1
|
Garcia LE, Lin Z, Culos S, Catherine Muenker M, Johnson EE, Wang Z, Lopez-Giraldez F, Giraud-Gatineau A, Jackson A, Picardeau M, Goodlett DR, Townsend JP, Pětrošová H, Wunder EA. DMEM and EMEM are suitable surrogate media to mimic host environment and expand leptospiral pathogenesis studies using in vitro tools. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634353. [PMID: 39896660 PMCID: PMC11785191 DOI: 10.1101/2025.01.22.634353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Pathogenic Leptospira species can survive and thrive in a wide range of environments. Distinct environments expose the bacteria to different temperatures, osmolarities, and amounts and sources of nutrition. However, leptospires are mostly cultured, in a laboratory setting under in vitro conditions that do not reflect natural environments. This constraint on laboratory cultures limits the applicability of in vitro studies to the understanding of even simple pathogenic processes. Here we report, investigate, and identify a medium and conditions that mimic the host environment during leptospirosis infection, expanding the available in vitro tools to evaluate leptospiral pathogenesis. We quantified genome-wide gene expression of pathogenic Leptospira interrogans cultured in different in vitro media compositions (EMJH, DMEM, EMEM, and HAN). Using EMJH as standard, we compared gene expression in these compositions to genome-wide gene expression gathered in a host environment: whole blood (WB) of hamsters after infection with pathogenic leptospires. Leptospires cultured in DMEM and EMEM media shared 40% and 47% of all differentially expressed genes (DEGs) of leptospires present within WB (FDR<0.01), while leptospires cultured in HAN media only shared 20% of DEGs with those from WB. Furthermore, gene and pathway expression of leptospires cultured on DMEM and EMEM media exhibited a better correlation with leptospires grown in WB, including promoting expression of a similar leptospiral lipid A profile to the one identified directly in host tissues. Taken together, these results indicate that commercial cell-culture media EMEM or DMEM are better surrogates for in vivo pathogenic studies than EMJH or HAN media in Leptospira. These alternative culture conditions, using media that are a standard supply worldwide, provide a reproducible and cost-effective approach that can accelerate research investigation and reduce the number of animal infections necessary for basic research of leptospirosis.
Collapse
Affiliation(s)
- Leandro E. Garcia
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, Connecticut, United States of America
| | - Zitong Lin
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Sophie Culos
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - M Catherine Muenker
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Emily E. Johnson
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Zheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, United States of America
| | | | | | - Angela Jackson
- University of Victoria Genome BC Proteomic Center, Victoria, BC, Canada
| | - Mathieu Picardeau
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Biology of Spirochetes Unit, Paris, France
| | - David R. Goodlett
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- University of Victoria Genome BC Proteomic Center, Victoria, BC, Canada
| | - Jeffrey P. Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, United States of America
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Helena Pětrošová
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- University of Victoria Genome BC Proteomic Center, Victoria, BC, Canada
| | - Elsio A. Wunder
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, Connecticut, United States of America
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation; Brazilian Ministry of Health; Salvador, Brazil
| |
Collapse
|
2
|
Botting JM, Rahman MK, Xu H, Yue J, Guo W, Del Mundo JT, Hammel M, Motaleb MA, Liu J. FlbB forms a distinctive ring essential for periplasmic flagellar assembly and motility in Borrelia burgdorferi. PLoS Pathog 2025; 21:e1012812. [PMID: 39777417 PMCID: PMC11750108 DOI: 10.1371/journal.ppat.1012812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/21/2025] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Spirochetes are a widespread group of bacteria with a distinct morphology. Some spirochetes are important human pathogens that utilize periplasmic flagella to achieve motility and host infection. The motors that drive the rotation of periplasmic flagella have a unique spirochete-specific feature, termed the collar, crucial for the flat-wave morphology and motility of the Lyme disease spirochete Borrelia burgdorferi. Here, we deploy cryo-electron tomography and subtomogram averaging to determine high-resolution in-situ structures of the B. burgdorferi flagellar motor. Comparative analysis and molecular modeling of in-situ flagellar motor structures from B. burgdorferi mutants lacking each of the known collar proteins (FlcA, FlcB, FlcC, FlbB, and Bb0236/FlcD) uncover a complex protein network at the base of the collar. Importantly, our data suggest that FlbB forms a novel periplasmic ring around the rotor but also acts as a scaffold supporting collar assembly and subsequent recruitment of stator complexes. The complex protein network based on the FlbB ring effectively bridges the rotor and 16 torque-generating stator complexes in each flagellar motor, thus contributing to the specialized motility and lifestyle of spirochetes in complex environments.
