1
|
Wang J, Xiao M, Hu Z, Lin Y, Li K, Chen P, Lu C, Dong Z, Pan M. Bombyx mori nucleopolyhedrovirus LEF-2 disrupts the cell cycle in the G2/M phase by triggering a host cell DNA damage response. INSECT MOLECULAR BIOLOGY 2025; 34:81-93. [PMID: 39150688 DOI: 10.1111/imb.12951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024]
Abstract
It is a common strategy for viruses to block the host cell cycle to favour their DNA replication. Baculovirus, being a double-stranded DNA virus, can arrest the cell cycle in the G2/M phase to facilitate its replication. However, the key viral genes and mechanisms crucial for inducing cell cycle arrest remain poorly understood. Here, we initially examined the impacts of several Bombyx mori nucleopolyhedrovirus (BmNPV) DNA replication-associated genes: ie1, lef-1, lef-2, lef-3, lef-4, odv-ec27 and dbp. We assessed their effects on both the host cells' DNA replication and cell cycle. Our findings reveal that when the lef-2 gene was overexpressed, it led to a significant increase in the number of cells in the G2/M phase and a reduction in the number of cells in the S phase. Furthermore, we discovered that the LEF-2 protein is located in the virogenic stroma and confirmed its involvement in viral DNA replication. Additionally, by employing interference and overexpression experiments, we found that LEF-2 influences host cell DNA replication and blocks the cell cycle in the G2/M phase by regulating the expression of CyclinB and CDK1. Finally, we found that BmNPV lef-2 triggered a DNA damage response in the host cell, and inhibiting this response removed the cell cycle block caused by BmNPV LEF-2. Thus, our findings indicate that the BmNPV lef-2 gene plays a crucial role in viral DNA replication and can regulate host cell cycle processes. This study furthers our understanding of baculovirus-host cell interactions and provides new insight into the molecular mechanisms of antiviral research.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Miao Xiao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Zhigang Hu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Yu Lin
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Kejie Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Peng Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Zhanqi Dong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Minhui Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Huang T, Jiang K, Li L, Li G, Cao Y, Huang X. Hsa_circ_0000423 promotes colorectal cancer EMT and immune escape by competitive adsorption of miR-369-3p mediating CCND1 expression. Discov Oncol 2024; 15:634. [PMID: 39520607 PMCID: PMC11550305 DOI: 10.1007/s12672-024-01501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND This investigation evaluated the mechanism of hsa_circ_0000423 in colorectal cancer (CRC). METHODS The hsa_circ_0000423 gene was identified by bioinformatics analyses of GEO circRNA microarrays, and its expression in CRC was investigated. Based on this, in vitro experiments were conducted. Assays with dual luciferase reporter and RIP were conducted to detect interactions between hsa_circ_0000423, miR-369-3p and CCND1. Cell proliferation was measured by MTT and colony formation assay assays, apoptosis was detected by flow cytometry, migration and invasion were detected by Transwell, and expression of EMT-related proteins was detected by Western Blot. SW480 cells and T cells were co-cultured to assess immune escape. RESULTS hsa_circ_0000423 and CCND1 were elevated in CRC while miR-369-3p was downregulated Silencing hsa_circ_0000423 resulted in reduced CCND1 expression by upregulating miR-369-3p. Overexpressing CCND1 or down-regulating miR-369-3p both interrupted the anti-tumor role of silencing hsa_circ_0000423 on CRC cells. CONCLUSION Hsa_circ_0000423 promotes CCND1 expression through competitive binding of miR-369-3p and promotes CRC cell development and immune escape.
