1
|
Zhou D, Liu L, Liu J, Li H, Zhang J, Cao Z. A Systematic Review of the Advances in the Study of T Lymphocyte Suppressor Receptors in HBV Infection: Potential Therapeutic Targets. J Clin Med 2024; 13:1210. [PMID: 38592036 PMCID: PMC10931645 DOI: 10.3390/jcm13051210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/23/2024] [Accepted: 02/18/2024] [Indexed: 04/10/2024] Open
Abstract
Background: HBV-specific T lymphocytes are pivotal in eliminating the hepatitis B virus (HBV) and regulating intrahepatic inflammatory reactions. Effective T cell responses curtail HBV infection; however, compromised immunity can result in persistent infection. Beyond the acute phase, the continued presence of antigens and inflammation leads to the increased expression of various inhibitory receptors, such as PD-1, CTLA-4, Tim-3, LAG3, 2B4, CD160, BTLA, and TIGIT. This escalates the dysfunction of and diminishes the immune and proliferative abilities of T cells. Methods: In this study, we reviewed English-language literature from PubMed, Web of Science, and Scopus up to 9 July 2023. This paper aims to elucidate the inhibitory effects of these receptors on HBV-specific T lymphocytes and how immune function can be rejuvenated by obstructing the inhibitory receptor signaling pathway in chronic HBV patients. We also summarize the latest insights into related anti-HBV immunotherapy. Result: From 66 reviewed reports, we deduced that immunotherapy targeting inhibitory receptors on T cells is a reliable method to rejuvenate T cell immune responses in chronic HBV patients. However, comprehensive combination therapy strategies are essential for a functional cure. Conclusions: Targeting T cell suppressor receptors and combining immunotherapy with antiviral treatments may offer a promising approach towards achieving a functional cure, urging future research to prioritize effective combination therapeutic strategies for chronic HBV infection.
Collapse
Affiliation(s)
| | | | | | | | - Jing Zhang
- The Third Unit, Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (D.Z.); (L.L.); (J.L.); (H.L.)
| | - Zhenhuan Cao
- The Third Unit, Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (D.Z.); (L.L.); (J.L.); (H.L.)
| |
Collapse
|
2
|
Zhao H, Ma Y, Tian F, Li B, Xiao N, Mo X, Aibibula M, Min H, Cai X, Zhang T, Ma X. Expression of Tim-3/Galectin-9 pathway and CD8+T cells and related factors in patients with cystic echinococcosis. Exp Parasitol 2023; 254:108623. [PMID: 37793539 DOI: 10.1016/j.exppara.2023.108623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/01/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023]
Abstract
OBJECTIVE One of the primary reasons for the successful patriotization of Echinococcus multilocularis in patients is its ability to induce host immune tolerance. This study examined the expression of the immunosuppressive Tim-3/Galectin-9 pathway, CD8+T cells, and related factors in AE patients. The aim was to analyze the relationship between the Tim-3/Galectin-9 pathway and CD8+T cells in this disease and further understand the mechanism of immune tolerance induced by cystic echinococcosis. METHODS Using flow cytometry, we evaluated the expression of CTL, CD8+CD28-T cells, CD8+CD28 + IFN-γ + T cells, CD8+CD28+perforin + T cells, CD8+CD28+granzyme B + T cells, CD8+CD28-IL-10 + T cells, CD8+CD28-TGF-β+T cells, and Tim-3 expression on CD8+T cells in the peripheral blood of control (n = 30) and AE patients (n = 33). qRT-PCR was used to measure CD107a and Tim-3/Galectin-9 mRNA levels in PBMCs from the control and AE groups. Immunohistochemistry was employed to detect IL-10, TGF-β, and Tim-3/Galectin-9 expressions in the infected livers of AE patients. RESULTS AE patients exhibited a significant decrease in peripheral blood CTL ratio (P < 0.001) and an increase in CD8+CD28+IFN-γ+T cell ratio (P < 0.001). No significant changes were observed in the ratios of CD8+CD28+perforin + T cells (P = 0.720) and CD8+CD28+granzyme B + T cells (P = 0.051). The proportions of CD8+CD28-T cells (P < 0.001), CD8+CD28-IL-10 + T cells (P < 0.001), and CD8+CD28-TGF-β+T cells (P < 0.001) were notably higher than in the control group. The expression of Tim-3 on CTL and CD8+CD28-T cells in AE patients was significantly upregulated (P < 0.001, P < 0.001). AE patients displayed a substantial decrease in peripheral blood PBMC CD107a mRNA levels (P < 0.001) and significant elevations in Tim-3/Galectin-9 mRNA levels (P < 0.001, P < 0.001). A negative correlation was observed between CD107a mRNA levels and both Tim-3 (r^2 = 0.411, P < 0.001) and Galectin-9 (r2 = 0.180, P = 0.019) mRNA levels. Expressions of IL-10 (P < 0.001), TGF-β (P < 0.001), and Tim-3/Galectin-9 (P < 0.001, P < 0.001) in AE patient-infected livers were significantly higher than in uninfected regions. IL-10 and TGF-β expressions showed a positive correlation with Tim-3/Galectin-9. CONCLUSION This study suggests that the high expression of Tim-3 on CD8+T cell surfaces in AE patients might promote an increase in CD8+CD28-T cells and related factors, while suppressing CTL and related factor expressions. This potentially induces the onset of immune tolerance, which is unfavorable for the clearance of Echinococcus multilocularis in patients, leading to the exacerbation of persistent infections.