Collapse
Affiliation(s)
- Jack M. Botting
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, United States of America
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Md Khalesur Rahman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Hui Xu
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Jian Yue
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, United States of America
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Wangbiao Guo
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, United States of America
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Joshua T. Del Mundo
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Md A. Motaleb
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Jun Liu
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, United States of America
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
3
|
Davignon G, Pietrosemoli N, Benaroudj N, Soupé-Gilbert ME, Cagliero J, Turc É, Picardeau M, Guentas L, Goarant C, Thibeaux R. Leptospira interrogans biofilm transcriptome highlights adaption to starvation and general stress while maintaining virulence. NPJ Biofilms Microbiomes 2024; 10:95. [PMID: 39349472 PMCID: PMC11442865 DOI: 10.1038/s41522-024-00570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/15/2024] [Indexed: 10/02/2024] Open
Abstract
Life-threatening Leptospira interrogans navigate a dual existence: surviving in the environment and infecting mammalian hosts. Biofilm formation is presumably an important survival strategy to achieve this process. Understanding the relation between biofilm and virulence might improve our comprehension of leptospirosis epidemiology. Our study focused on elucidating Leptospira's adaptations and regulations involved in such complex microenvironments. To determine the transcriptional profile of Leptospira in biofilm, we compared the transcriptomes in late biofilms and in exponential planktonic cultures. While genes for motility, energy production, and metabolism were downregulated, those governing general stress response, defense against metal stress, and redox homeostasis showed a significant upsurge, hinting at a tailored defensive strategy against stress. Further, despite a reduced metabolic state, biofilm disruption swiftly restored metabolic activity. Crucially, bacteria in late biofilms or resulting from biofilm disruption retained virulence in an animal model. In summary, our study highlights Leptospira's adaptive equilibrium in biofilms: minimizing energy expenditure, potentially aiding in withstanding stresses while maintaining pathogenicity. These insights are important for explaining the survival strategies of Leptospira, revealing that a biofilm lifestyle may confer an advantage in maintaining virulence, an understanding essential for managing leptospirosis across both environmental and mammalian reservoirs.
Collapse
Affiliation(s)
- Grégoire Davignon
- Leptospirosis Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Nouméa, New Caledonia
- Exact and Applied Sciences Institute (ISEA), University of New Caledonia, BP R4, 98851, Nouméa, New Caledonia
| | - Natalia Pietrosemoli
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015, Paris, France
| | - Nadia Benaroudj
- Biology of Spirochetes, Institut Pasteur, Université Paris Cité, CNRS UMR 6047, F-75015, Paris, France
| | - Marie-Estelle Soupé-Gilbert
- Leptospirosis Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Nouméa, New Caledonia
| | - Julie Cagliero
- Leptospirosis Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Nouméa, New Caledonia
| | - Élodie Turc
- Institut Pasteur, Université Paris Cité, Plate-forme Technologique Biomics, F-75015, Paris, France
| | - Mathieu Picardeau
- Biology of Spirochetes, Institut Pasteur, Université Paris Cité, CNRS UMR 6047, F-75015, Paris, France
| | - Linda Guentas
- Exact and Applied Sciences Institute (ISEA), University of New Caledonia, BP R4, 98851, Nouméa, New Caledonia
| | - Cyrille Goarant
- Pacific Community SPC - Public Health Division - B.P. D5, Nouméa, New Caledonia
| | - Roman Thibeaux
- Leptospirosis Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Nouméa, New Caledonia.
| |
Collapse
|
4
|
Diving into the complexity of the spirochetal endoflagellum. Trends Microbiol 2023; 31:294-307. [PMID: 36244923 DOI: 10.1016/j.tim.2022.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/27/2022]
Abstract
Spirochaetes, a phylum that includes medically important pathogens such as the causative agents of Lyme disease, syphilis, and leptospirosis, are in many ways highly unique bacteria. Their cell morphology, subcellular organization, and metabolism reveal atypical features. Spirochetal motility is also singular, dependent on the presence of periplasmic flagella or endoflagella, inserted subterminally at cell poles and not penetrating the outer membrane and elongating outside the cell as in enterobacteria. In this review we present a comprehensive comparative genomics analysis of endoflagellar systems in spirochetes, highlighting recent findings on the flagellar basal body and filament. Continued progress in understanding the function and architecture of spirochetal flagella is uncovering paradigm-shifting mechanisms of bacterial motility.
Collapse
|
5
|
Analysis of Adhesion and Surface Motility of a Spirochete Bacterium. Methods Mol Biol 2023; 2646:159-168. [PMID: 36842114 DOI: 10.1007/978-1-0716-3060-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Spirochetes are Gram-negative bacteria with helical or flat wave morphology and move using flagella residing beneath the outer membrane. Most commonly, flagellated bacteria swim in liquid. Meanwhile, some species of spirochete not only swim but keep moving after adhering to solid surfaces, and such amphibious motility is believed to be significant for pathogenicity. This chapter focuses on the zoonotic spirochete Leptospira and describes the method for measuring the spirochete adhesion and surface motility.
