of Lewis acid and bases concepts (donicity and acceptor numbers, DN and AN, respectively) proposed by Viktor Gutmann. The binding enthalpy between the IL/DES with the probe antimony pentachloride (SbCl5) in dichloroethane displays good correlations with experimental data. This approach could serve as a first approximation to predict the responses to H-bonding abilities of new IL or DES. Although useful, the problems encountered to model the electron AN of these solvents limit the usefulness of the approach to completely describe their polarity properties. The experimental data were recorded using UV–Vis spectroscopy for a wide range of ILs and a couple of DES. Two reactions were used as benchmarks to test the reliability of the DN model to discuss the reactivity of real systems in these neoteric solvents.
Collapse
Affiliation(s)
- Bruno Sanchez
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Paola R. Campodónico
- Centro de Química Médica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad Del Desarrollo, Santiago, Chile
- *Correspondence: Paola R. Campodónico,
| | - Renato Contreras
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
13
|
Lü H, Sun Y, Yang K, Zhu Z, Su T, Ren W. Deep eutectic solvents coupled with (NH4)3H6CoMo6O24 trigger aerobic oxidation of 5-hydroxymethylfurfural to 5-formyl-2-furancarboxylic acid. Chem Commun (Camb) 2022; 58:8105-8108. [DOI: 10.1039/d2cc02544b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An Anderson-type polyoxometalate (NH4)3H6CoMo6O24 in deep eutectic solvents exhibited outstanding catalytic performance for the selective aerobic oxidation of HMF to FFCA. It is potentially a promising and highly environmentally friendly...
Collapse
|
14
|
Jiang S, Zeng Z, Xue W, Mao Z, Wang Y. Physical properties of deep eutectic solvents based on p-toluene sulfonic acid and employment as catalyst. CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2021.2001456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Shan Jiang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Zuoxiang Zeng
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Weilan Xue
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhijie Mao
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Ying Wang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
15
|
Shi S, Wu Y, Zhang M, Zhang Z, Oderinde O, Gao L, Xiao G. Direct conversion of cellulose to levulinic acid using SO3H-functionalized ionic liquids containing halogen-anions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117278] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Ning P, Yang G, Hu L, Sun J, Shi L, Zhou Y, Wang Z, Yang J. Recent advances in the valorization of plant biomass. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:102. [PMID: 33892780 PMCID: PMC8063360 DOI: 10.1186/s13068-021-01949-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/07/2021] [Indexed: 05/28/2023]
Abstract
Plant biomass is a highly abundant renewable resource that can be converted into several types of high-value-added products, including chemicals, biofuels and advanced materials. In the last few decades, an increasing number of biomass species and processing techniques have been developed to enhance the application of plant biomass followed by the industrial application of some of the products, during which varied technologies have been successfully developed. In this review, we summarize the different sources of plant biomass, the evolving technologies for treating it, and the various products derived from plant biomass. Moreover, the challenges inherent in the valorization of plant biomass used in high-value-added products are also discussed. Overall, with the increased use of plant biomass, the development of treatment technologies, and the solution of the challenges raised during plant biomass valorization, the value-added products derived from plant biomass will become greater in number and more valuable.
Collapse
Affiliation(s)
- Peng Ning
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Guofeng Yang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lihong Hu
- Institute of Chemical Industry of Forest Products, Key Laboratory of Biomass Energy and Material, CAF, Nanjing, China
| | - Jingxin Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Lina Shi
- Agricultural Integrated Service Center of Zhuyouguan, Longkou, Yantai, China
| | - Yonghong Zhou
- Institute of Chemical Industry of Forest Products, Key Laboratory of Biomass Energy and Material, CAF, Nanjing, China
| | - Zhaobao Wang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China.
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China.
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
17
|
Chauhan AS, Kumar A, Das P. Metal Catalyst and Hydrogen Gas-Free Selective Reduction of Biomass-Derived Substituted Furfuraldehyde to Alkyl Furan as a Key Biofuel Additive. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Arvind Singh Chauhan
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajay Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pralay Das
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
18
|
Heo JB, Lee YS, Chung CH. Seagrass-based platform strategies for sustainable hydroxymethylfurfural (HMF) production: toward bio-based chemical products. Crit Rev Biotechnol 2021; 41:902-917. [PMID: 33648387 DOI: 10.1080/07388551.2021.1892580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Today, sustainable chemistry is a key trend in the chemical manufacturing industry due mainly to concerns over the global environment and resource security. In sustainable chemical manufacture, the choice of a bio-based feedstock plays a pivotal pillar. In terms of feedstock utilization for producing HMF, which is a multivalent platform intermediate easily convertible to valuable chemical products; biopolymers, biofuels, and other important chemicals, seagrass biomasses can be more favorable feedstocks compared with land plant resources due primarily to easy availability and no systematic farming. Moreover, seagrass feedstocks could contribute cost-effectively and sustainably producing HMF by exploiting the beach-cast seagrasses on seagrass-prairies with no feedstock cost, indicating that seagrass biomasses could be a most promising biofeedstock source for sustainable HMF production. We afford a platform bioprocessing technology that has not been attempted before for sustainable HMF production using raw seagrass biomass. This bioprocess can be operated by simple reaction conditions using inorganic Brønsted acids (mainly HCl) and ionic liquid solvents at relatively low temperatures (120-130 °C). In addition, some bioengineering strategies for improving the growth of seagrass biomass and the quantity/quality of nonstructural carbohydrates (starch, sucrose) that can be used as the feeding substrates for HMF production are also discussed. The main aim of this review is to provide some important information about breakthrough bio/technologies conducive to cost-effective and sustainable HMF production.
