1
|
Abdelaziz B, Chérif I, Gassoumi B, Patanè S, Ayachi S. Linear and Nonlinear Optical Responses of Nitrobenzofurazan-Sulfide Derivatives: DFT-QTAIM Investigation on Twisted Intramolecular Charge Transfer. J Phys Chem A 2023; 127:9895-9910. [PMID: 37972307 PMCID: PMC10694821 DOI: 10.1021/acs.jpca.3c04277] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/07/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
In this study, we report on the green fluorescence exhibited by nitrobenzofurazan-sulfide derivatives (NBD-Si, i = 1-4). The optical responses of these studied compounds in a polar methanol solvent were simulated by the use of time-dependent density functional theory (TD-DFT) employing the Becke-3-Parameter-Lee-Yang-Parr (B3LYP) functional along with the 6-31G(d,p) basis set. The computed energy and oscillator strength (f) results complement the experimental results. The band gap was calculated as the difference between the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO). Additionally, the density of states (DOS) was computed, providing a comprehensive understanding of the fundamental properties of these materials and further corroborating the experimental data. When the experimental data derived from ultraviolet/visible (UV/visible) and fluorescence spectroscopic techniques and those from simulated spectra are analyzed, the extracted values match up adequately. In addition, the NBD-sulfide compounds exhibit a large Stokes shift up to 85 nm in a polar methanol solvent. They are hypothesized to represent a novel paradigm of excited-state intramolecular charge transfer (ICT). To understand the intrinsic optical properties of NBD-Si materials, an ICT was identified, and its direction within the molecule was evaluated using the ratio of βvect and βtotal, values extracted from the computed nonlinear optical (NLO) properties. Moreover, the reduced density gradient (RDG)-based noncovalent interactions (NCIs) were employed to characterize the strength and type of NBD-Si interactions. Furthermore, noncovalent interactions were identified and categorized using the Quantum Theory of Atoms in Molecules (QTAIM) analysis. Ultimately, the combination of Hirshfeld surface analysis and DFT calculations was utilized to enhance the characterization and rationalization of these NCIs.
Collapse
Affiliation(s)
- Balkis Abdelaziz
- Laboratory
of Physico-Chemistry of Materials (LR01ES19), Faculty of Sciences, University of Monastir, Avenue of the Environment, 5019 Monastir, Tunisia
- Department
of Mathematical and Computer Sciences, Physical Sciences and Earth
Sciences, University of Messina, I-98166 Messina, Italy
| | - Imen Chérif
- Laboratory
of Physico-Chemistry of Materials (LR01ES19), Faculty of Sciences, University of Monastir, Avenue of the Environment, 5019 Monastir, Tunisia
| | - Bouzid Gassoumi
- Laboratoire
Interfaces et Matériaux Avancés (LIMA), Faculté
des Sciences, Université de Monastir, Avenue de l’Environnement, 5019 Monastir, Tunisia
| | - Salvatore Patanè
- Department
of Mathematical and Computer Sciences, Physical Sciences and Earth
Sciences, University of Messina, I-98166 Messina, Italy
| | - Sahbi Ayachi
- Laboratory
of Physico-Chemistry of Materials (LR01ES19), Faculty of Sciences, University of Monastir, Avenue of the Environment, 5019 Monastir, Tunisia
| |
Collapse
|
2
|
Franceschini M, Crosta M, Ferreira RR, Poletto D, Demitri N, Zobel JP, González L, Bonifazi D. peri-Acenoacene Ribbons with Zigzag BN-Doped Peripheries. J Am Chem Soc 2022; 144:21470-21484. [DOI: 10.1021/jacs.2c06803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Marco Franceschini
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Martina Crosta
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Rúben R. Ferreira
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Daniele Poletto
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Nicola Demitri
- Elettra − Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - J. Patrick Zobel
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090, Vienna, Austria
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090, Vienna, Austria
| | - Davide Bonifazi
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| |
Collapse
|
3
|
Effect of host polarity on efficiency of thermally activated delayed fluorescent and hyperfluorescent organic light emitting devices. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