Collapse
Affiliation(s)
- Hui Zhao
- The First Affiliated Hospital of Xinjiang Medical University, Medical Testing Center, Xinjiang, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, PR China
| | - Yuyu Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, PR China
| | - Fengming Tian
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, PR China
| | - Bin Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, PR China
| | - Ning Xiao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, Shanghai, 200025, China
| | - Xiaojin Mo
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, Shanghai, 200025, China
| | - Madinaimu Aibibula
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, PR China
| | - Hongyue Min
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, PR China
| | - Xuanlin Cai
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, PR China
| | - Ting Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, Shanghai, 200025, China.
| | - Xiumin Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, PR China.
| |
Collapse
|
3
|
He W, Hao S, Dong X, Zhang D, Jia Z. Circulating cytokine profile and modulation of regulatory T cells in chronic hepatitis B patients with type 2 diabetes mellitus. BIOMOLECULES AND BIOMEDICINE 2023; 23:53-62. [PMID: 35801423 PMCID: PMC9901894 DOI: 10.17305/bjbms.2022.7525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/30/2022] [Indexed: 02/08/2023]
Abstract
The risk of hepatitis B virus (HBV) infection is higher in patients with diabetes mellitus, and diabetes mellitus is one of the metabolic complications of HBV infection. However, the cytokine profile of chronic hepatitis B (CHB) patients with type 2 diabetes mellitus (T2DM) is not fully understood. The aim of this study was to investigate the cytokine expression profile in CHB patients with T2DM, and to assess the regulatory function of cytokines to regulatory T cells (Tregs). Forty-four T2DM patients, 39 CHB patients, 17 patients with CHB and T2DM, and 21 control subjects were enrolled. Cytokine levels in the plasma were measured by Luminex multiplex assay. CD4+CD25+CD127dim/- Tregs were detected by flow cytometry. Tregs were purified and stimulated with recombinant human interleukin-15 (IL-15). The regulation of IL-15 on Tregs function was investigated by measuring cell number, IL-10/IL-35 secretion, and mRNA expression of immune checkpoint molecules in a Tregs+PBMC co-culture system. We found that levels of IL-1α, IL-6, and IL-33 were upregulated, while IFN-α, IL-2, IL-7, and IL-15 were downregulated in T2DM and CHB patients. CHB patients with T2DM had even lower plasma IL-7 and IL-15 levels. Tregs percentage was elevated in T2DM and CHB patients. CHB patients with T2DM had increased levels of Tregs, which correlated negatively with IL-15. Tregs showed stronger inhibitory activity in CHB patients with T2DM than in controls, T2DM, and CHB patients, which presented as reduction in cellular proliferation and induction of IL-10/IL-35 secretion. IL-15 suppressed Tregs function and inhibited the expression of immune checkpoint molecules in Tregs. The current data suggest that insufficient IL-15 levels and decreased responsiveness of Tregs to IL-15 signaling might contribute to strong immune dysfunction in CHB patients with T2DM.
