1
|
Zheng X, Zhu H, Zhao X, Wang J, Li Q, Zhao X. Emerging affinity methods for protein-drug interaction analysis. J Pharm Biomed Anal 2024; 249:116371. [PMID: 39047466 DOI: 10.1016/j.jpba.2024.116371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
The study of protein-drug interaction plays a crucial role in understanding drug mechanisms, identifying new drug targets and biomarkers, and facilitating drug development and disease treatment. In recent years, significant progress has been made in various protein-drug interaction research methods due to the rapid development and in-depth application of mass spectrometry, nuclear magnetic resonance, Raman spectroscopy, and other technologies. The progress has enhanced the sensitivity, precision, accuracy, and applicability of analytical methods, enabling the establishment of drug-protein interaction networks. This review discusses various emerging research methods, such as native mass spectrometry, infrared spectroscopy, nuclear magnetic resonance and spectrum, biosensor technologies employing surface enhanced Raman, electrochemistry, and magneto resistive signals, as well as affinity magnetic levitation and affinity chromatography. The article also delves into the principles, applications, advantages, and limitations of these technologies.
Collapse
Affiliation(s)
- Xinxin Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Huiting Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Xue Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jing Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Qian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Xinfeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
2
|
Qian R, Sun C, Bai T, Yan J, Cheng J, Zhang J. Recent advances and challenges in the interaction between myofibrillar proteins and flavor substances. Front Nutr 2024; 11:1378884. [PMID: 38725578 PMCID: PMC11079221 DOI: 10.3389/fnut.2024.1378884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Myofibrillar proteins are an important component of proteins. Flavor characteristics are the key attributes of food quality. The ability of proteins to bind flavor is one of their most fundamental functional properties. The dynamic balance of release and retention of volatile flavor compounds in protein-containing systems largely affects the sensory quality and consumer acceptability of foods. At present, research on flavor mainly focuses on the formation mechanism of flavor components, while there are few reports on the release and perception of flavor components. This review introduces the composition and structure of myofibrillar proteins, the classification of flavor substances, the physical binding and chemical adsorption of myofibrillar proteins and volatile flavor substances, as well as clarifies the regulation law of flavor substances from the viewpoint of endogenous flavor characteristics and exogenous environment factors, to provide a theoretical reference for the flavor regulation of meat products.
Collapse
Affiliation(s)
- Rong Qian
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Chang Sun
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ting Bai
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
- Meat Processing Key Laboratory of Sichuan Province, Chengdu, China
| | - Jing Yan
- Sichuan Laochuan East Food Co., Ltd., Chengdu, China
| | - Jie Cheng
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
3
|
do Nascimento FH, Masini JC. Porous polymer monolithic columns to investigate the interaction of humic substances with herbicides and emerging pollutants by affinity chromatography. Anal Chim Acta 2024; 1288:342183. [PMID: 38220310 DOI: 10.1016/j.aca.2023.342183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/06/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Understanding the interaction mechanisms and the relevant binding constants between humic acids and emerging or regulated pollutants is of utmost importance in predicting their geochemical mobility, bioavailability, and degradation. Fluorescence spectroscopy, UV-vis spectroscopy, equilibrium dialysis, and solid-phase extraction combined with liquid chromatography-mass spectrometry have been employed to elucidate interactions of humic acids with organic micropollutants, especially pharmaceutical drugs. These methods demand large sample volumes, long equilibration times, and laborious extraction steps which may imply analytical errors. Monolithic high-performance affinity chromatography is an alternative and simpler method to investigate these interactions and determine the binding constants. RESULTS Polymer monoliths based on aminated glycidyl methacrylate and ethylene glycol dimethacrylate served to immobilize Cu(II) and then humic acid to produce monolithic affinity chromatography columns with humic acid as the active interaction phase. About 86.5 mg of humic acid was immobilized per gram of polymer. The columns enabled a comparison of the binding strength of humic acid with herbicides and emerging pollutants at 25 °C and pH 6.0 ± 0.1. Paracetamol, acetylsalicylic acid, and salicylic acid did not retain. Among the compounds that interacted with humic acid, the order of increasing affinity, estimated by the global affinity constant (nKa) or partition coefficient (KD) was: caffeine < simazine < atrazine ∼ propazine < benzophenone. The nKa (L mol-1) values ranged from (4.9 ± 0.3) × 102 for caffeine to (1.9 ± 0.3) × 103 for benzophenone, whereas KD (L kg-1) varied from 14 ± 1 to 56 ± 8 for the same compounds. SIGNIFICANCE AND NOVELTY To our knowledge, this is the first paper demonstrating the use of a monolithic platform to immobilize supramolecular structures of humic acids exploiting immobilized metal affinity to comparatively evaluate their affinity towards emerging pollutants exploiting the concepts of high-performance affinity chromatography. The proposed approach needs only small amounts of humic acid, which is a relevant feature in preparing columns with humic substances isolated and purified from remote areas.