Collapse
|
6
|
Kurniyati K, Chang Y, Guo W, Liu J, Malkowski MG, Li C. Anti-σ 28 Factor FlgM Regulates Flagellin Gene Expression and Flagellar Polarity of Treponema denticola. J Bacteriol 2023; 205:e0046322. [PMID: 36715541 PMCID: PMC9945498 DOI: 10.1128/jb.00463-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/07/2023] [Indexed: 01/31/2023] Open
Abstract
FlgM, an antagonist of FliA (also known as σ28), inhibits transcription of bacterial class 3 flagellar genes. It does so primarily through binding to free σ28 to prevent it from forming a complex with core RNA polymerase. We recently identified an FliA homolog (FliATd) in the oral spirochete Treponema denticola; however, its antagonist FlgM remained uncharacterized. Herein, we provide several lines of evidence that TDE0201 functions as an antagonist of FliATd. TDE0201 is structurally similar to FlgM proteins, although its sequence is not conserved. Heterologous expression of TDE0201 in Escherichia coli inhibits its flagellin gene expression and motility. Biochemical and mutational analyses demonstrate that TDE0201 binds to FliATd and prevents it from binding to the σ28-dependent promoter. Deletions of flgM genes typically enhance bacterial class 3 flagellar gene expression; however, deletion of TDE0201 has an opposite effect (e.g., the mutant has a reduced level of flagellins). Follow-up studies revealed that deletion of TDE0201 leads to FliATd turnover, which in turn impairs the expression of flagellin genes. Swimming plate, cell tracking, and cryo-electron tomography analyses further disclosed that deletion of TDE0201 impairs spirochete motility and alters flagellar number and polarity: i.e., instead of having bipolar flagella, the mutant has flagella only at one end of cells. Collectively, these results indicate that TDE0201 is a FlgM homolog but acts differently from its counterparts in other bacteria. IMPORTANCE Spirochetes are a group of bacteria that cause several human diseases. A unique aspect of spirochetes is that they have bipolar periplasmic flagella (PFs), which bestow on the spirochetes a unique spiral shape and distinct swimming behaviors. While the structure and function of PFs have been extensively studied in spirochetes, the molecular mechanism that regulates the PFs' morphogenesis and assembly is poorly understood. In this report, FlgM, an anti-σ28 factor, is identified and functionally characterized in the oral spirochete Treponema denticola. Our results show that FlgM regulates the number and polarity of PFs via a unique mechanism. Identification of FliA and FlgM in T. denticola sets a benchmark to investigate their roles in other spirochetes.
Collapse
Affiliation(s)
- Kurni Kurniyati
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Yunjie Chang
- Department of Microbial Pathogenesis, Yale University, School of Medicine, New Haven, Connecticut, USA
- Microbial Sciences Institute, Yale University, School of Medicine, New Haven, Connecticut, USA
| | - Wangbiao Guo
- Department of Microbial Pathogenesis, Yale University, School of Medicine, New Haven, Connecticut, USA
- Microbial Sciences Institute, Yale University, School of Medicine, New Haven, Connecticut, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University, School of Medicine, New Haven, Connecticut, USA
- Microbial Sciences Institute, Yale University, School of Medicine, New Haven, Connecticut, USA
| | - Michael G. Malkowski
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, New York, USA
| | - Chunhao Li
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
7
|
Kurniyati K, Chang Y, Liu J, Li C. Transcriptional and functional characterizations of multiple flagellin genes in spirochetes. Mol Microbiol 2022; 118:175-190. [PMID: 35776658 PMCID: PMC9481697 DOI: 10.1111/mmi.14959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
Abstract
The flagellar filament is a helical propeller for bacterial locomotion. In external flagellates, the filaments are mostly homopolymers of a single flagellin protein. By contrast, the flagellar filaments of spirochetes are mostly heteropolymers of multiple flagellin proteins. This report seeks to investigate the role of multiple flagellin proteins using the oral spirochete Treponema denticola as a model. First, biochemical and genetic studies uncover that the flagellar filaments of T. denticola mainly comprise four proteins, FlaA, FlaB1, FlaB2, and FlaB3, in a defined stoichiometry. Second, transcriptional analyses reveal that the genes encoding these four proteins are regulated by two different transcriptional factors, sigma28 and sigma70 . Third, loss-of-function studies demonstrate that each individual flagellin protein contributes to spirochete motility, but none of them is absolutely required. Last, we provide genetic and structural evidence that FlaA forms a "seam"-like structure around the core and that deletion of individual flagellin protein alters the flagellar homeostasis. Collectively, these results demonstrate that T. denticola has evolved a unique mechanism to finely regulate its flagellar filament gene expression and assembly which renders the organelle with the right number, shape, strength, and structure for its distinct motility.