Collapse
Affiliation(s)
- Wang He
- Department of Endocrinology, Xi’an No. 1 Hospital, Xi’an, Shaanxi Province, China
| | - Shu Hao
- Department of Endocrinology, Xi’an No. 1 Hospital, Xi’an, Shaanxi Province, China
| | - Xiaohui Dong
- Department of Endocrinology, Xi’an No. 1 Hospital, Xi’an, Shaanxi Province, China
| | - Dandan Zhang
- Department of Endocrinology, Xi’an No. 1 Hospital, Xi’an, Shaanxi Province, China
| | - Zhen Jia
- Department of Endocrinology, Xi’an No. 1 Hospital, Xi’an, Shaanxi Province, China,Correspondence to Zhen Jia:
| |
Collapse
|
4
|
Tim-3/Galectin-9 signaling pathway is involved in the cytokine changes in mice with alveolar echinococcosis. Mol Biol Rep 2022; 49:7497-7506. [PMID: 35715604 DOI: 10.1007/s11033-022-07554-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 04/12/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Tim-3/Galectin-9 is involved in the immune escape of many pathogens. However, the role of Tim-3/Galectin-9 in persistent infection of Echinococcus multilocularis (Em), which is related to immune escape, is still unclear. OBJECTIVE To investigate the role of Tim-3/Galectin-9 and related cytokines in mice with persistent infection of Em. METHODS Em infection model was established by injecting the protoscoleces. Serum was collected at days 2, 8, 30, 60, 90, 180 and 270 after infection. Lymphocytes were isolated from liver tissue samples with Ficoll. Tim-3 + CD4 + T percentage was analyzed by flow cytometry. CD4 + T cells were isolated from liver tissues of Em infected mice and cultured in vitro. The mRNA levels of Tim-3, Galectin-9, IFN-γ and IL-4 were detected by qRT-PCR. Cytokine levels in serum and culture supernatant (IFN-γ and IL-4) were analyzed by cytometric bead array. RESULTS The expression of Tim-3 and Galectin-9 mRNA significantly increased after 30 days of infection, reached peak on day 90, and then decreased slightly on days 180-270. The expression of IFN-γ mRNA, increased on day 2 and 8 after infection, slightly decreased on days 30-60, and obvious decreased on days 90-270, but were still higher than those of the control group. The expression of IL-4 mRNA gradually increased along with the time of infection. In serum of Em infected mice, level of IFN-γ peaked at day 30 and then gradually decreased; whereas IL-4 level peaked at day 90 and then gradually decreased. In vitro experiment found that Tim-3/Galectin-9 directly caused the changes in the levels of IFN-γ and IL-4. CONCLUSIONS Tim-3/Galectin-9 signaling pathway may be involved in the development of persistent infection of Em by regulating the production of Th1 and Th2 cytokines.
Collapse
|
5
|
Cui D, Jiang D, Yan C, Liu X, Lv Y, Xie J, Chen Y. Immune Checkpoint Molecules Expressed on CD4 + T Cell Subsets in Chronic Asymptomatic Hepatitis B Virus Carriers With Hepatitis B e Antigen-Negative. Front Microbiol 2022; 13:887408. [PMID: 35572697 PMCID: PMC9093708 DOI: 10.3389/fmicb.2022.887408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background Chronic hepatitis B virus (HBV) infection remains a major public health problem worldwide. Immune checkpoint molecules expressed on CD4+ T cells play critical roles in chronic HBV infection. However, their roles in chronic asymptomatic HBV carriers (ASCs) with hepatitis B e antigen (HBeAg)-negative remain unclear. In this study, we explored the role of immune checkpoint molecules expressed on CD4+ T cell subsets in chronic ASCs with HBeAg-negative. Methods Human peripheral blood mononuclear cells (PBMCs) from the ASCs with HBeAg-negative and healthy controls (HC) were isolated, and immune checkpoint molecules expressed on CD4+ T cell subsets and serum cytokines were detected by flow cytometry. Moreover, the mRNA expressions of immune checkpoint molecules were analyzed by a real-time quantitative PCR assay. Results In comparison with HC, CD4+ T cells highly expressed LAG-3, TIM-3, and PD-1 in PBMCs from chronic ASCs with HBeAg-negative. Interestingly, the expressions of TIM-3 and PD-1 on circulating follicular helper T (Tfh) cells in ASCs were significantly high. Moreover, high expressions of LAG-3, TIM-3, and PD-1 were different among Treg, Th1, Th2, and Th17 cells. In addition, the expressions of TIM-3 and CTLA-4 mRNA in PBMCs from ASCs were significantly elevated. However, the frequency of CTLA-4+CD4+ T cell subsets in PBMCs from ASCs was not different from HC. The levels of six cytokines in serum from ASCs were not clearly different from HC. Conclusion Immune checkpoint molecules highly expressed on CD4+ T cell subsets indicated an important role in chronic ASCs with HBeAg-negative, which provided potential therapeutic targets in the pathogenesis of chronic HBV infection.