Collapse
Affiliation(s)
- Fernando H do Nascimento
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil
| | - Jorge C Masini
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
4
|
Deng L, Fu Q, Zhang Y, Shui F, Tang J, Wu J, Zeng J. Study of molecular interactions by nonequilibrium capillary electrophoresis of equilibrium mixtures: Originations, developments, and applications. Electrophoresis 2023; 44:1664-1673. [PMID: 37621032 DOI: 10.1002/elps.202300166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023]
Abstract
Molecular interactions play a vital role in regulating various physiological and biochemical processes in vivo. Kinetic capillary electrophoresis (KCE) is an analytical platform that offers significant advantages in studying the thermodynamic and kinetic parameters of molecular interactions. It enables the simultaneous analysis of these parameters within an interaction pattern and facilitates the screening of binding ligands with predetermined kinetic parameters. Nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM) was the first proposed KCE method, and it has found widespread use in studying molecular interactions involving proteins/aptamers, proteins/small molecules, and peptides/small molecules. The successful applications of NECEEM have demonstrated its promising potential for further development and broader application. However, there has been a dearth of recent reviews on NECEEM. To address this gap, our study provides a comprehensive description of NECEEM, encompassing its origins, development, and applications from 2015 to 2022. The primary focus of the applications section is on aptamer selection and screening of small-molecule ligands. Furthermore, we discuss important considerations in NECEEM experimental design, such as buffer suitability, detector selection, and protein adsorption. By offering this thorough review, we aim to contribute to the understanding, advancement, and wider utilization of NECEEM as a valuable tool for studying molecular interactions and facilitating the identification of potential ligands and targets.
Collapse
Affiliation(s)
- Li Deng
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Qifeng Fu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Yujie Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Fan Shui
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Jia Tang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, P. R. China
- School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Jing Zeng
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, P. R. China
| |
Collapse
|
5
|
Jiang F, Xu XW, Chen FQ, Weng HF, Chen J, Ru Y, Xiao Q, Xiao AF. Extraction, Modification and Biomedical Application of Agarose Hydrogels: A Review. Mar Drugs 2023; 21:md21050299. [PMID: 37233493 DOI: 10.3390/md21050299] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Numerous compounds present in the ocean are contributing to the development of the biomedical field. Agarose, a polysaccharide derived from marine red algae, plays a vital role in biomedical applications because of its reversible temperature-sensitive gelling behavior, excellent mechanical properties, and high biological activity. Natural agarose hydrogel has a single structural composition that prevents it from adapting to complex biological environments. Therefore, agarose can be developed into different forms through physical, biological, and chemical modifications, enabling it to perform optimally in different environments. Agarose biomaterials are being increasingly used for isolation, purification, drug delivery, and tissue engineering, but most are still far from clinical approval. This review classifies and discusses the preparation, modification, and biomedical applications of agarose, focusing on its applications in isolation and purification, wound dressings, drug delivery, tissue engineering, and 3D printing. In addition, it attempts to address the opportunities and challenges associated with the future development of agarose-based biomaterials in the biomedical field. It should help to rationalize the selection of the most suitable functionalized agarose hydrogels for specific applications in the biomedical industry.