Collapse
Affiliation(s)
- Kurni Kurniyati
- Department of Oral Craniofacial Molecular Biology, School of DentistryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Yunjie Chang
- Microbial Sciences InstituteYale UniversityWest HavenConnecticutUSA
- Department of Microbial PathogenesisYale School of MedicineNew HavenConnecticutUSA
| | - Jun Liu
- Microbial Sciences InstituteYale UniversityWest HavenConnecticutUSA
- Department of Microbial PathogenesisYale School of MedicineNew HavenConnecticutUSA
| | - Chunhao Li
- Department of Oral Craniofacial Molecular Biology, School of DentistryVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Microbiology and Immunology, School of MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
8
|
Meganathan Y, Vishwakarma A, Mohandass R. Biofilm formation and social interaction of Leptospira in natural and artificial environments. Res Microbiol 2022; 173:103981. [PMID: 35926730 DOI: 10.1016/j.resmic.2022.103981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 10/16/2022]
Abstract
In the recent decades, there has been increased interest in the study on social interactions of pathogenic bacteria and biofilm-forming microbes. Leptospira is a zoonotic pathogen that causes human leptospirosis. Biofilm formation by pathogenic and saprophytic Leptospira has been documented in various biotic and abiotic environments. Biofilm supports cell growth and protects them from a variety of environmental stress. Pathogenic bacterial biofilm might increase the virulence and pathogenesis. However, research on the social behaviour and biofilm production by Leptospira is limited. This review discusses the interplay between the different species in the biofilm formation of saprophytic and pathogenic Leptospira and potential future applications.
Collapse
Affiliation(s)
- Yogesan Meganathan
- Molecular Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalapattu, TN, India
| | - Archana Vishwakarma
- Molecular Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalapattu, TN, India
| | - Ramya Mohandass
- Molecular Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalapattu, TN, India.
| |
Collapse
|
9
|
Mondino S, San Martin F, Buschiazzo A. 3D cryo-electron microscopic imaging of bacterial flagella: novel structural and mechanistic insights into cell motility. J Biol Chem 2022; 298:102105. [PMID: 35671822 PMCID: PMC9254593 DOI: 10.1016/j.jbc.2022.102105] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 10/26/2022] Open
Abstract
Bacterial flagella are nanomachines that enable cells to move at high speeds. Comprising ≳25 different types of proteins, the flagellum is a large supramolecular assembly organized into three widely conserved substructures: a basal body including the rotary motor, a connecting hook, and a long filament. The whole flagellum from Escherichia coli weighs ∼20 MDa, without considering its filament portion, which is by itself a ∼1.6 GDa structure arranged as a multimer of ∼30,000 flagellin protomers. Breakthroughs regarding flagellar structure and function have been achieved in the last few years, mainly due to the revolutionary improvements in 3D cryo-electron microscopy methods. This review discusses novel structures and mechanistic insights derived from such high-resolution studies, advancing our understanding of each one of the three major flagellar segments. The rotation mechanism of the motor has been unveiled with unprecedented detail, showing a two-cogwheel machine propelled by a Brownian ratchet device. Additionally, by imaging the flagellin-like protomers that make up the hook in its native bent configuration, their unexpected conformational plasticity challenges the paradigm of a two-state conformational rearrangement mechanism for flagellin-fold proteins. Finally, imaging of the filaments of periplasmic flagella, which endow Spirochete bacteria with their singular motility style, uncovered a strikingly asymmetric protein sheath that coats the flagellin core, challenging the view of filaments as simple homopolymeric structures that work as freely whirling whips. Further research will shed more light on the functional details of this amazing nanomachine, but our current understanding has definitely come a long way.
Collapse
Affiliation(s)
- Sonia Mondino
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay; Integrative Microbiology of Zoonotic Agents IMiZA Unit, Joint International Unit, Institut Pasteur/Institut Pasteur de Montevideo, France/Uruguay
| | - Fabiana San Martin
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay; Integrative Microbiology of Zoonotic Agents IMiZA Unit, Joint International Unit, Institut Pasteur/Institut Pasteur de Montevideo, France/Uruguay
| | - Alejandro Buschiazzo
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay; Integrative Microbiology of Zoonotic Agents IMiZA Unit, Joint International Unit, Institut Pasteur/Institut Pasteur de Montevideo, France/Uruguay; Microbiology Department, Institut Pasteur, Paris, France.
