1
|
Ma Y, Fei Y, Ding S, Jiang H, Fang J, Liu G. Trace metal elements: a bridge between host and intestinal microorganisms. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1976-1993. [PMID: 37528296 DOI: 10.1007/s11427-022-2359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/23/2023] [Indexed: 08/03/2023]
Abstract
Trace metal elements, such as iron, copper, manganese, and zinc, are essential nutrients for biological processes. Although their intake demand is low, they play a crucial role in cell homeostasis as the cofactors of various enzymes. Symbiotic intestinal microorganisms compete with their host for the use of trace metal elements. Moreover, the metabolic processes of trace metal elements in the host and microorganisms affect the organism's health. Supplementation or the lack of trace metal elements in the host can change the intestinal microbial community structure and function. Functional changes in symbiotic microorganisms can affect the host's metabolism of trace metal elements. In this review, we discuss the absorption and transport processes of trace metal elements in the host and symbiotic microorganisms and the effects of dynamic changes in the levels of trace metal elements on the intestinal microbial community structure. We also highlight the participation of trace metal elements as enzyme cofactors in the host immune process. Our findings indicate that the host uses metal nutrition immunity or metal poisoning to resist pathogens and improve immunity.
Collapse
Affiliation(s)
- Yong Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Yanquan Fei
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Hongmei Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China.
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| |
Collapse
|
2
|
Hussain S, Khan M, Sheikh TMM, Mumtaz MZ, Chohan TA, Shamim S, Liu Y. Zinc Essentiality, Toxicity, and Its Bacterial Bioremediation: A Comprehensive Insight. Front Microbiol 2022; 13:900740. [PMID: 35711754 PMCID: PMC9197589 DOI: 10.3389/fmicb.2022.900740] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Zinc (Zn) is one of the most abundantly found heavy metals in the Earth's crust and is reported to be an essential trace metal required for the growth of living beings, with it being a cofactor of major proteins, and mediating the regulation of several immunomodulatory functions. However, its essentiality also runs parallel to its toxicity, which is induced through various anthropogenic sources, constant exposure to polluted sites, and other natural phenomena. The bioavailability of Zn is attributable to various vegetables, beef, and dairy products, which are a good source of Zn for safe consumption by humans. However, conditions of Zn toxicity can also occur through the overdosage of Zn supplements, which is increasing at an alarming rate attributing to lack of awareness. Though Zn toxicity in humans is a treatable and non-life-threatening condition, several symptoms cause distress to human activities and lifestyle, including fever, breathing difficulty, nausea, chest pain, and cough. In the environment, Zn is generally found in soil and water bodies, where it is introduced through the action of weathering, and release of industrial effluents, respectively. Excessive levels of Zn in these sources can alter soil and aquatic microbial diversity, and can thus affect the bioavailability and absorption of other metals as well. Several Gram-positive and -negative species, such as Bacillus sp., Staphylococcus sp., Streptococcus sp., and Escherichia coli, Pseudomonas sp., Klebsiella sp., and Enterobacter sp., respectively, have been reported to be promising agents of Zn bioremediation. This review intends to present an overview of Zn and its properties, uses, bioavailability, toxicity, as well as the major mechanisms involved in its bioremediation from polluted soil and wastewaters.