A new 3-substituted BODIPY dye: Synthesis, crystal structure, photophysical, non-linear optic and OLED properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Li Y, Jiang L, Liu W, Xu S, Li T, Fries F, Zeika O, Zou Y, Ramanan C, Lenk S, Scholz R, Andrienko D, Feng X, Leo K, Reineke S. Reduced Intrinsic Non-Radiative Losses Allow Room-Temperature Triplet Emission from Purely Organic Emitters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101844. [PMID: 34365677 PMCID: PMC11469145 DOI: 10.1002/adma.202101844] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/18/2021] [Indexed: 05/22/2023]
Abstract
Persistent luminescence from triplet excitons in organic molecules is rare, as fast non-radiative deactivation typically dominates over radiative transitions. This work demonstrates that the substitution of a hydrogen atom in a derivative of phenanthroimidazole with an N-phenyl ring can substantially stabilize the excited state. This stabilization converts an organic material without phosphorescence emission into a molecular system exhibiting efficient and ultralong afterglow phosphorescence at room temperature. Results from systematic photophysical investigations, kinetic modeling, excited-state dynamic modeling, and single-crystal structure analysis identify that the long-lived triplets originate from a reduction of intrinsic non-radiative molecular relaxations. Further modification of the N-phenyl ring with halogen atoms affects the afterglow lifetime and quantum yield. As a proof-of-concept, an anticounterfeiting device is demonstrated with a time-dependent Morse code feature for data encryption based on these emitters. A fundamental design principle is outlined to achieve long-lived and emissive triplet states by suppressing intrinsic non-radiative relaxations in the form of molecular vibrations or rotations.
Collapse
Affiliation(s)
- Yungui Li
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Straße 6101062DresdenGermany
| | - Lihui Jiang
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Straße 6101062DresdenGermany
- College of Chemistry and Chemical EngineeringCentral South UniversityChangsha410083China
| | - Wenlan Liu
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Shunqi Xu
- Center for Advancing Electronics Dresden (cfaed) and Department of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstraße 401069DresdenGermany
| | - Tian‐Yi Li
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Straße 6101062DresdenGermany
| | - Felix Fries
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Straße 6101062DresdenGermany
| | - Olaf Zeika
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Straße 6101062DresdenGermany
| | - Yingping Zou
- College of Chemistry and Chemical EngineeringCentral South UniversityChangsha410083China
| | | | - Simone Lenk
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Straße 6101062DresdenGermany
| | - Reinhard Scholz
- Leibniz‐Institut für Polymerforschung Dresden e.V.01069DresdenGermany
| | - Denis Andrienko
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Department of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstraße 401069DresdenGermany
| | - Karl Leo
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Straße 6101062DresdenGermany
| | - Sebastian Reineke
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Straße 6101062DresdenGermany
| |
Collapse
|
6
|
Rao J, Yang L, Li X, Zhao L, Wang S, Tian H, Ding J, Wang L. Sterically-Locked Donor-Acceptor Conjugated Polymers Showing Efficient Thermally Activated Delayed Fluorescence. Angew Chem Int Ed Engl 2021; 60:9635-9641. [PMID: 33543821 DOI: 10.1002/anie.202016428] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/27/2021] [Indexed: 11/08/2022]
Abstract
Donor-acceptor (D-A) conjugated polymers often possess a significant frontier molecular orbital overlap because of the conjugation elongation, leading to no thermally activated delayed fluorescence (TADF) caused by a large singlet-triplet energy splitting (▵EST ). Herein a novel steric locking strategy is proposed by incorporating methyl groups into D-A conjugated polymers. Benefitting from the methyl hindrance, the torsion between the donor and acceptor can be well tuned to form a sterically-locked conformation, so that the unwanted relaxation toward planarity and thus conjugation elongation is prevented to boost hole-electron separation. The resultant D-A conjugated polymer achieves an extremely low ΔEST of 0.09 eV to enable efficient TADF. The corresponding doped and non-doped devices are fabricated via a solution process, revealing a record-high external quantum efficiency (EQE) of 24.0 % (79.4 cd A-1 , 75.0 lm W-1 ) and 15.3 % (50.9 cd A-1 , 47.3 lm W-1 ).