| |
Collapse
|
10
|
Fule L, Halifa R, Fontana C, Sismeiro O, Legendre R, Varet H, Coppée JY, Murray GL, Adler B, Hendrixson DR, Buschiazzo A, Guo S, Liu J, Picardeau M. Role of the major determinant of polar flagellation FlhG in the endoflagella-containing spirochete Leptospira. Mol Microbiol 2021; 116:1392-1406. [PMID: 34657338 DOI: 10.1111/mmi.14831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 01/31/2023]
Abstract
Spirochetes can be distinguished from other bacteria by their spiral-shaped morphology and subpolar periplasmic flagella. This study focused on FlhF and FlhG, which control the spatial and numerical regulation of flagella in many exoflagellated bacteria, in the spirochete Leptospira. In contrast to flhF which seems to be essential in Leptospira, we demonstrated that flhG- mutants in both the saprophyte L. biflexa and the pathogen L. interrogans were less motile than the wild-type strains in gel-like environments but not hyperflagellated as reported previously in other bacteria. Cryo-electron tomography revealed that the distance between the flagellar basal body and the tip of the cell decreased significantly in the flhG- mutant in comparison to wild-type and complemented strains. Additionally, comparative transcriptome analyses of L. biflexa flhG- and wild-type strains showed that FlhG acts as a negative regulator of transcription of some flagellar genes. We found that the L. interrogans flhG- mutant was attenuated for virulence in the hamster model. Cross-species complementation also showed that flhG is not interchangeable between species. Our results indicate that FlhF and FlhG in Leptospira contribute to governing cell motility but our data support the hypothesis that FlhF and FlhG function differently in each bacterial species, including among spirochetes.
Collapse
Affiliation(s)
- Lenka Fule
- Institut Pasteur, Biology of Spirochetes Unit, Paris, France
- Pasteur International Unit, Integrative Microbiology of Zoonotic Agents, Institut Pasteur de Montevideo, Montevideo, Uruguay/Institut Pasteur, Paris, France
- Université de Paris, Paris, France
| | - Ruben Halifa
- Institut Pasteur, Biology of Spirochetes Unit, Paris, France
| | - Celia Fontana
- Boehringer Ingelheim Santé Animale, Saint Priest, France
| | - Odile Sismeiro
- Transcriptome and Epigenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
| | - Rachel Legendre
- Transcriptome and Epigenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Paris, France
| | - Hugo Varet
- Transcriptome and Epigenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Paris, France
| | - Jean-Yves Coppée
- Transcriptome and Epigenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
| | - Gerald L Murray
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Ben Adler
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - David R Hendrixson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Alejandro Buschiazzo
- Pasteur International Unit, Integrative Microbiology of Zoonotic Agents, Institut Pasteur de Montevideo, Montevideo, Uruguay/Institut Pasteur, Paris, France
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Shuaiqi Guo
- Microbial Sciences Institute & Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jun Liu
- Microbial Sciences Institute & Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mathieu Picardeau
- Institut Pasteur, Biology of Spirochetes Unit, Paris, France
- Pasteur International Unit, Integrative Microbiology of Zoonotic Agents, Institut Pasteur de Montevideo, Montevideo, Uruguay/Institut Pasteur, Paris, France
| |
Collapse
|
11
|
Samrot AV, Sean TC, Bhavya KS, Sahithya CS, Chan-drasekaran S, Palanisamy R, Robinson ER, Subbiah SK, Mok PL. Leptospiral Infection, Pathogenesis and Its Diagnosis-A Review. Pathogens 2021; 10:pathogens10020145. [PMID: 33535649 PMCID: PMC7912936 DOI: 10.3390/pathogens10020145] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022] Open
Abstract
Leptospirosis is a perplexing conundrum for many. In the existing literature, the pathophysiological mechanisms pertaining to leptospirosis is still not understood in full. Considered as a neglected tropical zoonotic disease, leptospirosis is culminating as a serious problem worldwide, seemingly existing as co-infections with various other unrelated diseases, including dengue and malaria. Misdiagnosis is also common as non-specific symptoms are documented extensively in the literature. This can easily lead to death, as the severe form of leptospirosis (Weil's disease) manifests as a complex of systemic complications, especially renal failure. The virulence of Leptospira sp. is usually attributed to the outer membrane proteins, including LipL32. With an armament of virulence factors at their disposal, their ability to easily adhere, invade and replicate within cells calls for a swift refinement in research progress to establish their exact pathophysiological framework. As an effort to reconstitute the current knowledge on leptospirosis, the basis of leptospiral infection, including its risk factors, classification, morphology, transmission, pathogenesis, co-infections and clinical manifestations are highlighted in this review. The various diagnostic techniques are also outlined with emphasis on their respective pros and cons.
Collapse
Affiliation(s)
- Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor 42610, Malaysia;
- Correspondence: (A.V.S.); (P.L.M.)
| | - Tan Chuan Sean
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor 42610, Malaysia;
| | - Karanam Sai Bhavya
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamil Nadu 627 011, India; (K.S.B.); (C.S.S.); (S.C.); (R.P.)
| | - Chamarthy Sai Sahithya
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamil Nadu 627 011, India; (K.S.B.); (C.S.S.); (S.C.); (R.P.)
| | - SaiPriya Chan-drasekaran
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamil Nadu 627 011, India; (K.S.B.); (C.S.S.); (S.C.); (R.P.)
| | - Raji Palanisamy
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamil Nadu 627 011, India; (K.S.B.); (C.S.S.); (S.C.); (R.P.)