Collapse
Affiliation(s)
- Sarfraz Hussain
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Maryam Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Taha Majid Mahmood Sheikh
- Institute of Plant Protection, Jiangsu Academy of Agriculture Sciences, Nanjing, China,*Correspondence: Taha Majid Mahmood Sheikh,
| | - Muhammad Zahid Mumtaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Talha Ali Chohan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Saba Shamim
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan,Saba Shamim,
| | - Yuhong Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China,Yuhong Liu,
| |
Collapse
|
3
|
Rey M, Dhenin J, Kong Y, Nouchikian L, Filella I, Duchateau M, Dupré M, Pellarin R, Duménil G, Chamot-Rooke J. Advanced In Vivo Cross-Linking Mass Spectrometry Platform to Characterize Proteome-Wide Protein Interactions. Anal Chem 2021; 93:4166-4174. [DOI: 10.1021/acs.analchem.0c04430] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Martial Rey
- Mass Spectrometry for Biology Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS USR 2000, 28 rue du Docteur Roux, 75015 Paris, France
| | - Jonathan Dhenin
- Mass Spectrometry for Biology Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS USR 2000, 28 rue du Docteur Roux, 75015 Paris, France
| | - Youxin Kong
- Pathogenesis of Vascular Infections, Department of Cell Biology and Infection, Institut Pasteur, INSERM U1225, 28 rue du Docteur Roux, 75015 Paris France
| | - Lucienne Nouchikian
- Mass Spectrometry for Biology Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS USR 2000, 28 rue du Docteur Roux, 75015 Paris, France
| | - Isaac Filella
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3528, 28 rue du Docteur Roux, 75015 Paris, France
| | - Magalie Duchateau
- Mass Spectrometry for Biology Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS USR 2000, 28 rue du Docteur Roux, 75015 Paris, France
| | - Mathieu Dupré
- Mass Spectrometry for Biology Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS USR 2000, 28 rue du Docteur Roux, 75015 Paris, France
| | - Riccardo Pellarin
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3528, 28 rue du Docteur Roux, 75015 Paris, France
| | - Guillaume Duménil
- Pathogenesis of Vascular Infections, Department of Cell Biology and Infection, Institut Pasteur, INSERM U1225, 28 rue du Docteur Roux, 75015 Paris France
| | - Julia Chamot-Rooke
- Mass Spectrometry for Biology Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS USR 2000, 28 rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
4
|
Manganese homeostasis at the host-pathogen interface and in the host immune system. Semin Cell Dev Biol 2021; 115:45-53. [PMID: 33419608 DOI: 10.1016/j.semcdb.2020.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
Manganese serves as an indispensable catalytic center and the structural core of various enzymes that participate in a plethora of biological processes, including oxidative phosphorylation, glycosylation, and signal transduction. In pathogenic microorganisms, manganese is required for survival by maintaining basic biochemical activity and virulence; in contrast, the host utilizes a process known as nutritional immunity to sequester manganese from invading pathogens. Recent epidemiological and animal studies have shown that manganese increases the immune response in a wide range of vertebrates, including humans, rodents, birds, and fish. On the other hand, excess manganese can cause neurotoxicity and other detrimental effects. Here, we review recent data illustrating the essential role of manganese homeostasis at the host-pathogen interface and in the host immune system. We also discuss the accumulating body of evidence that manganese modulates various signaling pathways in immune processes. Finally, we discuss the key molecular players involved in manganese's immune regulatory function, as well as the clinical implications with respect to cancer immunotherapy.
Collapse
|
5
|
Zheng C, Jia M, Gao M, Lu T, Li L, Zhou P. PmtA functions as a ferrous iron and cobalt efflux pump in Streptococcus suis. Emerg Microbes Infect 2020; 8:1254-1264. [PMID: 31469035 PMCID: PMC7012047 DOI: 10.1080/22221751.2019.1660233] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transition metals are nutrients essential for life. However, an excess of metals can be toxic to cells, and host-imposed metal toxicity is an important mechanism for controlling bacterial infection. Accordingly, bacteria have evolved metal efflux systems to maintain metal homeostasis. Here, we established that PmtA functions as a ferrous iron [Fe(II)] and cobalt [Co(II)] efflux pump in Streptococcus suis, an emerging zoonotic pathogen responsible for severe infections in both humans and pigs. pmtA expression is induced by Fe(II), Co(II), and nickel [Ni(II)], whereas PmtA protects S. suis against Fe(II) and ferric iron [Fe(III)]-induced bactericidal effect, as well as Co(II) and zinc [Zn(II)]-induced bacteriostatic effect. In the presence of elevated concentrations of Fe(II) and Co(II), ΔpmtA accumulates high levels of intracellular iron and cobalt, respectively. ΔpmtA is also more sensitive to streptonigrin, a Fe(II)-activated antibiotic. Furthermore, growth defects of ΔpmtA under Fe(II) or Co(II) excess conditions can be alleviated by manganese [Mn(II)] supplementation. Finally, PmtA plays a role in tolerance to H2O2-induced oxidative stress, yet is not involved in the virulence of S. suis in mice. Together, these data demonstrate that S. suis PmtA acts as a Fe(II) and Co(II) efflux pump, and contributes to oxidative stress resistance.