Collapse
Affiliation(s)
- Jiancheng Rao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Liuqing Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xue Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Lei Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Shumeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Hongkun Tian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Junqiao Ding
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
7
|
Rao J, Yang L, Li X, Zhao L, Wang S, Tian H, Ding J, Wang L. Sterically‐Locked Donor–Acceptor Conjugated Polymers Showing Efficient Thermally Activated Delayed Fluorescence. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016428] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jiancheng Rao
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education Yunnan Provincial Center for Research & Development of Natural Products School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
| | - Liuqing Yang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education Yunnan Provincial Center for Research & Development of Natural Products School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Xue Li
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education Yunnan Provincial Center for Research & Development of Natural Products School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Lei Zhao
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Shumeng Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Hongkun Tian
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Junqiao Ding
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- Key Laboratory of Medicinal Chemistry for Natural Resource Ministry of Education Yunnan Provincial Center for Research & Development of Natural Products School of Chemical Science and Technology Yunnan University Kunming 650091 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
8
|
Poisson J, Tonge CM, Paisley NR, Sauvé ER, McMillan H, Halldorson SV, Hudson ZM. Exploring the Scope of Through-Space Charge-Transfer Thermally Activated Delayed Fluorescence in Acrylic Donor–Acceptor Copolymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02494] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jade Poisson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Christopher M. Tonge
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Nathan R. Paisley
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Ethan R. Sauvé
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Hayley McMillan
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Sarah V. Halldorson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Zachary M. Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
9
|
Wei Q, Imbrasas P, Caldera-Cruz E, Cao L, Fei N, Thomas H, Scholz R, Lenk S, Voit B, Reineke S, Ge Z. Conjugation-Induced Thermally Activated Delayed Fluorescence: Photophysics of a Carbazole-Benzophenone Monomer-to-Tetramer Molecular Series. J Phys Chem A 2021; 125:1345-1354. [PMID: 33555196 DOI: 10.1021/acs.jpca.0c08977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Materials exhibiting thermally activated delayed fluorescence (TADF) have been extensively explored in the last decade. These emitters have great potential of being used in organic light-emitting diodes because they allow for high quantum efficiencies by utilizing triplet states via reverse intersystem crossing. In small molecules, this is done by spatially separating the highest occupied molecular orbital from the lowest unoccupied molecular orbital, forming an intramolecular charge-transfer (iCT) state and leading to a small energy difference between lowest excited singlet and triplet states (ΔEST). However, in polymer emitters, this is harder to achieve, and typical strategies usually include adding known TADF units as sidechains onto a polymer backbone. In a previous work, we proposed an alternative way to achieve a TADF polymer by repeating a non-TADF unit, polymerizing it via electron-donating carbazole moieties. The extended conjugation on the backbone reduced the ΔEST and allowed for an efficient TADF polymer. In this work, we present a more in-depth study of the shift from a non-TADF monomer to TADF oligomers. The monomer shows non-TADF emission, and we find the delayed emission to be of triplet-triplet annihilation origin. An iCT state is formed already in the dimer, leading to a much more efficient TADF emission. This is confirmed by an almost two-fold increase of photoluminescence quantum yield, a decrease in the delayed luminescence lifetime, and the respective spectral lineshapes of the molecules.
Collapse
Affiliation(s)
- Qiang Wei
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy Sciences, Ningbo 315201, P. R. China.,Center for Materials Science and Optoelectronics Engineering, University of Chinese Academy of Science, Beijing 100049, P. R. China
| | - Paulius Imbrasas
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Enrique Caldera-Cruz
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Liang Cao
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy Sciences, Ningbo 315201, P. R. China.,Center for Materials Science and Optoelectronics Engineering, University of Chinese Academy of Science, Beijing 100049, P. R. China
| | - Nanan Fei
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy Sciences, Ningbo 315201, P. R. China.,Center for Materials Science and Optoelectronics Engineering, University of Chinese Academy of Science, Beijing 100049, P. R. China
| | - Heidi Thomas
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Reinhard Scholz
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, 01062 Dresden, Germany.,Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Simone Lenk
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany.,Organic Chemistry of Polymers, Technische Universität Dresden, 01062 Dresden, Germany
| | - Sebastian Reineke
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Ziyi Ge
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy Sciences, Ningbo 315201, P. R. China.,Center for Materials Science and Optoelectronics Engineering, University of Chinese Academy of Science, Beijing 100049, P. R. China
| |
Collapse
|
10
|
Cole JM. Enumerating Intramolecular Charge Transfer in Conjugated Organic Compounds. J Chem Inf Model 2020; 60:6095-6108. [PMID: 33073566 DOI: 10.1021/acs.jcim.0c00913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Charge transfer across conjugated organic molecules is the functional basis of many optoelectronic and semiconductor devices. The ability to design such molecules to suit a given device application is highly desirable; yet, realizing this prospect is impeded by the lack of an algorithm that quantifies the extent of intramolecular charge transfer (ICT) in absolute terms. In turn, an algorithm to describe ICT is held back by a poor definition of one of its key dependent terms: conjugation. Current equations assume that π-bonding operates solely across two bonds, even though conjugation extends beyond these limits, and such equations only yield relative measures of π-conjugation. This work presents a four-step algorithm that enumerates ICT on an absolute scale. The method is applied successfully to four types of optoelectronic materials; results demonstrate the need to reconsider certain fundamental chemical-bonding and ICT concepts for conjugated molecules. These findings have implications for all optoelectronic and semiconducting materials.