| | - Emilin Renitta Robinson
- Department of Food Processing Technology, Karunya Institute of Technology and Science, Coimbatore, Tamil Nadu 641 114, India;
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia;
- Department of Biotechnology, Bharath Institute of Higher Education and Research (BIHER), Selaiyur, Tamil Nadu 600 073, India
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Pooi Ling Mok
- Department of Biotechnology, Bharath Institute of Higher Education and Research (BIHER), Selaiyur, Tamil Nadu 600 073, India
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka P.O. Box 2014, Aljouf Province, Saudi Arabia
- Correspondence: (A.V.S.); (P.L.M.)
| |
Collapse
|
12
|
Holzapfel M, Bonhomme D, Cagliero J, Vernel-Pauillac F, Fanton d’Andon M, Bortolussi S, Fiette L, Goarant C, Wunder EA, Picardeau M, Ko AI, Werling D, Matsui M, Boneca IG, Werts C. Escape of TLR5 Recognition by Leptospira spp.: A Rationale for Atypical Endoflagella. Front Immunol 2020; 11:2007. [PMID: 32849665 PMCID: PMC7431986 DOI: 10.3389/fimmu.2020.02007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/24/2020] [Indexed: 12/26/2022] Open
Abstract
Leptospira (L.) interrogans are invasive bacteria responsible for leptospirosis, a worldwide zoonosis. They possess two periplasmic endoflagellae that allow their motility. L. interrogans are stealth pathogens that escape the innate immune recognition of the NOD-like receptors NOD1/2, and the human Toll-like receptor (TLR)4, which senses peptidoglycan and lipopolysaccharide (LPS), respectively. TLR5 is another receptor of bacterial cell wall components, recognizing flagellin subunits. To study the contribution of TLR5 in the host defense against leptospires, we infected WT and TLR5 deficient mice with pathogenic L. interrogans and tracked the infection by in vivo live imaging of bioluminescent bacteria or by qPCR. We did not identify any protective or inflammatory role of murine TLR5 for controlling pathogenic Leptospira. Likewise, subsequent in vitro experiments showed that infections with different live strains of L. interrogans and L. biflexa did not trigger TLR5 signaling. However, unexpectedly, heat-killed bacteria stimulated human and bovine TLR5, but did not, or barely induced stimulation via murine TLR5. Abolition of TLR5 recognition required extensive boiling time of the bacteria or proteinase K treatment, showing an unusual high stability of the leptospiral flagellins. Interestingly, after using antimicrobial peptides to destabilize live leptospires, we detected TLR5 activity, suggesting that TLR5 could participate in the fight against leptospires in humans or cattle. Using different Leptospira strains with mutations in the flagellin proteins, we further showed that neither FlaA nor Fcp participated in the recognition by TLR5, suggesting a role for the FlaB. FlaB have structural homology to Salmonella FliC, and possess conserved residues important for TLR5 activation, as shown by in silico analyses. Accordingly, we found that leptospires regulate the expression of FlaB mRNA according to the growth phase in vitro, and that infection with L. interrogans in hamsters and in mice downregulated the expression of the FlaB, but not the FlaA subunits. Altogether, in contrast to different bacteria that modify their flagellin sequences to escape TLR5 recognition, our study suggests that the peculiar central localization and stability of the FlaB monomers in the periplasmic endoflagellae, associated with the downregulation of FlaB subunits in hosts, constitute an efficient strategy of leptospires to escape the TLR5 recognition and the induced immune response.