Collapse
Affiliation(s)
- Jae Bok Heo
- Department of Molecular Genetic Biotechnology, Dong-A University, Busan, South Korea
| | - Yong-Suk Lee
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, South Korea
| | - Chung-Han Chung
- Department of Biotechnology, Dong-A University, Busan, South Korea
| |
Collapse
|
19
|
Abstract
Deep eutectic solvents (DESs) have emerged as promising green solvents, due to their versatility and properties such as high biodegradability, inexpensiveness, ease of preparation and negligible vapor pressure. Thus, DESs have been used as sustainable media and green catalysts in many chemical processes. On the other hand, lignocellulosic biomass as an abundant source of renewable carbon has received ample interest for the production of biobased chemicals. In this review, the state of the art of the catalytic use of DESs in upgrading the biomass-related substances towards biofuels and value-added chemicals is presented, and the gap in the knowledge is indicated to direct the future research.
Collapse
|
20
|
Aşçı YS, Lalikoglu M. Development of New Hydrophobic Deep Eutectic Solvents Based on Trioctylphosphine Oxide for Reactive Extraction of Carboxylic Acids. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c04551] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yavuz Selim Aşçı
- Chemistry Department, Faculty of Science, Istanbul University, 34134 Istanbul, Fatih, Turkey
| | - Melisa Lalikoglu
- Chemical Engineering Department, Engineering Faculty, Istanbul University-Cerrahpaşa, 34320 Istanbul, Avcilar, Turkey
| |
Collapse
|
21
|
Lopes da Costa N, Guedes Pereira L, Mendes Resende JV, Diaz Mendoza CA, Kaiser Ferreira K, Detoni C, M.V.M. Souza M, N.D.C. Gomes F. Phosphotungstic acid on activated carbon: A remarkable catalyst for 5-hydroxymethylfurfural production. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Farooq MQ, Abbasi NM, Anderson JL. Deep eutectic solvents in separations: Methods of preparation, polarity, and applications in extractions and capillary electrochromatography. J Chromatogr A 2020; 1633:461613. [DOI: 10.1016/j.chroma.2020.461613] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023]
|
23
|
Karimi S, Shekaari H, Ahadzadeh I. Effect of some deep eutectic solvents based on choline chloride on thermodynamic properties of 5-hydroxymethylfurfural at T = (288.15 to 318.15) K. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Thuy Nguyen LH, Vo HT, Phan HB, Dinh Dang MH, Le Hoang Doan T, Tran PH. Synthesis of 5-hydroxymethylfurfural from monosaccharides catalyzed by superacid VNU-11-SO 4 in 1-ethyl-3-methylimidazolium chloride ionic liquid. RSC Adv 2020; 10:39687-39692. [PMID: 35515387 PMCID: PMC9057424 DOI: 10.1039/d0ra08261a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/19/2020] [Indexed: 01/18/2023] Open
Abstract
Superacid VNU-11–SO4, a modified metal–organic framework by post-synthetic treatment with a sulfuric acid solution, has been considered as a promising heterogeneous catalyst in the isomerization of glucose to fructose and further dehydration to form 5-hydroxymethylfurfural (HMF) due to its possession of both Lewis and Brønsted acid sites. In this work, we focused on using VNU-11–SO4 for the optimization of the conversion of fructose and glucose into HMF using an ionic liquid as a green solvent. The highest yields of HMF from glucose and fructose could be obtained in 28% (140 °C, 8 h) and 86% (110 °C, 3 h), respectively, with the use of VNU-11–SO4 catalyst in 1-ethyl-3-methylimidazolium chloride ionic liquid. Recycling examination of the catalyst showed only a slight decrease in the HMF yield, implying its potential industrial application in biomass transformation. Superacid VNU-11–SO4 has been considered as a promising heterogeneous catalyst in the conversion of glucose and fructose to 5-hydroxymethylfurfural (HMF) in ionic liquid.![]()
Collapse
Affiliation(s)
- Linh Ho Thuy Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City 721337 Vietnam .,Center for Innovative Materials and Architectures (INOMAR) Ho Chi Minh City 721337 Vietnam.,Vietnam National University-Ho Chi Minh City Ho Chi Minh City 721337 Vietnam
| | - Huong Thi Vo
- Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City 721337 Vietnam .,Vietnam National University-Ho Chi Minh City Ho Chi Minh City 721337 Vietnam
| | - Ha Bich Phan
- Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City 721337 Vietnam .,Center for Innovative Materials and Architectures (INOMAR) Ho Chi Minh City 721337 Vietnam.,Institute of Public Health Ho Chi Minh City 700000 Vietnam
| | - Minh Huy Dinh Dang
- Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City 721337 Vietnam .,Center for Innovative Materials and Architectures (INOMAR) Ho Chi Minh City 721337 Vietnam.,Vietnam National University-Ho Chi Minh City Ho Chi Minh City 721337 Vietnam
| | - Tan Le Hoang Doan