Collapse
Affiliation(s)
- Jacqueline M Cole
- Cavendish Laboratory, Department of Physics, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, United Kingdom.,ISIS Neutron and Muon Facility, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, OX11 0QX, United Kingdom.,Department of Chemical Engineering and Biotechnology, University of Cambridge , West Cambridge Site, Philippa Fawcett Drive, Cambridge, CB3 0AS, United Kingdom.,Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
| |
Collapse
|
11
|
Yin X, He Y, Wang X, Wu Z, Pang E, Xu J, Wang JA. Recent Advances in Thermally Activated Delayed Fluorescent Polymer-Molecular Designing Strategies. Front Chem 2020; 8:725. [PMID: 32923428 PMCID: PMC7457026 DOI: 10.3389/fchem.2020.00725] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/14/2020] [Indexed: 11/25/2022] Open
Abstract
Thermally activated delayed fluorescent (TADF) materials, as the third generation of organic electroluminescent materials, have many advantages over other organic light-emitting diodes (OLEDs) materials, such as 100% internal quantum efficiency, no doping of heavy metals, and avoiding the shortages of ordinary fluorescent materials and phosphorescent materials. So it is considered to be the most competitive organic light-emitting materials, and has great application prospects in the field of OLEDs. So far, small-molecule TADF materials have achieved high quantum yield and full-color range of red, green, and blue. However, TADF polymers suitable for low-cost and easily scalable solution processing are less developed, which are confined by the preparation methods and polymers designing, and there are still challenges of increasing quantum efficiency and strengthening device performance. This review mainly summarizes different synthesis strategies of TADF polymers and the latest development in the field. Special attention is focused on illustrating the designing and structure-property relationship of TADF polymers, and finally, an outlook is given for the design and application prospect of TADF polymers in the future.
Collapse
Affiliation(s)
- Xia Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, China
| | - Ying He
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, China
| | - Xu Wang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, China
| | - Zexin Wu
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, China
| | - Erbao Pang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, China
| | - Jing Xu
- Institute of Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, China
| | - Jun-An Wang
- Institute of Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, China
| |
Collapse
|
12
|
Lundberg P, Wei Q, Ge Z, Voit B, Reineke S, Edman L. Polymer Featuring Thermally Activated Delayed Fluorescence as Emitter in Light-Emitting Electrochemical Cells. J Phys Chem Lett 2020; 11:6227-6234. [PMID: 32628486 PMCID: PMC7460548 DOI: 10.1021/acs.jpclett.0c01506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Semiconducting polymers that feature thermally activated delayed fluorescence (TADF) can deliver a much desired combination of high-efficiency and metal-free electroluminescence and cost-efficient solution-based fabrication. A TADF polymer is thus a very good fit for the emitting compound in light-emitting electrochemical cells (LECs) because the commonly employed air-stabile and few-layer LEC architecture is well suited for such solution-based fabrication. Herein we report on the first LEC device based on a TADF polymer as the emitting species, which delivers a luminance of 96 cd m-2 at 4 V and a current efficacy of 1.4 cd A-1 and >600 cd m-2 at 6 V, which is competitive with the performance of multilayer organic light-emitting diodes based on the same TADF polymer. We further utilize the established sensitivity of the emission of the TADF polymer to its environment to draw conclusions on the exciton populations in host-guest and host-free TADF LEC devices.