Collapse
Affiliation(s)
- Marion Holzapfel
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France
- CNRS, UMR 2001 Microbiologie Intégrative et Moléculaire, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Equipe Avenir, Paris, France
| | - Delphine Bonhomme
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France
- CNRS, UMR 2001 Microbiologie Intégrative et Moléculaire, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Equipe Avenir, Paris, France
- Sorbonne Paris Cité, Université de Paris, Paris, France
| | - Julie Cagliero
- Institut Pasteur de Nouvelle Calédonie, Immunity and Inflammation Group, Institut Pasteur International Network, Noumea, France
| | - Frédérique Vernel-Pauillac
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France
- CNRS, UMR 2001 Microbiologie Intégrative et Moléculaire, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Equipe Avenir, Paris, France
| | - Martine Fanton d’Andon
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France
- CNRS, UMR 2001 Microbiologie Intégrative et Moléculaire, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Equipe Avenir, Paris, France
| | - Sophia Bortolussi
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France
- CNRS, UMR 2001 Microbiologie Intégrative et Moléculaire, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Equipe Avenir, Paris, France
| | - Laurence Fiette
- Unité Histopathologie Humaine et Modèles Animaux, Institut Pasteur, Paris, France
| | - Cyrille Goarant
- Leptospirosis Research and Expertise Unit, Institut Pasteur International Network, Institut Pasteur de Nouvelle Calédonie, Noumea, France
| | - Elsio A. Wunder
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Salvador, Brazil
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States
| | | | - Albert I. Ko
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Salvador, Brazil
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States
| | - Dirk Werling
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Mariko Matsui
- Institut Pasteur de Nouvelle Calédonie, Immunity and Inflammation Group, Institut Pasteur International Network, Noumea, France
| | - Ivo G. Boneca
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France
- CNRS, UMR 2001 Microbiologie Intégrative et Moléculaire, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Equipe Avenir, Paris, France
| | - Catherine Werts
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France
- CNRS, UMR 2001 Microbiologie Intégrative et Moléculaire, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Equipe Avenir, Paris, France
| |
Collapse
|
13
|
Measurement of the Cell-Body Rotation of Leptospira. Methods Mol Biol 2020. [PMID: 32632866 DOI: 10.1007/978-1-0716-0459-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Leptospira spp. swim in liquid and crawl on surfaces with two periplasmic flagella. The periplasmic flagella attach to the protoplasmic cylinder via basal rotary motors (flagellar motors) and transform the ends of the cell body into spiral or hook shape. The rotations of the periplasmic flagella are thought to gyrate the cell body and rotate the protoplasmic cylinder for propelling the cell; however, the motility mechanism has not been fully elucidated. Since the motility is a critical virulence factor for pathogenic leptospires, the kinematic insight is valuable to understand the mechanism of infection. This chapter describes microscopic methodologies to measure the motility of Leptospira, focusing on rotation of the helical cell body.
Collapse
|
14
|
Spirochete Flagella and Motility. Biomolecules 2020; 10:biom10040550. [PMID: 32260454 PMCID: PMC7225975 DOI: 10.3390/biom10040550] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
Spirochetes can be distinguished from other flagellated bacteria by their long, thin, spiral (or wavy) cell bodies and endoflagella that reside within the periplasmic space, designated as periplasmic flagella (PFs). Some members of the spirochetes are pathogenic, including the causative agents of syphilis, Lyme disease, swine dysentery, and leptospirosis. Furthermore, their unique morphologies have attracted attention of structural biologists; however, the underlying physics of viscoelasticity-dependent spirochetal motility is a longstanding mystery. Elucidating the molecular basis of spirochetal invasion and interaction with hosts, resulting in the appearance of symptoms or the generation of asymptomatic reservoirs, will lead to a deeper understanding of host-pathogen relationships and the development of antimicrobials. Moreover, the mechanism of propulsion in fluids or on surfaces by the rotation of PFs within the narrow periplasmic space could be a designing base for an autonomously driving micro-robot with high efficiency. This review describes diverse morphology and motility observed among the spirochetes and further summarizes the current knowledge on their mechanisms and relations to pathogenicity, mainly from the standpoint of experimental biophysics.
Collapse
|
15
|
Gibson KH, Trajtenberg F, Wunder EA, Brady MR, San Martin F, Mechaly A, Shang Z, Liu J, Picardeau M, Ko A, Buschiazzo A, Sindelar CV. An asymmetric sheath controls flagellar supercoiling and motility in the leptospira spirochete. eLife 2020; 9:e53672. [PMID: 32157997 PMCID: PMC7065911 DOI: 10.7554/elife.53672] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/27/2020] [Indexed: 12/25/2022] Open
Abstract
Spirochete bacteria, including important pathogens, exhibit a distinctive means of swimming via undulations of the entire cell. Motility is powered by the rotation of supercoiled 'endoflagella' that wrap around the cell body, confined within the periplasmic space. To investigate the structural basis of flagellar supercoiling, which is critical for motility, we determined the structure of native flagellar filaments from the spirochete Leptospira by integrating high-resolution cryo-electron tomography and X-ray crystallography. We show that these filaments are coated by a highly asymmetric, multi-component sheath layer, contrasting with flagellin-only homopolymers previously observed in exoflagellated bacteria. Distinct sheath proteins localize to the filament inner and outer curvatures to define the supercoiling geometry, explaining a key functional attribute of this spirochete flagellum.