Collapse
Affiliation(s)
- Chengkun Zheng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University , Yangzhou , People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University , Yangzhou , People's Republic of China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Mengdie Jia
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University , Yangzhou , People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University , Yangzhou , People's Republic of China
| | - Miaomiao Gao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University , Yangzhou , People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University , Yangzhou , People's Republic of China
| | - Tianyu Lu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University , Yangzhou , People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University , Yangzhou , People's Republic of China
| | - Lingzhi Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University , Yangzhou , People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University , Yangzhou , People's Republic of China
| | - Pingping Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University , Yangzhou , People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University , Yangzhou , People's Republic of China
| |
Collapse
|
6
|
Bacillus subtilis TerC Family Proteins Help Prevent Manganese Intoxication. J Bacteriol 2020; 202:JB.00624-19. [PMID: 31685536 DOI: 10.1128/jb.00624-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/29/2019] [Indexed: 12/24/2022] Open
Abstract
Manganese (Mn) is an essential element and is required for the virulence of many pathogens. In Bacillus subtilis, Mn(II) homeostasis is regulated by MntR, a Mn(II)-responsive, DNA-binding protein. MntR serves as both a repressor of Mn(II) uptake transporters and as a transcriptional activator for expression of two cation diffusion facilitator Mn(II) efflux pumps, MneP and MneS. Mutants lacking either mntR or both mneP and mneS are extremely sensitive to Mn(II) intoxication. Using transposon mutagenesis to select suppressors of Mn(II) sensitivity, we identified YceF, a TerC family membrane protein, as capable of providing Mn(II) resistance. Another TerC paralog, YkoY, is regulated by a Mn(II)-sensing riboswitch and is partially redundant in function with YceF. YkoY is regulated in parallel with an unknown function protein YybP, also controlled by a Mn(II)-sensing riboswitch. Strains lacking between one and five of these known or putative Mn(II) tolerance proteins (MneP, MneS, YceF, YkoY, and YybP) were tested for sensitivity to Mn(II) in growth assays and for accumulation of Mn(II) using inductively coupled plasma mass spectrometry. Loss of YceF and, to a lesser extent, YkoY, sensitizes cells lacking the MneP and MneS efflux transporters to Mn(II) intoxication. This sensitivity correlates with elevated intracellular Mn(II), consistent with the suggestion that TerC proteins function in Mn(II) efflux.IMPORTANCE Manganese homeostasis is primarily regulated at the level of transport. Bacillus subtilis MntR serves as a Mn(II)-activated repressor of importer genes (mntH and mntABC) and an activator of efflux genes (mneP and mneS). Elevated intracellular Mn(II) also binds to Mn-sensing riboswitches to activate transcription of yybP and ykoY, which encodes a TerC family member. Here, we demonstrate that two TerC family proteins, YceF and YkoY, help prevent Mn(II) intoxication. TerC family proteins are widespread in bacteria and may influence host-pathogen interactions, but their effects on Mn(II) homeostasis are unclear. Our results suggest that TerC proteins work by Mn(II) export under Mn(II) overload conditions to help alleviate toxicity.
Collapse
|
7
|
Seo H, Kang S, Park YS, Yun CW. The Role of Zinc in Gliotoxin Biosynthesis of Aspergillus fumigatus. Int J Mol Sci 2019; 20:E6192. [PMID: 31817957 PMCID: PMC6940964 DOI: 10.3390/ijms20246192] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 12/21/2022] Open
Abstract
Zinc performs diverse physiological functions, and virtually all living organisms require zinc as an essential trace element. To identify the detailed function of zinc in fungal pathogenicity, we carried out cDNA microarray analysis using the model system of Aspergillus fumigatus, a fungal pathogen. From microarray analysis, we found that the genes involved in gliotoxin biosynthesis were upregulated when zinc was depleted, and the microarray data were confirmed by northern blot analysis. In particular, zinc deficiency upregulated the expression of GliZ, which encodes a Zn2-Cys6 binuclear transcription factor that regulates the expression of the genes required for gliotoxin biosynthesis. The production of gliotoxin was decreased in a manner inversely proportional to the zinc concentration, and the same result was investigated in the absence of ZafA, which is a zinc-dependent transcription activator. Interestingly, we found two conserved ZafA-binding motifs, 5'-CAAGGT-3', in the upstream region of GliZ on the genome and discovered that deletion of the ZafA-binding motifs resulted in loss of ZafA-binding activity; gliotoxin production was decreased dramatically, as demonstrated with a GliZ deletion mutant. Furthermore, mutation of the ZafA-binding motifs resulted in an increase in the conidial killing activity of human macrophage and neutrophil cells, and virulence was decreased in a murine model. Finally, transcriptomic analysis revealed that the expression of ZafA and GliZ was upregulated during phagocytosis by macrophages. Taken together, these results suggest that zinc plays an important role in the pathogenicity of A. fumigatus by regulating gliotoxin production during the phagocytosis pathway to overcome the host defense system.