Collapse
Affiliation(s)
- TianFu Huang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Hospital of Youjiang Medical Universityfor Nationalities, Baise, 533000, Guangxi Zhuang, China
| | - KaiHai Jiang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18, Zhongshan 2Nd Road, Baise, 533000, Guangxi Zhuang, China
| | - LinTao Li
- Department of Gastrointestinal Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18, Zhongshan 2Nd Road, Baise, 533000, Guangxi Zhuang, China
| | - GuangSheng Li
- Department of Gastrointestinal Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18, Zhongshan 2Nd Road, Baise, 533000, Guangxi Zhuang, China
| | - YuSheng Cao
- Department of General Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi Zhuang, China
| | - XuSen Huang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18, Zhongshan 2Nd Road, Baise, 533000, Guangxi Zhuang, China.
| |
Collapse
|
3
|
Zhang M, Li L, Zhang W, Li M, Yan G, Tang C. TG2 participates in pulmonary vascular remodelling by regulating the senescence of pulmonary artery smooth muscle cells. Cell Signal 2024; 121:111296. [PMID: 39009200 DOI: 10.1016/j.cellsig.2024.111296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
Pulmonary hypertension (PH) is a severe cardiovascular disease characterised by pulmonary vascular remodelling. The pivotal role of cellular senescence in vascular remodelling has been acknowledged. Transglutaminase type 2 (TG2), a calcium-dependent enzyme, is intricately linked to both cellular senescence and PH. However, the precise mechanisms underlying the involvement of TG2 in PH remain unclear. In this study, we explored the expression of TG2 and the cellular senescence marker p16INK4a in the pulmonary vasculature of mice with PH induced by hypoxia combined with SU5416. Our findings revealed upregulation of both TG2 and p16INK4a expression in the pulmonary vasculature of PH mice. Additionally, a notable increase in TG2 expression was observed in senescent pulmonary artery smooth muscle cells (PASMC). To delve deeper, we employed proteomic sequencing to reveal seven genes associated with cellular senescence, with a subsequent focus on MAPK14. Our investigation revealed that TG2 regulates senescence in PASMC by modulating the phosphorylation levels of MAPK14. Additionally, in the context of hypoxia combined with SU5416, our observations revealed a noteworthy reduction in both pulmonary vascular remodelling and senescent manifestations in smooth muscle-specific TG2 knockout mice compared with their wild-type counterparts. In summary, our findings indicate that TG2 deficiency lowers the senescence levels of PASMC by inhibiting the activity of MAPK14. This inhibition of senescence in the pulmonary vasculature of PH mice helps to decelerate the progression of pulmonary vascular remodelling and consequently hinders the onset and development of PH.
Collapse
Affiliation(s)
- Minhao Zhang
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Linqing Li
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Wenkang Zhang
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Mingkang Li
- School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Gaoliang Yan
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Chengchun Tang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
4
|
Fu QM, Fang Z, Ren L, Wu QS, Zhang JB, Liu QP, Tan LT, Weng QB. Partial Alleviation of Homologous Superinfection Exclusion of SeMNPV Latently Infected Cells by G1 Phase Infection and G2/M Phase Arrest. Viruses 2024; 16:736. [PMID: 38793618 PMCID: PMC11126141 DOI: 10.3390/v16050736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Viral infection can regulate the cell cycle, thereby promoting viral replication. Hijacking and altering the cell cycle are important for the virus to establish and maintain a latent infection. Previously, Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV)-latently infected P8-Se301-C1 cells, which grew more slowly than Se301 cells and interfered with homologous SeMNNPV superinfection, were established. However, the effects of latent and superinfection with baculoviruses on cell cycle progression remain unknown. In this study, the cell cycle profiles of P8-Se301-C1 cells and SeMNPV or Autographa californica multiple nucleopolyhedrovirus (AcMNPV)-infected P8-Se301-C1 cells were characterized by flow cytometry. The results showed that replication-related genes MCM4, PCNA, and BAF were down-regulated (p < 0.05) in P8-Se301-C1 cells, and the S phase of P8-Se301-C1 cells was longer than that of Se301 cells. P8-Se301-C1 cells infected with SeMNPV did not arrest in the G2/M phase or affect the expression of Cyclin B and cyclin-dependent kinase 1 (CDK1). Furthermore, when P8-Se301-C1 cells were infected with SeMNPV after synchronized treatment with hydroxyurea and nocodazole, light microscopy and qRT-PCR analysis showed that, compared with unsynchronized cells and S and G2/M phase cells, SeMNPV-infected P8-Se301-C1 cells in G1 phase induced G2/M phase arrest, and the amount of virus adsorption and intracellular viral DNA replication were significantly increased (p < 0.05). In addition, budded virus (BV) production and occlusion body (OB)-containing cells were both increased at 120 h post-infection (p < 0.05). The expression of Cyclin B and CDK1 was significantly down-regulated at 48 h post-infection (p < 0.05). Finally, the arrest of SeMNPV-infected G1 phase cells in the G2/M phase increased BV production (p < 0.05) and the number of OB-containing cells. In conclusion, G1 phase infection and G2/M arrest are favorable to SeMNPV proliferation in P8-Se301-C1 cells, thereby alleviating the homologous superinfection exclusion. The results contribute to a better understanding of the relationship between baculoviruses and insect cell cycle progression and regulation.