Collapse
Affiliation(s)
- Dawei Cui
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China.,Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Daixi Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cuilin Yan
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China
| | - Xia Liu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Yan Lv
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jue Xie
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Modabber Z, Shahbazi M, Akbari R, Bagherzadeh M, Firouzjahi A, Mohammadnia-Afrouzi M. TIM-3 as a potential exhaustion marker in CD4 + T cells of COVID-19 patients. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1707-1715. [PMID: 34499819 PMCID: PMC8589347 DOI: 10.1002/iid3.526] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 12/24/2022]
Abstract
Background COVID‐19 causes a range of clinical symptoms from mild to critical and can be life‐threatening. Up to now, it has led to many deaths. We aimed to evaluate exhausted markers on CD4+ T cells of COVID‐19 patients. Methods In this study, we evaluated 44 patients with confirmed COVID‐19 disease and 16 healthy individuals. Patients were divided into moderate/severe and critical groups. Peripheral blood mononuclear cells (PBMCs) were isolated and stained by anti‐human CD39, PD‐1, TIM‐3, and anti‐human CD4. The percentage of each CD4+ subpopulation was calculated by flow cytometry. Furthermore, we collected clinical information and laboratory data of both control and patient groups. Results We detected overexpression of TIM‐3 on CD4+ T cells in both critical and moderate/severe patients than in healthy individuals (HIs; p < .01 and p < .0001, respectively). CD4+ TIM‐3+ CD39+ lymphocytes were significantly higher in the critical patients than in HI (p < .05). Both Patient groups showed lymphopenia in comparison with HI, but CD4+ lymphocytes did not show any significant difference between study subjects. The increased amount of C‐reactive protein, erythrocyte sedimentation rate, creatinine, blood urea nitrogen, and neutrophil count was observed in patients compared to HI. Conclusion T cell exhaustion occurs during COVID‐19 disease and TIM‐3 is the most important exhausted marker on CD4+ T cells.
Collapse
Affiliation(s)
- Zahra Modabber
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,Department of Pathology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Shahbazi
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Roghayeh Akbari
- Department of Internal Medicine, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mojgan Bagherzadeh
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Alireza Firouzjahi
- Department of Pathology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mousa Mohammadnia-Afrouzi
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
7
|
Huang N, Zhou R, Chen H, Zhang S, Li J, Wei W, Sun J, Ren S, Li B, Deng H, Yang J, Ji F, Li Z. Splenic CD4 + and CD8 + T-cells highly expressed PD-1 and Tim-3 in cirrhotic patients with HCV infection and portal hypertension. Int J Immunopathol Pharmacol 2021; 35:20587384211061051. [PMID: 34930041 PMCID: PMC8725229 DOI: 10.1177/20587384211061051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/01/2021] [Indexed: 11/15/2022] Open
Abstract
Introduction: The spleen plays an important role in regulating the immune response to infectious pathogens. T-cells dysfunction and exhaustion have been reported in patients with hepatitis B/C virus (HBV/HCV) infection, which contributes to persistent virus infection. The aims of this study were to investigate spleen-related evidence of immunosuppression and immune tolerance in HCV cirrhotic patients with portal hypertension (PH). Methods: The expression of programmed cell death 1 (PD-1), T-cell immunoglobulin domain and mucin domain-containing molecule-3 (Tim-3) and its ligand PD-L1/2, and Galectin-9 in the spleens and livers of HCV cirrhotic patients (n = 15) was analyzed using real-time PCR and immunohistochemistry. Flow cytometry was used to evaluate the expression of PD-1 and Tim-3 on splenic T-cells and the peripheral blood T-cells before and after splenectomy (n = 8). Results: Spleens from patients with PH showed significantly increased mRNA levels of PD-L2, Tim-3, Galectin-9, CD80, and CD86, and decreased levels of CD28 compared to control spleens (spleens removed due to traumatic injury) (all p < 0.05). Additionally, protein expression of inhibitory signaling molecules was significantly