Collapse
Affiliation(s)
| | | | | | - Cheol-Won Yun
- School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-gu, Seoul 02841, Korea; (H.S.); (S.K.); (Y.-S.P.)
| |
Collapse
|
8
|
Brik A, Terrade A, Hong E, Deghmane A, Taha MK, Bouafsoun A, Khmiri M, Boussetta K, Boukhir S, Jaballah NB, Kechrid A, Smaoui H. Phenotypic and genotypic characterization of meningococcal isolates in Tunis, Tunisia: High diversity and impact on vaccination strategies. Int J Infect Dis 2019; 91:73-78. [PMID: 31756567 DOI: 10.1016/j.ijid.2019.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES The aim of this study was to characterize Neisseria meningitidis (Men) isolates in Tunisian paediatric patients with invasive meningococcal disease (IMD) in order to target therapeutic and preventive strategies. METHODS Fifty-nine isolates of Men and four cerebrospinal fluid samples that were culture-negative but Men-positive by PCR (NC-MenPPCR) (2009-2016) were collected from IMD patients. Isolates were analysed for their antimicrobial susceptibility. Whole-genome sequencing (WGS) was used to characterize isolates and multilocus sequence typing for NC-MenPPCR. Coverage of Men serogroup B (MenB) was determined by Genetic Meningococcal Antigen Typing System (gMATS) and fHbp expression by ELISA. RESULTS MenB was the predominant type (88.9%). The majority of isolates (81%) had reduced susceptibility to penicillin G with altered penA alleles. The clonal complex CC461 (27.1%) was the most frequent. Among the MenB vaccine targets neisserial heparin binding antigen (NHBA) and fHbp, the predominant variants were NHBA118 (30.8%) and fHbp peptide 47 (25%), respectively. The nadA gene was present in 17.3% of isolates. Using gMATS, 36.5% of MenB were predicted to be covered by the 4CMenB vaccine. ELISA showed that 92.4% of the MenB were expected to be killed by anti-fHbp antibodies. CONCLUSIONS MenB was the leading serogroup in IMD, and more than 90% had a sufficient level of fHbp expression for vaccine coverage. The study results will be useful for the Tunisian vaccination programme.
Collapse
Affiliation(s)
- A Brik
- University of Tunis El Manar, Children's Hospital of Tunis, Laboratory of Microbiology, LR18ES39, Beb Saadoun, 1007 Tunis, Tunisia; Institut Pasteur, Invasive Bacterial Infections Unit, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - A Terrade
- Institut Pasteur, Invasive Bacterial Infections Unit, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - E Hong
- Institut Pasteur, Invasive Bacterial Infections Unit, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - A Deghmane
- Institut Pasteur, Invasive Bacterial Infections Unit, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - M K Taha
- Institut Pasteur, Invasive Bacterial Infections Unit, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - A Bouafsoun
- University of Tunis El Manar, Children's Hospital of Tunis, Laboratory of Microbiology, LR18ES39, Beb Saadoun, 1007 Tunis, Tunisia
| | - M Khmiri
- Department of Paediatrics A, Children's Hospital of Tunis, Beb Saadoun, 1007 Tunis, Tunisia
| | - K Boussetta
- Department of Paediatrics B, Children's Hospital of Tunis, Beb Saadoun, 1007 Tunis, Tunisia
| | - S Boukhir
- Department of Paediatrics C, Children's Hospital of Tunis, Beb Saadoun, 1007 Tunis, Tunisia
| | - N Ben Jaballah
- Intensive Care Unit, Béchir Hamza Children's Hospital of Tunis, Beb Saadoun, 1007 Tunis, Tunisia
| | - A Kechrid
- University of Tunis El Manar, Children's Hospital of Tunis, Laboratory of Microbiology, LR18ES39, Beb Saadoun, 1007 Tunis, Tunisia
| | - H Smaoui
- University of Tunis El Manar, Children's Hospital of Tunis, Laboratory of Microbiology, LR18ES39, Beb Saadoun, 1007 Tunis, Tunisia.