Collapse
Affiliation(s)
- Petter Lundberg
- The
Organic Photonics and Electronics Group, Department of Physics, Umeå University, SE-901 87 Umeå, Sweden
| | - Qiang Wei
- Ningbo
Institute of Materials Technology & Engineering, Chinese Academy
Sciences, Ningbo 315201, P. R. China
| | - Ziyi Ge
- Ningbo
Institute of Materials Technology & Engineering, Chinese Academy
Sciences, Ningbo 315201, P. R. China
| | - Brigitte Voit
- Leibniz-Institut
für Polymerforschung Dresden e.V., DE-01069 Dresden, Germany
| | - Sebastian Reineke
- Dresden
Integrated Center for Applied Physics and Photonic Materials (IAPP),
Institute for Applied Physics, Technische
Universität Dresden, DE-01069 Dresden, Germany
| | - Ludvig Edman
- The
Organic Photonics and Electronics Group, Department of Physics, Umeå University, SE-901 87 Umeå, Sweden
- LunaLEC
AB, Linnaeus väg
24, SE-901 87 Umeå, Sweden
| |
Collapse
|
13
|
Su L, Cao F, Cheng C, Tsuboi T, Zhu Y, Deng C, Zheng X, Wang D, Liu Z, Zhang Q. High Fluorescence Rate of Thermally Activated Delayed Fluorescence Emitters for Efficient and Stable Blue OLEDs. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31706-31715. [PMID: 32567302 DOI: 10.1021/acsami.0c07840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A lack of an efficient and stable blue device is a critical factor restricting the development of organic light-emitting diode (OLED) technology that is currently expected to be overcome by employing thermally activated delayed fluorescence (TADF). Here, we investigate the TADF and electroluminescence (EL) performance of six carbazole/triphenyltriazine derivatives in different hosts. A good linearity between lg(LT50/kF2) and the EL emission wavelength is found, where LT50 is the half-life of the devices and kF is the fluorescence rate of the emitters, suggesting the dominance of the singlet exciton energy and lifetime in device stability. An indolylcarbazole/triphenyltriazine derivative (ICz-TRZ) with the capability to suppress solid-state solvation exhibits blue-shifted emission and an increased kF (1.5 × 108 s-1) in comparison to the control emitters in doped films. ICz-TRZ-based devices achieve a maximum external quantum efficiency (EQE) of 18% and an EQE of 5.5% at a very high luminance of 7 × 104 cd/m2. Ignoring the poor electrochemical stability of ICz-TRZ, the device offers an LT50 approaching 100 h under an initial luminance of 1000 cd/m2 and CIE coordinates of (0.14, 0.19). The findings in this work suggest that computer-aided design of high kF TADF emitters can be an approach to realize efficient and stable blue OLEDs.
Collapse
Affiliation(s)
- Liwu Su
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Fangyi Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Yungu (Gu'an) Technology Co. Ltd., Langfang, Hebei 065500, China
| | - Cong Cheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Taiju Tsuboi
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yunhui Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Chao Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xinyuan Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Dan Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zhang Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Qisheng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
14
|
Exciplex energy transfer through spacer: White electroluminescence with enhanced stability based on cyan intermolecular and orange intramolecular thermally activated delayed fluorescence. J Adv Res 2020; 24:379-389. [PMID: 32477608 PMCID: PMC7248288 DOI: 10.1016/j.jare.2020.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/09/2020] [Accepted: 04/26/2020] [Indexed: 11/23/2022] Open
Abstract
Capability of exciplex energy transfer through a spacer was investigated using three exciplex-forming solid mixtures which contained the well-known electron accepting 2,4,6-tris[3-(diphenylphosphinyl)phenyl]-1,3,5-triazine and appropriately designed bipolar cyanocarbazolyl-based derivatives functionalized by attachment of carbazolyl, acridanyl or phenyl units. These novel cyanocarbazolyl-based derivatives were used as both the spacer and exciplex-forming donor. Efficient organic light-emitting diodes with electroluminescence in cyan-yellow region and maximum external quantum efficiency of up to 7.7% were fabricated owing to efficient thermally activated fluorescence (TADF) of the newly discovered exciplexes. An approach of exciton separation by the spacer between the studied exciplexes and selected orange TADF emitter was proposed for the fabrication of white electroluminescent devices with prolonged lifetime comparing to that of single-color exciplex-based devices. Exciplex-forming systems were tested for exciton separation between inter- and intramolecular TADF. Exciplex energy transfer through a spacer was observed on relatively long distance for one system due to the energy resonance between triplet levels of the exciplex and spacer. First time observed here exciplex energy transfer through a spacer can be useful for both improvement of device stability and obtaining of white electroluminescence.
Collapse
|