Collapse
Affiliation(s)
- Kimberley H Gibson
- Department of Molecular Biophysics and Biochemistry, Yale School of MedicineNew HavenUnited States
| | - Felipe Trajtenberg
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de MontevideoMontevideoUruguay
| | - Elsio A Wunder
- Departament of Epidemiology of Microbial Diseases, Yale School of Public HealthNew HavenUnited States
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Brazilian Ministry of HealthSalvadorBrazil
| | - Megan R Brady
- Department of Molecular Biophysics and Biochemistry, Yale School of MedicineNew HavenUnited States
| | - Fabiana San Martin
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de MontevideoMontevideoUruguay
| | - Ariel Mechaly
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de MontevideoMontevideoUruguay
| | - Zhiguo Shang
- Department of Molecular Biophysics and Biochemistry, Yale School of MedicineNew HavenUnited States
| | - Jun Liu
- Department of Microbial Pathogenesis, School of Medicine, Yale UniversityNew HavenUnited States
| | - Mathieu Picardeau
- Biology of Spirochetes Unit, Institut PasteurParisFrance
- Integrative Microbiology of Zoonotic Agents, Department of Microbiology, Institut PasteurParisFrance
| | - Albert Ko
- Departament of Epidemiology of Microbial Diseases, Yale School of Public HealthNew HavenUnited States
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Brazilian Ministry of HealthSalvadorBrazil
| | - Alejandro Buschiazzo
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de MontevideoMontevideoUruguay
- Integrative Microbiology of Zoonotic Agents, Department of Microbiology, Institut PasteurParisFrance
| | - Charles Vaughn Sindelar
- Department of Molecular Biophysics and Biochemistry, Yale School of MedicineNew HavenUnited States
| |
Collapse
|
16
|
Fernandes LGV, Guaman LP, Vasconcellos SA, Heinemann MB, Picardeau M, Nascimento ALTO. Gene silencing based on RNA-guided catalytically inactive Cas9 (dCas9): a new tool for genetic engineering in Leptospira. Sci Rep 2019; 9:1839. [PMID: 30755626 PMCID: PMC6372684 DOI: 10.1038/s41598-018-37949-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/10/2018] [Indexed: 12/15/2022] Open
Abstract
Leptospirosis is a worldwide zoonosis caused by pathogenic bacteria of the genus Leptospira, which also includes free-living saprophyte strains. Many aspects of leptospiral basic biology and virulence mechanisms remain unexplored mainly due to the lack of effective genetic tools available for these bacteria. Recently, the type II CRISPR/Cas system from Streptococcus pyogenes has been widely used as an efficient genome engineering tool in bacteria by inducing double-strand breaks (DSBs) in the desired genomic targets caused by an RNA-guided DNA endonuclease called Cas9, and the DSB repair associated machinery. In the present work, plasmids expressing heterologous S. pyogenes Cas9 in L. biflexa cells were generated, and the enzyme could be expressed with no apparent toxicity to leptospiral cells. However, L. biflexa cells were unable to repair RNA-guided Cas9-induced DSBs. Thus, we used a catalytically dead Cas9 (dCas9) to obtain gene silencing rather than disruption, in a strategy called CRISPR interference (CRISPRi). We demonstrated complete gene silencing in L. biflexa cells when both dCas9 and single-guide RNA (sgRNA) targeting the coding strand of the β-galactosidase gene were expressed simultaneously. Furthermore, when the system was applied for silencing the dnaK gene, no colonies were recovered, indicating that DnaK protein is essential in Leptospira. In addition, flagellar motor switch FliG gene silencing resulted in reduced bacterial motility. To the best of our knowledge, this is the first work applying the CRISPRi system in Leptospira and spirochetes in general, expanding the tools available for understanding leptospiral biology.
Collapse
Affiliation(s)
- L G V Fernandes
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, 05503-900, Sao Paulo, SP, Brazil.
| | - L P Guaman
- Universidad Tecnológica Equinoccial, Centro de Investigación Biomédica, Facultad de Ciencias de la Salud Eugenio Espejo, Avenida Mariscal Sucre y Mariana de Jesús. Campus Occidental, 170105, Quito, Ecuador
| | - S A Vasconcellos
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr. Orlando Marques de Paiva, 87, 05508-270, Sao Paulo, SP, Brazil
| | - Marcos B Heinemann
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr. Orlando Marques de Paiva, 87, 05508-270, Sao Paulo, SP, Brazil
| | - M Picardeau
- Institut Pasteur, Biology of Spirochetes Unit, 25 rue du Dr Roux, 75723, Paris, France
| | - A L T O Nascimento
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, 05503-900, Sao Paulo, SP, Brazil.
| |
Collapse
|
17
|
Abstract
Bacteria, life living at microscale, can spread only by thermal fluctuation. However, the ability of directional movement, such as swimming by rotating flagella, gliding over surfaces via mobile cell-surface adhesins, and actin-dependent movement, could be useful for thriving through searching more favorable environments, and such motility is known to be related to pathogenicity. Among diverse migration mechanisms, perhaps flagella-dependent motility would be used by most species. The bacterial flagellum is a molecular nanomachine comprising a helical filament and a basal motor, which is fueled by an electrochemical gradient of cation across the cell membrane (ion motive force). Many species, such as Escherichia coli, possess flagella on the outside of the cell body, whereas flagella of spirochetes reside within the periplasmic space. Flagellar filaments or helical spirochete bodies rotate like a screw propeller, generating propulsive force. This review article describes the current knowledge of the structure and operation mechanism of the bacterial flagellum, and flagella-dependent motility in highly viscous environments.
Collapse
Affiliation(s)
- Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University
| |
Collapse
|