| |
Collapse
|
9
|
Genome-wide identification of ABC transporters in monogeneans. Mol Biochem Parasitol 2019; 234:111234. [PMID: 31715209 DOI: 10.1016/j.molbiopara.2019.111234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/02/2019] [Accepted: 11/07/2019] [Indexed: 01/05/2023]
Abstract
ATP-Binding Cassette (ABC) transporters are proteins that actively mediate the transport of a wide variety of molecules, including drugs. Thus, in parasitology, ABC transporters have gained attention as potential targets for therapeutic drugs. Among the parasitic Platyhelminthes, ABC transporters have been identified and classified in a few species of Trematoda and Cestoda but not in Monogenea. Monogeneans are mainly ectoparasites of marine and freshwater fish, although they can also be found on other aquatic organisms. Severe epizootics caused by monogeneans have been reported around the world, mainly in confined and/or overcrowded fish. The purpose of this study was to identify the ABC transporters in four species of monogeneans (Gyrodactylus salaris, Protopolystoma xenopodis, Eudiplozoon nipponicum and Neobenedenia melleni) for which genomic resources are publicly available. For comparative purposes, ABC transporters were also identified in endoparasitic (Schistosoma mansoni and Echinococcus granulosus) and free-living (Macrostomun lignano and Schmidtea mediterranea) platyhelminths. Thirty-two putative ABC transporters were identified in the genome of G. salaris, 40 in the genome of P. xenopodis, 46 in the transcriptome of E. nipponicum and 9 in a rather limited ESTs set available for N. melleni. Of the eight ABC subfamilies (A-H) known in metazoans, subfamily H was the only one not found in any monogenean species. In contrast, ABCC was the best represented subfamily. Phylogenetic analyses showed a few cases of one-to-one orthologous relationships, which agree with results from other metazoan species. We found some monogenean ABC members related to subfamilies B, C and G involved in drug resistance in humans. This information may be useful for future functional studies on ABC transporters in monogeneans.
Collapse
|
10
|
Mandal SK, Chandravanshi M, Gogoi P, Kanaujia SP. In silico characterization of TTHA0596: A potential Zn 2+ binding protein of ATP-binding cassette transporter. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2017.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Abstract
Transition metals are required trace elements for all forms of life. Due to their unique inorganic and redox properties, transition metals serve as cofactors for enzymes and other proteins. In bacterial pathogenesis, the vertebrate host represents a rich source of nutrient metals, and bacteria have evolved diverse metal acquisition strategies. Host metal homeostasis changes dramatically in response to bacterial infections, including production of metal sequestering proteins and the bombardment of bacteria with toxic levels of metals. In response, bacteria have evolved systems to subvert metal sequestration and toxicity. The coevolution of hosts and their bacterial pathogens in the battle for metals has uncovered emerging paradigms in social microbiology, rapid evolution, host specificity, and metal homeostasis across domains. This review focuses on recent advances and open questions in our understanding of the complex role of transition metals at the host-pathogen interface.
Collapse
Affiliation(s)
- Lauren D Palmer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37212;
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37212;
- Tennessee Valley Healthcare System, US Department of Veterans Affairs, Nashville, Tennessee 37212
| |
Collapse
|
12
|
Guilhen C, Charbonnel N, Parisot N, Gueguen N, Iltis A, Forestier C, Balestrino D. Transcriptional profiling of Klebsiella pneumoniae defines signatures for planktonic, sessile and biofilm-dispersed cells. BMC Genomics 2016; 17:237. [PMID: 26979871 PMCID: PMC4791964 DOI: 10.1186/s12864-016-2557-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/29/2016] [Indexed: 12/22/2022] Open
Abstract
Background Surface-associated communities of bacteria, known as biofilms, play a critical role in the persistence and dissemination of bacteria in various environments. Biofilm development is a sequential dynamic process from an initial bacterial adhesion to a three-dimensional structure formation, and a subsequent bacterial dispersion. Transitions between these different modes of growth are governed by complex and partially known molecular pathways. Results Using RNA-seq technology, our work provided an exhaustive overview of the transcriptomic behavior of the opportunistic pathogen Klebsiella pneumoniae derived from free-living, biofilm and biofilm-dispersed states. For each of these conditions, the combined use of Z-scores and principal component analysis provided a clear illustration of distinct expression profiles. In particular, biofilm-dispersed cells appeared as a unique stage in the bacteria lifecycle, different from both planktonic and sessile states. The K-means cluster analysis showed clusters of Coding DNA Sequences (CDS) and non-coding RNA (ncRNA) genes differentially transcribed between conditions. Most of them included dominant functional classes, emphasizing the transcriptional changes occurring in the course of K. pneumoniae lifestyle transitions. Furthermore, analysis of the whole transcriptome allowed the selection of an overall of 40 transcriptional signature genes for the five bacterial physiological states. Conclusions This transcriptional study provides additional clues to understand the key molecular mechanisms involved in the transition between biofilm and the free-living lifestyles, which represents an important challenge to control both beneficial and harmful biofilm. Moreover, this exhaustive study identified physiological state specific transcriptomic reference dataset useful for the research community. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2557-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cyril Guilhen