Collapse
Affiliation(s)
- Feng Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Xin-Wei Xu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Fu-Quan Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Hui-Fen Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jun Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Yi Ru
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Qiong Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - An-Feng Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| |
Collapse
|
6
|
Yan Z, Ma L, Huang J, Carione P, Kenny JR, Hop CECA, Wright M. New Methodology for Determining Plasma Protein Binding Kinetics Using an Enzyme Reporter Assay Coupling with High-Resolution Mass Spectrometry. Anal Chem 2023; 95:4086-4094. [PMID: 36791153 DOI: 10.1021/acs.analchem.2c04864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Determination of drug binding kinetics in plasma is important yet extremely challenging. Accordingly, we introduce "dynamic free fraction" as a new binding parameter describing drug-protein binding kinetics. We demonstrate theoretically and experimentally that the dynamic free fraction can be determined by coupling the drug binding assay with a reporter enzyme in combination with high-resolution mass spectrometry measuring the relative initial steady-state rates of enzymatic reactions in the absence and presence of matrix proteins. This novel and simple methodology circumvents a long-standing challenge inherent in existing methods for determining binding kinetics constants, such as kon and koff, and enables assessment of the impact of protein binding kinetics on pharmaceutical properties of drugs. As demonstrated with nine model drugs, the predicted liver extraction ratio, a measure of efficiency of drug removal by the liver, correlates significantly better to the observed extraction ratio when using the dynamic free fraction (fD) in place of the unbound fraction (fu) of the drug in plasma. Similarly, the in vivo hepatic clearance of these drugs, a measure of liver drug elimination, is highly comparable to the clearance values calculated with the dynamic free fraction (fD), which is markedly better than those calculated with the unbound fraction (fu). In contrast to the prevailing view, these results indicate that protein binding kinetics is an important pharmacokinetic property of a drug. As plasma protein binding is one of the most important drug properties, this new methodology may represent a breakthrough and could have a real impact on the field.
Collapse
Affiliation(s)
- Zhengyin Yan
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California 94080, United States
| | - Li Ma
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California 94080, United States
| | - Julie Huang
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California 94080, United States
| | - Pasquale Carione
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California 94080, United States
| | - Jane R Kenny
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California 94080, United States
| | - Cornelis E C A Hop
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California 94080, United States
| | - Matthew Wright
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California 94080, United States
| |
Collapse
|
7
|
Narvekar A, Puranik A, Kulkarni B, Jagtap D, Jain R, Dandekar P. FcγRIIIA affinity chromatography complements conventional functional characterization of rituximab. Biotechnol Prog 2023; 39:e3304. [PMID: 36181372 DOI: 10.1002/btpr.3304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Abstract
Analytical and functional characterization of batches of biologics/biosimilar products are imperative towards qualifying them for pre-clinical and clinical investigations. Several orthogonal strategies are employed to characterize the functional attributes of these drugs. However, the use of conventional techniques for online monitoring of functional attributes is not feasible. Liquid chromatography is one of the crucial unit operations during the downstream processing of biopharmaceuticals. In this work, we have demonstrated the utility of FcγRIIIA affinity chromatography as an independent quantitative functional characterization tool. FcγRIIIA affinity chromatography aided in sequential elution of Rituximab glycoform mixtures, based on varying levels of galactosylation, and thereby the affinity for the receptor protein. The predominant glycans present in the three Rituximab glycoform mixture peaks were G0F, G1F, and G2F, respectively. Dissociation rate constants were derived from the chromatographic elution profiles by the peak profiling method, for the control and glucose stress conditions. The glucose stress conditions did not result in unfavorable binding kinetics of Rituximab and FcγRIIIA. The dissociation rate constants of the glycoform mixture 2, predominantly consisting of G1F, were similar to the dissociation rate constants obtained by surface plasmon resonance. Moreover, the glycosylation profiles obtained from chromatographic estimation can be corroborated with the ADCC activity. However, the ex vivo ADCC reporter assay indicated that there was an increase in the effector activity with increasing glucose stress. Thus, FcγRIIIA affinity chromatography permitted three independent assessments via a single analysis. Such approaches can be utilized as potential process analytical technology (PAT) tools in the biosimilar development process.