increased in both the spleens and livers of cirrhotic patients compared with controls (all p < 0.05). Peripheral blood and splenic CD4+ and CD8+ T-cells also expressed higher protein levels of PD-1, Tim-3, and CTLA-4 in cirrhotic patients as compared with healthy controls (all p < 0.05). The proportion of PD-1+CD4+T lymphocytes (26.2% ± 7.12% vs. 21.0% ± 9.14%, p = 0.0293) and Tim-3+CD8+ T lymphocytes (9.4% ± 3.04% vs. 6.0% ± 2.24%, p = 0.0175) in peripheral blood decreased followed splenectomy. Conclusion: The CD4+ and CD8+ T-cells in spleen and peripheral blood highly expressed PD-1 and Tim-3 in HCV-infected and cirrhotic patients with portal hypertension. Highly expressed PD-1 and Tim-3 in peripheral blood T-lymphocytes can be partly reversed following splenectomy.
Collapse
Affiliation(s)
- Na Huang
- National & Local Joint Engineering
Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi’an Jiaotong
University, Xi’an, China
- Shaanxi Provincial Clinical Research Center
for Hepatic & Splenic Diseases, the Second Affiliated Hospital of Xi’an Jiaotong
University, Xi’an, China
| | - Rui Zhou
- National & Local Joint Engineering
Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi’an Jiaotong
University, Xi’an, China
- Shaanxi Provincial Clinical Research Center
for Hepatic & Splenic Diseases, the Second Affiliated Hospital of Xi’an Jiaotong
University, Xi’an, China
| | - Haiyan Chen
- National & Local Joint Engineering
Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi’an Jiaotong
University, Xi’an, China
- Shaanxi Provincial Clinical Research Center
for Hepatic & Splenic Diseases, the Second Affiliated Hospital of Xi’an Jiaotong
University, Xi’an, China
| | - Shu Zhang
- National & Local Joint Engineering
Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi’an Jiaotong
University, Xi’an, China
- Shaanxi Provincial Clinical Research Center
for Hepatic & Splenic Diseases, the Second Affiliated Hospital of Xi’an Jiaotong
University, Xi’an, China
| | - Jun Li
- National & Local Joint Engineering
Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi’an Jiaotong
University, Xi’an, China
- Shaanxi Provincial Clinical Research Center
for Hepatic & Splenic Diseases, the Second Affiliated Hospital of Xi’an Jiaotong
University, Xi’an, China
| | - Wei Wei
- National & Local Joint Engineering
Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi’an Jiaotong
University, Xi’an, China
- Department of Oncology Surgery, the Second Affiliated Hospital of Xi’an Jiaotong
University, Xi’an, China
| | - Jin Sun
- National & Local Joint Engineering
Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi’an Jiaotong
University, Xi’an, China
| | - Song Ren
- National & Local Joint Engineering
Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi’an Jiaotong
University, Xi’an, China
- Shaanxi Provincial Clinical Research Center
for Hepatic & Splenic Diseases, the Second Affiliated Hospital of Xi’an Jiaotong
University, Xi’an, China
| | - Baohua Li
- National & Local Joint Engineering
Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi’an Jiaotong
University, Xi’an, China
- Shaanxi Provincial Clinical Research Center
for Hepatic & Splenic Diseases, the Second Affiliated Hospital of Xi’an Jiaotong
University, Xi’an, China
| | - Hong Deng
- Department of Infectious Diseases, the Second Affiliated Hospital of Xi’an Jiaotong
University, Xi’an, China
| | - Jun Yang
- National & Local Joint Engineering
Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi’an Jiaotong
University, Xi’an, China
- Department of Pathology, the Second Affiliated Hospital of Xi’an Jiaotong
University, Xi’an, China
| | - Fanpu Ji
- National & Local Joint Engineering
Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi’an Jiaotong
University, Xi’an, China
- Shaanxi Provincial Clinical Research Center
for Hepatic & Splenic Diseases, the Second Affiliated Hospital of Xi’an Jiaotong
University, Xi’an, China
- Department of Infectious Diseases, the Second Affiliated Hospital of Xi’an Jiaotong
University, Xi’an, China
- Key Laboratory of Environment and Genes
Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an, China
| | - Zongfang Li
- National & Local Joint Engineering
Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital of Xi’an Jiaotong
University, Xi’an, China
- Shaanxi Provincial Clinical Research Center
for Hepatic & Splenic Diseases, the Second Affiliated Hospital of Xi’an Jiaotong
University, Xi’an, China
- Key Laboratory of Environment and Genes
Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an, China
| |
Collapse
|
8
|
Abstract
Alcoholic liver disease (ALD) is an escalating global problem accounting for more than 3 million deaths annually. Bacterial infections are diagnosed in 25-47% of hospitalized patients with cirrhosis and represent the most important trigger for acute decompensation, multi-organ failure, septic shock and death. Current guidelines recommend intensive antibiotic therapy, but this has led to the emergence of multi-drug resistant bacteria, which are associated with increased morbidity and mortality rates. As such, there is a pressing need to explore new paradigms for anti-infective therapy and host-directed immunomodulatory therapies are a promising approach. Paradoxically, cirrhotic patients are characterised by heightened immune activity and exacerbated inflammatory processes but are unable to contend with bacterial infection, demonstrating that whilst immune effector cells are primed, their antibacterial effector functions are switched-off, reflecting a skewed homeostatic balance between anti-pathogen immunity and host-induced immunopathology. Preservation of this equilibrium physiologically is maintained by multiple immune-regulatory checkpoints and these feedback receptors serve as pivotal regulators of the host immunity. Checkpoint receptor blockade is proving to be effective at rescuing deranged/exhausted immunity in pre-clinical studies for chronic viral infection and sepsis. This approach has also obtained FDA approval for restoring anti-tumor immunity, with improved response rates and good safety profiles. To date, no clinical studies have investigated checkpoint blockade in ALD, highlighting an area for development of host-targeted immunotherapeutic strategies in ALD, for which there are no current specific treatment options. This review aims at framing current knowledge on immune checkpoints and the possibility of their therapeutic utility in ALD-associated immune dysfunctions.
Collapse
Affiliation(s)
- Antonio Riva
- Institute of Hepatology London, Foundation for Liver Research, 111 Coldharbour Lane, London, SE5 9NT UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Shilpa Chokshi
- Institute of Hepatology London, Foundation for Liver Research, 111 Coldharbour Lane, London, SE5 9NT UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| |
Collapse
|
9
|
Sun J, Huang Q, Li S, Meng F, Li X, Gong X. miR-330-5p/Tim-3 axis regulates macrophage M2 polarization and insulin resistance in diabetes mice. Mol Immunol 2018; 95:107-113. [PMID: 29433065 DOI: 10.1016/j.molimm.2018.02.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/01/2018] [Accepted: 02/06/2018] [Indexed: 12/11/2022]
Abstract
Obesity is associated with a state of low-grade inflammatory response in adipose tissue, and contributes to the development of type 2 diabetes. Immune cells such as macrophages can infiltrate adipose tissue and are responsible for the majority of inflammatory cytokine production. Therefore, adipose tissue promotes macrophage infiltration, resulting in local inflammation and insulin resistance. Tim-3 negatively regulates IFN-γ secretion and influences the ability to induce T cell tolerance in diabetes. MicroRNA contributes to the development of immunological tolerance and involves in macrophage polarization. However, the potential of Tim-3 to regulate macrophage polarization and the related microRNA has not been reported. In this experiment, 8-week-old C57BL/6 mice were fed a high-fat diet for 8 weeks. The adipose tissue macrophages were isolated, miR-330-5p and Tim-3 levels, and M1/M2 polarization were analyzed. In addition, insulin tolerance tests was detected. The results demonstrated that miR-330-5p levels increased but Tim-3 levels decreased, leading to M1 polarization and insulin tolerance in diabetes mice. In addition, inhibition of miR-330-5p enhanced Tim-3 levels, leading to M2 polarization and insulin tolerance attenuation in diabetes mice. Furthermore, we detected the inverse relationship between miR-330-5p and Tim-3. We found that Tim-3 mRNA contained conserved miR-330-5p binding sites in its 3'UTR, and miR-330-5p could directly regulate Tim-3 expression through these 3'UTR sites. Our study demonstrated that miR-330-5p served as a regulator of the M2 polarization and miR-330-5p/Tim-3 axis potentially down-regulated insulin resistance in diabetes, probably through enhancing the M2 polarization of macrophage.