- Laboratoire Microorganismes: Génome Environnement, UMR CNRS 6023, Université d'Auvergne, Clermont Ferrand, F-63001, France
| | - Nicolas Charbonnel
- Laboratoire Microorganismes: Génome Environnement, UMR CNRS 6023, Université d'Auvergne, Clermont Ferrand, F-63001, France
| | - Nicolas Parisot
- UMR 203 BF2I, Biologie Fonctionnelle Insectes et Interactions, INRA, INSA de Lyon, Université de Lyon, F-69621, Villeurbanne, France
| | - Nathalie Gueguen
- Laboratoire Microorganismes: Génome Environnement, UMR CNRS 6023, Université d'Auvergne, Clermont Ferrand, F-63001, France
| | - Agnès Iltis
- Genostar, Montbonnot Saint Martin, F-38330, France
| | - Christiane Forestier
- Laboratoire Microorganismes: Génome Environnement, UMR CNRS 6023, Université d'Auvergne, Clermont Ferrand, F-63001, France
| | - Damien Balestrino
- Laboratoire Microorganismes: Génome Environnement, UMR CNRS 6023, Université d'Auvergne, Clermont Ferrand, F-63001, France.
| |
Collapse
|
13
|
Common Cell Shape Evolution of Two Nasopharyngeal Pathogens. PLoS Genet 2015; 11:e1005338. [PMID: 26162030 PMCID: PMC4498754 DOI: 10.1371/journal.pgen.1005338] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 06/07/2015] [Indexed: 11/19/2022] Open
Abstract
Respiratory infectious diseases are the third cause of worldwide death. The nasopharynx is the portal of entry and the ecological niche of many microorganisms, of which some are pathogenic to humans, such as Neisseria meningitidis and Moraxella catarrhalis. These microbes possess several surface structures that interact with the actors of the innate immune system. In our attempt to understand the past evolution of these bacteria and their adaption to the nasopharynx, we first studied differences in cell wall structure, one of the strongest immune-modulators. We were able to show that a modification of peptidoglycan (PG) composition (increased proportion of pentapeptides) and a cell shape change from rod to cocci had been selected for along the past evolution of N. meningitidis. Using genomic comparison across species, we correlated the emergence of the new cell shape (cocci) with the deletion, from the genome of N. meningitidis ancestor, of only one gene: yacF. Moreover, the reconstruction of this genetic deletion in a bacterium harboring the ancestral version of the locus together with the analysis of the PG structure, suggest that this gene is coordinating the transition from cell elongation to cell division. Accompanying the loss of yacF, the elongation machinery was also lost by several of the descendants leading to the change in the PG structure observed in N. meningitidis. Finally, the same evolution was observed for the ancestor of M. catarrhalis. This suggests a strong selection of these genetic events during the colonization of the nasopharynx. This selection may have been forced by the requirement of evolving permissive interaction with the immune system, the need to reduce the cellular surface exposed to immune attacks without reducing the intracellular storage capacity, or the necessity to better compete for adhesion to target cells. The nasopharynx hosts an important microbial community that comprises some well-known pathogens such as Neisseria meningitidis and Moraxella catarrhalis. In some circumstances, it also represents the portal of entry of systemic infections such as septicemia and meningitis, or infections of the respiratory system, middle ear, eye, central nervous system and joints of humans, caused by N. meningitidis and M. catarrhalis, respectively. In this article, we demonstrated that both bacteria underwent a similar cell shape evolution that resulted in a transition from a bacillus to a coccus. This was consequently accompanied by a change, similar for both bacteria, in the structure of the PG, the major bacterial cell shape determinant and also a strongly recognized molecule by the immune system. In our efforts in understanding the evolutionary events that led to the cell shape transition in N. meningitidis, we identified two genetic deletion events required for the shape transition, i.e. of yacF (zapD) and the cell elongation machinery. Furthermore, we delineated the importance of YacF (ZapD) in the coordination of the cell elongation and division. Finally, we suggest that this transition was selected to reduce the cell surface sensible to immune attacks and to redistribute surface appendages, such as pili, to acquire new properties of cell adhesion or movement necessary for the proper colonization of the nasopharynx.