Collapse
Affiliation(s)
- Qi-Ming Fu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Q.-M.F.); (Z.F.); (L.R.); (Q.-S.W.); (J.-B.Z.); (Q.-P.L.); (L.-T.T.)
| | - Zheng Fang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Q.-M.F.); (Z.F.); (L.R.); (Q.-S.W.); (J.-B.Z.); (Q.-P.L.); (L.-T.T.)
| | - Lou Ren
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Q.-M.F.); (Z.F.); (L.R.); (Q.-S.W.); (J.-B.Z.); (Q.-P.L.); (L.-T.T.)
| | - Qing-Shan Wu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Q.-M.F.); (Z.F.); (L.R.); (Q.-S.W.); (J.-B.Z.); (Q.-P.L.); (L.-T.T.)
| | - Jun-Bo Zhang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Q.-M.F.); (Z.F.); (L.R.); (Q.-S.W.); (J.-B.Z.); (Q.-P.L.); (L.-T.T.)
| | - Qiu-Ping Liu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Q.-M.F.); (Z.F.); (L.R.); (Q.-S.W.); (J.-B.Z.); (Q.-P.L.); (L.-T.T.)
| | - Lei-Tao Tan
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Q.-M.F.); (Z.F.); (L.R.); (Q.-S.W.); (J.-B.Z.); (Q.-P.L.); (L.-T.T.)
| | - Qing-Bei Weng
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (Q.-M.F.); (Z.F.); (L.R.); (Q.-S.W.); (J.-B.Z.); (Q.-P.L.); (L.-T.T.)
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| |
Collapse
|
5
|
Xu C, Wang M, Cheng A, Yang Q, Huang J, Ou X, Sun D, He Y, Wu Z, Wu Y, Zhang S, Tian B, Zhao X, Liu M, Zhu D, Jia R, Chen S. Multiple functions of the nonstructural protein 3D in picornavirus infection. Front Immunol 2024; 15:1365521. [PMID: 38629064 PMCID: PMC11018997 DOI: 10.3389/fimmu.2024.1365521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
3D polymerase, also known as RNA-dependent RNA polymerase, is encoded by all known picornaviruses, and their structures are highly conserved. In the process of picornavirus replication, 3D polymerase facilitates the assembly of replication complexes and directly catalyzes the synthesis of viral RNA. The nuclear localization signal carried by picornavirus 3D polymerase, combined with its ability to interact with other viral proteins, viral RNA and cellular proteins, indicate that its noncatalytic role is equally important in viral infections. Recent studies have shown that 3D polymerase has multiple effects on host cell biological functions, including inducing cell cycle arrest, regulating host cell translation, inducing autophagy, evading immune responses, and triggering inflammasome formation. Thus, 3D polymerase would be a very valuable target for the development of antiviral therapies. This review summarizes current studies on the structure of 3D polymerase and its regulation of host cell responses, thereby improving the understanding of picornavirus-mediated pathogenesis caused by 3D polymerase.