- Center for Innovative Materials and Architectures (INOMAR) Ho Chi Minh City 721337 Vietnam.,Vietnam National University-Ho Chi Minh City Ho Chi Minh City 721337 Vietnam
| | - Phuong Hoang Tran
- Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City 721337 Vietnam .,Vietnam National University-Ho Chi Minh City Ho Chi Minh City 721337 Vietnam
| |
Collapse
|
25
|
Xin H, Hu X, Cai C, Wang H, Zhu C, Li S, Xiu Z, Zhang X, Liu Q, Ma L. Catalytic Production of Oxygenated and Hydrocarbon Chemicals From Cellulose Hydrogenolysis in Aqueous Phase. Front Chem 2020; 8:333. [PMID: 32432080 PMCID: PMC7215936 DOI: 10.3389/fchem.2020.00333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/31/2020] [Indexed: 12/26/2022] Open
Abstract
As the most abundant polysaccharide in lignocellulosic biomass, a clean and renewable carbon resource, cellulose shows huge capacity and roused much attention on the methodologies of its conversion to downstream products, mainly including platform chemicals and fuel additives. Without appropriate treatments in the processes of cellulose decompose, there are some by-products that may not be chemically valuable or even truly harmful. Therefore, higher selectivity and more economical and greener processes would be favored and serve as criteria in a correlational study. Aqueous phase, an economically accessible and immensely potential reaction system, has been widely studied in the preparation of downstream products of cellulose. Accordingly, this mini-review aims at making a related summary about several conversion pathways of cellulose to target products in aqueous phase. Mainly, there are four categories about the conversion of cellulose to downstream products in the following: (i) cellulose hydrolysis hydrogenation to saccharides and sugar alcohols, like glucose, sorbitol, mannose, etc.; (ii) selective hydrogenolysis leads to the cleavage of the corresponding glucose C-C and C-O bond, like ethylene glycol (EG), 1,2-propylene glycol (PG), etc.; (iii) dehydration of fructose and further oxidation, like 5-hydroxymethylfurfural (HMF), 2,5-furandicarboxylic acid (FDCA), etc.; and (iv) production of liquid alkanes via hydrogenolysis and hydrodeoxygenation, like pentane, hexane, etc. The representative products were enumerated, and the mechanism and pathway of mentioned reaction are also summarized in a brief description. Ultimately, the remaining challenges and possible further research objects are proposed in perspective to provide researchers with a lucid research direction.
Collapse
Affiliation(s)
- Haosheng Xin
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China.,CAS Key Laboratory of Renewable Energy, Guangzhou, China.,Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohong Hu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China.,CAS Key Laboratory of Renewable Energy, Guangzhou, China.,Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chiliu Cai
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China.,CAS Key Laboratory of Renewable Energy, Guangzhou, China.,Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China
| | - Haiyong Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China.,CAS Key Laboratory of Renewable Energy, Guangzhou, China.,Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China
| | - Changhui Zhu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China.,CAS Key Laboratory of Renewable Energy, Guangzhou, China.,Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Song Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China.,CAS Key Laboratory of Renewable Energy, Guangzhou, China.,Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhongxun Xiu
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, China
| | - Xinghua Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China.,CAS Key Laboratory of Renewable Energy, Guangzhou, China.,Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China
| | - Qiying Liu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China.,CAS Key Laboratory of Renewable Energy, Guangzhou, China.,Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China.,Dalian National Laboratory for Clean Energy, Dalian, China
| | - Longlong Ma
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China.,CAS Key Laboratory of Renewable Energy, Guangzhou, China.,Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China
| |
Collapse
|
26
|
Maneechakr P, Karnjanakom S. Catalytic conversion of fructose into 5-HMF under eco-friendly-biphasic process. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00308e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One-pot conversion of fructose into valuable 5-hydroxymethyl-2-furaldehyde (5-HMF) was investigated under a deep eutectic solvent-biphasic system.
Collapse
Affiliation(s)
- Panya Maneechakr
- Department of Chemistry
- Faculty of Science
- Rangsit University
- Thailand
| | | |
Collapse
|