Collapse
Affiliation(s)
- Jiling Sun
- Department of Nurse, The People's Hospital of Linyi, Linyi, Shandong 276000, China
| | - Qiujing Huang
- Department of Endocrinology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, China
| | - Shufa Li
- Department of Endocrinology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, China.
| | - Fanqing Meng
- Department of Endocrinology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, China
| | - Xunhua Li
- Department of Urology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, China
| | - Xiaoyun Gong
- Department of Public Health, The Third People's Hospital of Linyi, Linyi, Shandong 276023, China
| |
Collapse
|
10
|
Zhuo Y, Zhang YF, Wu HJ, Qin L, Wang YP, Liu AM, Wang XH. Interaction between Galectin-9/TIM-3 pathway and follicular helper CD4 + T cells contributes to viral persistence in chronic hepatitis C. Biomed Pharmacother 2017; 94:386-393. [PMID: 28772217 DOI: 10.1016/j.biopha.2017.07.134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/12/2017] [Accepted: 07/25/2017] [Indexed: 02/07/2023] Open
Abstract
Both Galectin 9 (Gal-9)/T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) pathway and follicular helper CD4+ T (Tfh) cells play important roles in persistent hepatitis C virus (HCV) infection. Thus, we aimed to investigate the regulatory role of interaction between Gal-9/TIM-3 pathway and Tfh cells in chronic hepatitis C. A total of 44 chronic hepatitis C patients and 19 normal controls (NCs) were enrolled in this study. Purified CD4+ T cells were cultured by TIM-3 Fc protein, recombinant Gal-9, or IL-21 for 48h. TIM-3 expression, Tfh proportion, and IL-21 production was measured, respectively. The immunomodulatory role of Gal-9/TIM-3 and IL-21 was also investigated in HCV cell culture system in vitro. We found that the percentage corresponding to both TIM-3-positive and CXCR5+ICOS+ Tfh cells within CD4+ T cells, which correlated with HCV RNA replication, was significantly elevated in patients with chronic hepatitis C in comparison with those in NCs. Moreover, blockade of Gal-9/TIM-3 pathway by TIM-3 Fc protein increased Tfh cells proportion, IL-21 mRNA and protein expression within purified CD4+ T cells, while activation of Gal-9/TIM-3 signaling by Gal-9 stimulation decreased IL-21 production in both patients with chronic HCV infection and healthy individuals. Meanwhile, high concentrations (100 and 200ng/mL) of IL-21 stimulation also elevated TIM-3 expression on CD4+ T cells in chronic hepatitis C. Furthermore, TIM-3 blockage and IL-21 stimulation suppressed mRNA expressions of HCV-induced antiviral proteins (myxovirus resistance A and oligoadenylate synthetase) in Huh7.5 cells without affecting viral replication in HCV cell culture system. The interaction between Gal-9/TIM-3 pathway and Tfh cells contributed to viral persistent in chronic HCV infection, which might be pivotal for development of new therapeutic approaches for chronic hepatitis C.
Collapse
Affiliation(s)
- Ya Zhuo
- Department of Infectious Diseases II, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Xinxiang, Henan Province, China
| | - Yi-Fu Zhang
- Department of Thyroid Breast and Vascular Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Xinxiang, Henan Province, China
| | - Hong-Jie Wu
- Department of Infectious Diseases II, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Xinxiang, Henan Province, China
| | - Lei Qin
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Xinxiang, Henan Province, China
| | - Yan-Ping Wang
- Department of Infectious Diseases III, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Xinxiang, Henan Province, China
| | - A-Min Liu
- Department of Infectious Diseases II, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Xinxiang, Henan Province, China
| | - Xin-Hong Wang
- Department of Infectious Diseases II, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Xinxiang, Henan Province, China.
| |
Collapse
|