Collapse
|
14
|
Vigonsky E, Fish I, Livnat-Levanon N, Ovcharenko E, Ben-Tal N, Lewinson O. Metal binding spectrum and model structure of the Bacillus anthracis virulence determinant MntA. Metallomics 2015; 7:1407-19. [PMID: 26106847 DOI: 10.1039/c5mt00100e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The potentially lethal human pathogen Bacillus anthracis expresses a putative metal import system, MntBCA, which belongs to the large family of ABC transporters. MntBCA is essential for virulence of Bacillus anthracis: deletion of MntA, the system's substrate binding protein, yields a completely non-virulent strain. Here we determined the metal binding spectrum of MntA. In contrast to what can be inferred from growth complementation studies we find no evidence that MntA binds Fe(2+) or Fe(3+). Rather, MntA binds a variety of other metal ions, including Mn(2+), Zn(2+), Cd(2+), Co(2+), and Ni(2+) with affinities ranging from 10(-6) to 10(-8) M. Binding of Zn(2+) and Co(2+) have a pronounced thermo-stabilizing effect on MntA, with Mn(2+) having a milder effect. The thermodynamic stability of MntA, competition experiments, and metal binding and release experiments all suggest that Mn(2+) is the metal that is likely transported by MntBCA and is therefore the limiting factor for virulence of Bacillus anthracis. A homology-model of MntA shows a single, highly conserved metal binding site, with four residues that participate in metal coordination: two histidines, a glutamate, and an aspartate. The metals bind to this site in a mutually exclusive manner, yet surprisingly, mutational analysis shows that for proper coordination each metal requires a different subset of these four residues. ConSurf evolutionary analysis and structural comparison of MntA and its homologues suggest that substrate binding proteins (SBPs) of metal ions use a pair of highly conserved prolines to interact with their cognate ABC transporters. This proline pair is found exclusively in ABC import systems of metal ions.
Collapse
Affiliation(s)
- Elena Vigonsky
- Department of Biochemistry, The Bruce and Ruth Rappaport Faculty of Medicine Technion-Israel Institute of Technology, Haifa, Israel.
| | | | | | | | | | | |
Collapse
|
15
|
Veyrier FJ, Cellier MF. Metal economy in host-microbe interactions. Front Cell Infect Microbiol 2015; 4:190. [PMID: 25629009 PMCID: PMC4292787 DOI: 10.3389/fcimb.2014.00190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 01/30/2023] Open
Affiliation(s)
- Frédéric J Veyrier
- Institut Pasteur Paris, France ; Institut National de la Recherche Scientifique-Institut Armand Frappier Laval, Canada
| | - Mathieu F Cellier
- Institut National de la Recherche Scientifique-Institut Armand Frappier Laval, Canada
| |
Collapse
|
16
|
Frawley ER, Fang FC. The ins and outs of bacterial iron metabolism. Mol Microbiol 2014; 93:609-16. [PMID: 25040830 DOI: 10.1111/mmi.12709] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2014] [Indexed: 02/07/2023]
Abstract
Iron is a critical nutrient for the growth and survival of most bacterial species. Accordingly, much attention has been paid to the mechanisms by which host organisms sequester iron from invading bacteria and how bacteria acquire iron from their environment. However, under oxidative stress conditions such as those encountered within phagocytic cells during the host immune response, iron is released from proteins and can act as a catalyst for Fenton chemistry to produce cytotoxic reactive oxygen species. The transitory efflux of free intracellular iron may be beneficial to bacteria under such conditions. The recent discovery of putative iron efflux transporters in Salmonella enterica serovar Typhimurium is discussed in the context of cellular iron homeostasis.
Collapse
Affiliation(s)
- Elaine R Frawley
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|