Collapse
Affiliation(s)
- Aditya Narvekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Amita Puranik
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Bhalchandra Kulkarni
- Division of Structural Biology, National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Dhanashree Jagtap
- Division of Structural Biology, National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
8
|
Qiao S, Ou Y, Liu L, Wang S, Bian L, Zhao X. Mathematical and experimental validation of an approach for simultaneously determining the binding parameters of two drugs to a receptor. J Chromatogr A 2022; 1685:463593. [DOI: 10.1016/j.chroma.2022.463593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/27/2022]
|
9
|
Ortiz-Riaño EJ, Mancera-Zapata DL, Ulloa-Ramírez M, Arce-Vega F, Morales-Narváez E. Measurement of Protein Kinetics Using a Liquid Phase-Based Biosensing Platform. Anal Chem 2022; 94:15553-15557. [PMID: 36253365 DOI: 10.1021/acs.analchem.2c03305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Macromolecular association is crucial to many fields in biomedical sciences, including drug development, gene editing, and diagnostics. In particular, protein-protein association and dissociation rate constants are typically determined using surface plasmon resonance systems, which require costly instrumentation and cumbersome procedures (e.g., blocking, washing, and separation). Herein, we demonstrate that protein-binding constants can be readily determined using a real-time biosensing platform facilitated by graphene oxide-modified microwell plates and fluorophore-labeled proteins, where the fluorescent probes remain highly fluorescent during protein association, whereas fluorescent bioprobes that are not associated with their counterparts are quenched by graphene oxide. Binding data of three pairs of proteins were systematically determined employing this single-step platform and compared with those data reported by the suppliers or the literature, suggesting that this approach is comparable and consistent with the existing ones. Such pairs include (i) human immunoglobulin G (H-IgG)-fluorophore-labeled anti-H-IgG, (ii) prostate-specific antigen (PSA)-quantum dot-labeled anti-PSA, and (iii) anti-RBD-fluorophore-labeled SARS-CoV-2 spike receptor-binding domain recombinant protein. We also offer an open-source software that automatically determines the binding kinetics constants of proteins. This Technical Note introduces a simple, yet effective, platform to determine relevant information on protein kinetics, which can be performed using a microwell plate reader and economical materials like graphene oxide. We foresee a new generation of diagnostics based on our affordable protein kinetics analysis.
Collapse
Affiliation(s)
- Edwin J Ortiz-Riaño
- Biophotonic Nanosensors Laboratory, Centro de Investigaciones en Óptica, A. C., Loma del Bosque 115, Lomas del Campestre, León, Guanajuato37150, Mexico
| | - Diana L Mancera-Zapata
- Biophotonic Nanosensors Laboratory, Centro de Investigaciones en Óptica, A. C., Loma del Bosque 115, Lomas del Campestre, León, Guanajuato37150, Mexico
| | - Martha Ulloa-Ramírez
- Biophotonic Nanosensors Laboratory, Centro de Investigaciones en Óptica, A. C., Loma del Bosque 115, Lomas del Campestre, León, Guanajuato37150, Mexico.,Universidad de Guadalajara, Guadalajara44100, Jalisco, Mexico
| | - Fernando Arce-Vega
- Centro de Investigaciones en Óptica, A. C., Loma del Bosque 115, Lomas del Campestre, León37150, Guanajuato, Mexico
| | - Eden Morales-Narváez
- Biophotonic Nanosensors Laboratory, Centro de Investigaciones en Óptica, A. C., Loma del Bosque 115, Lomas del Campestre, León, Guanajuato37150, Mexico
| |
Collapse
|
10
|
Liang Q, Shi B, Yao Q, Wang T, Ji X, Zhang Y, Wang J, Zhao X. Early potential evaluation of lead compounds from a DNA-encoded library by the determination of their thermodynamics through a chromatographic method based on immobilized β 2-adrenoceptor. Bioorg Med Chem 2022; 68:116864. [PMID: 35671625 DOI: 10.1016/j.bmc.2022.116864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/11/2022] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
Early potential evaluation of lead compounds is critical to decrease downstream lead-optimization cycle times and clinical attrition rates for drug development. This increasingly necessitates the methodologies for accurately evaluating the potential compounds. This work immobilized β2-adrenoceptor (β2-AR) onto microspheres through Halo-tag mediated reaction. Characterizing the resulting microspheres by elemental and functional analysis, we utilized the immobilized receptor to determine the thermodynamics of terbutaline, tulobuterol, clorprenaline, salbutamol, and methoxyphenamine. The association constants correlated to their capacity factors on the column containing the immobilized β2-AR, thus providing a possibility for early potential evaluation of lead compounds from complex matrices like a DNA-encoded library. By this model, the lead compound (XC267) was predicted to have an association constant higher than terbutaline, salbutamol, and methoxyphenamine, but lower than tulobuterol and clorprenaline. The binding interaction between XC267 and β2-AR is a spontaneous endothermic process with an association constant of (6.62 ± 0.13) × 104 M-1 at 37 °C. The change of Gibbs free energy(ΔGθ), enthalpy change (ΔHθ), and entropy change (ΔSθ) was -28.49 kJ/mol, -10.58 kJ/mol, and 57.79 J/moL·K at 37 °C. By the semi-empirical rule of Ross, the driving force of the interaction between XC267 and β2-AR was electrostatic interaction. Such binding force was also achieved by molecular docking. These results suggested that XC267 is a candidate to treat asthma by specific binding to β2-AR. We reasoned that receptor chromatography is able to the early potential evaluation of lead compounds from complex matrices.
Collapse
Affiliation(s)
- Qi Liang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Bowen Shi
- Xi'an International Medical Center Hospital, Xi'an 710100, China
| | - Qingqing Yao
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Taotao Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xu Ji
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang 712082, China
| | - Yajun Zhang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jing Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xinfeng Zhao
- College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
11
|
Valko KL. Biomimetic chromatography-A novel application of the chromatographic principles. ANALYTICAL SCIENCE ADVANCES 2022; 3:146-153. [PMID: 38715641 PMCID: PMC10989578 DOI: 10.1002/ansa.202200004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 11/17/2024]
Abstract
Biomimetic chromatography is the name of the High Performance Liquid Chromatography (HPLC) methods that apply stationary phases containing proteins and phospholipids that can mimic the biological environment where drug molecules distribute. The applied mobile phases are aqueous organic with a pH of 7.4 to imitate physiological conditions that would be encountered in the human body. The calibrated retention of molecules on biomimetic stationary phases reveals a compound's affinity to proteins and phospholipids, which can be used to model the biological and environmental fate of molecules. This technology, when standardised, enables the prediction of in vivo partition and distribution behaviour of compounds and aids the selection of the best compounds for further studies to become a drug molecule. Applying biomimetic chromatographic measurements helps reduce the number of animal experiments during the drug discovery process. New biomimetic stationary phases, such as sphingomyelin and phosphatidylethanolamine, widen the application to the modelling of blood-brain barrier distribution and lung tissue binding. Recently, the measured properties have also been used to predict toxicity, such as phospholipidosis and cardiotoxicity. The aquatic toxicity of drugs and pesticides can be predicted using biomimetic chromatographic data. Biomimetic chromatographic separation methods may also be extended in the future to predict protein and receptor binding kinetics. The development of new biomimetic stationary phases and new prediction models will further accelerate the widespread application of this analytical method.
Collapse
Affiliation(s)
- Klara L Valko
- UCL School of PharmacyBio‐Mimetic Chromatography LtdBTC Bessemer DriveStevenageUK
| |
Collapse
|
12
|
Nasreddine R, Nehmé R. Microscale thermophoresis for studying protein-small molecule affinity: Application to hyaluronidase. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
BAI Y, FAN Y, GE G, WANG F. [Advances in chromatography in the study of drug-plasma protein interactions]. Se Pu 2021; 39:1077-1085. [PMID: 34505429 PMCID: PMC9404221 DOI: 10.3724/sp.j.1123.2021.06028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 11/25/2022] Open
Abstract
After entering human blood circulation, small-molecule drugs interact extensively with various plasma proteins, such as human serum albumin and α1-acid glycoprotein. These interactions profoundly affect the distribution of drugs in vivo and the binding of drugs to targets, thus affecting the efficacy of drugs. In-depth investigation of drug-plasma protein interactions is of great significance for the optimization of drug properties, the development of new drugs, risk assessment, and combination therapy of drugs. Therefore, it is essential to develop highly efficient, sensitive, and accurate methods for elucidating drug-plasma protein interactions. Chromatography is a powerful tool with high throughput, high separation performance, and high sensitivity in the characterization of drug-protein interactions. High-performance affinity chromatography (HPAC) and capillary electrophoresis (CE) have been widely utilized in this field. These methods include the determination of the effects of the posttranslational modification of proteins on binding and the competitive binding of multiple drugs. In addition, various chromatographic methods are used to obtain interaction information such as the binding constant, binding-site number, and dissociation rate constant. In this review, the common strategies and recent advances in HPAC and CE in the study of drug-plasma protein interactions are briefly reviewed. The immobilization methods of proteins, the principles and applications of frontal analysis, zonal elution, ultrafast affinity extraction, peak profiling, and peak decay analysis are discussed for HPAC and affinity capillary electrophoresis (ACE) and capillary electrophoresis frontal analysis (CE-FA) for CE. HPAC relies on the fixation of proteins on the surfaces of chromatographic stationary phases by covalent linking or physical adsorption, followed by obtaining the drug-protein interaction information through a variety of chromatographic methods. In the frontal chromatography analysis, mobile phases with different concentrations of drugs are passed through the HPAC column to obtain different breakthrough times. The process can determine the number of drug binding sites and the binding constant of each site in the affinity protein with high accuracy. The zonal elution method can detect the drug binding sites on proteins using site-specific probes to determine whether there is competition between drugs and probes. The sample consumption and analysis time of the zonal elution method are much less than those in frontal chromatography analysis. The ultrafast affinity extraction method can inject complex samples, such as serum, into affinity columns to determine the free drug components. It can measure the combination and dissociation constants of drug-protein interactions by changing the chromatography flow rate. Peak profiling and peak decay analyses are both effective methods for investigating the dissociation of drugs and proteins. In CE analysis, the drug and protein samples are dissolved in an electrophoresis buffer, and their interactions are measured during electrophoresis with high accuracy and low sample consumption. However, the adsorption of proteins on the capillary wall can compromise CE performance. Common CE methods in drug-protein interaction analysis are ACE and CE-FA. ACE is usually performed by changing the effective mobility of drugs via the addition of different concentrations of proteins. This method has been widely used, and several variant techniques have been developed recently. CE-FA involves the sampling of a drug premixed at a known concentration with a target protein. Compared with other CE methods, CE-FA exhibits the unique advantages of high throughput, automatic online analysis, and the ability to determine high-order drug-protein interactions. Finally, the shortcomings of current chromatography methods are summarized, and the application prospects and development direction of chromatography technology in the field of drug-plasma protein interaction research are discussed.
Collapse
|
14
|
Woolfork AG, Iftekhar S, Ovbude S, Suh K, Sharmeen S, Kyei I, Jones J, Hage DS. Recent Advances in Supramolecular Affinity Separations: Affinity Chromatography and Related Methods. ADVANCES IN CHROMATOGRAPHY 2021; 58:1-74. [PMID: 36186535 PMCID: PMC9520669 DOI: 10.1201/9781003223405-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Affinity chromatography is a technique that uses a stationary phase based on the supramolecular interactions that occur in biological systems or mimics of these systems. This method has long been a popular tool for the isolation, measurement, and characterization of specific targets in complex samples. This review discusses the basic concepts of this method and examines recent developments in affinity chromatography and related supramolecular separation methods. Topics that are examined include advances that have occurred in the types of supports, approaches to immobilization, and binding agents that are employed in this method. New developments in the applications of affinity chromatography are also summarized, including an overview on the use of this method for biochemical purification, sample preparation or analysis, chiral separations, and biointeraction studies.
Collapse
Affiliation(s)
- Ashley G. Woolfork
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 (USA)
| | - Sazia Iftekhar
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 (USA)
| | - Susan Ovbude
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 (USA)
| | - Kyungah Suh
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 (USA)
| | - Sadia Sharmeen
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 (USA)
| | - Isaac Kyei
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 (USA)
| | - Jacob Jones
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 (USA)
| | - David S. Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588 (USA)
| |
Collapse
|
15
|
Rubén LC, Laura MR, Almudena FB, Emilio GM. Glycan array analysis of Pholiota squarrosa lectin and other fucose-oriented lectins. Glycobiology 2020; 31:459-476. [PMID: 33021632 DOI: 10.1093/glycob/cwaa093] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
The α(1,6)fucose residue attached to the N-glycoprotein core is suspected to play an essential role in the progression of several types of cancer. Lectins remain the first choice for probing glycan modifications, although they may lack specificity. Thus, efforts have been made to identify new lectins with a narrower core fucose (CF) detection profile. Here, we present a comparison of the classical Aleuria aurantia lectin (AAL), Lens culinaris agglutinin (LCA) and Aspergillus oryzae lectin (AOL) with the newer Pholiota squarrosa lectin (PhoSL), which has been described as being specific for core fucosylated N-glycans. To this end, we studied the binding profiles of the four lectins using mammalian glycan arrays from the Consortium of Functional Glycomics. To validate their glycan specificity, we probed AOL, LCA and PhoSL in western-blot assays using protein extracts from eight common colorectal cancer (CRC) lines and colorectal biopsies from a small cohort of patients with CRC. The results showed that (i) LCA and PhoSL were the most specific lectins for detecting the presence of CF in a concentration-dependent manner; (ii) PhoSL exhibited the highest N-glycan sequence restriction, with preferential binding to core fucosylated paucimannosidic-type N-glycans, (iii) the recognition ability of PhoSL was highly influenced by the presence of terminal N-acetyl-lactosamine; (iv) LCA bound to paucimannosidic, bi-antennary and tri-antennary core fucosylated N-glycans and (v) AOL and AAL exhibited broader specificity towards fucosylation. Together, our results support the choice of LCA as the most appropriate lectin for CF detection, as validated in protein extracts from CRC cell lines and tissue specimens from patients with CRC.
Collapse
Affiliation(s)
- López-Cortés Rubén
- Doctoral Program in Methods and Applications in Life Sciences, Faculty of Biology, Universidade de Vigo, Campus Lagoas-Marcosende, Vigo, Pontevedra, Galicia ES36310, Spain
| | - Muinelo-Romay Laura
- Liquid Biopsy Analysis Unit, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), CIBERONC, Travesía da Choupana, Santiago de Compostela, A Coruña, Galicia ES15706, Spain
| | - Fernández-Briera Almudena
- Molecular Biomarkers, Biomedical Research Centre (CINBIO), Universidade de Vigo, Campus Lagoas-Marcosende, Vigo, Pontevedra, Galicia ES36310, Spain
| | - Gil Martín Emilio
- Nutrition and Food Science Group, Department of Biochemistry, Genetics and Immunology, Faculty of Biology, Universidade de Vigo. Campus Lagoas-Marcosende, Vigo, Pontevedra, Galicia ES36310, Spain
| |
Collapse
|