Collapse
Affiliation(s)
- Chenxia Xu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Wei J, Dai J, Shi X, Zhao R, Fu G, Li R, Xia C, Zhang L, Zhou T, Wang H, Shi Y. Cadmium disrupts spermatogenic cell cycle via piRNA-DQ717867/p53 pathway. Reprod Toxicol 2024; 125:108554. [PMID: 38331007 DOI: 10.1016/j.reprotox.2024.108554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Cadmium (Cd) is a harmful environmental pollutant that disrupts public health, including respiratory, digestive, and reproductive systems. In this study, male rats were exposed to CdCl2 at a dose of 3 mg/kg by oral for 28 days to investigate the impact on spermatogenesis. Testis tissue samples were collected after sacrifice, and piRNA expression levels were measured using piRNA microarray and qPCR. PiRNAs, specialized molecules involved in spermatogenesis, were examined. CdCl2 exposure led to disrupted piRNA expression, particularly in piRNA-DQ759395 in rats. This piRNA was found to have a binding site with p53, and a similar piRNA-DQ717867 was discovered in mice. In GC-2spd cells, CdCl2 exposure increased piRNA-DQ717867 expression, which resulted in cell cycle arrest and abnormal expression of cell cycle-related proteins. The activation of p53-related pathways and disruptions in cell cycle regulation were also observed. Antagomir-717867 transfections and PFT-a pretreatment in GC-2spd cells supported the involvement of piRNA-DQ717867 in regulating cell cycle-related proteins. This study suggests that Cd exposure induces abnormal expression of piRNA-DQ759395 in rat testis and that piRNA-DQ717867 may regulate p53, causing cell cycle abnormalities in GC-2spd cells. These findings help understand the mechanisms of male reproductive toxicity caused by Cd exposure and emphasize the role of piRNAs in cell cycle regulation and male reproductive health.
Collapse
Affiliation(s)
- Jiaoyang Wei
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Juan Dai
- Wuhan centers for Disease Prevention and Control, China
| | - Xiaofan Shi
- Qinghai centers for Disease Prevention and Control, China
| | - Ruixue Zhao
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | | | - Rui Li
- Central China Normal University, China
| | - Chao Xia
- Ezhou centers for Disease Prevention and Control, China
| | - Ling Zhang
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Ting Zhou
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China
| | - Huaiji Wang
- Wuhan centers for Disease Prevention and Control, China.
| | - Yuqin Shi
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, China.
| |
Collapse
|
7
|
Mondal S, Sarvari G, Boehr DD. Picornavirus 3C Proteins Intervene in Host Cell Processes through Proteolysis and Interactions with RNA. Viruses 2023; 15:2413. [PMID: 38140654 PMCID: PMC10747604 DOI: 10.3390/v15122413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
The Picornaviridae family comprises a large group of non-enveloped viruses with enormous impact on human and animal health. The picornaviral genome contains one open reading frame encoding a single polyprotein that can be processed by viral proteases. The picornaviral 3C proteases share similar three-dimensional structures and play a significant role in the viral life cycle and virus-host interactions. Picornaviral 3C proteins also have conserved RNA-binding activities that contribute to the assembly of the viral RNA replication complex. The 3C protease is important for regulating the host cell response through the cleavage of critical host cell proteins, acting to selectively 'hijack' host factors involved in gene expression, promoting picornavirus replication, and inactivating key factors in innate immunity signaling pathways. The protease and RNA-binding activities of 3C are involved in viral polyprotein processing and the initiation of viral RNA synthesis. Most importantly, 3C modifies critical molecules in host organelles and maintains virus infection by subtly subverting host cell death through the blocking of transcription, translation, and nucleocytoplasmic trafficking to modulate cell physiology for viral replication. Here, we discuss the molecular mechanisms through which 3C mediates physiological processes involved in promoting virus infection, replication, and release.
Collapse
Affiliation(s)
| | | | - David D. Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
8
|
Ba D, Li H, Liu R, Zhang P, Tang Y. Exploratory study on the efficacy of bortezomib combining mitoxantrone or CD22-CAR T therapy targeting CD19-negative relapse after CD19-CAR T cell therapy with a simpler cell-line-based model. Apoptosis 2023; 28:1534-1545. [PMID: 37243774 DOI: 10.1007/s10495-023-01853-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/29/2023]
Abstract
Target-negative relapse after CD19 chimeric antigen receptor engineered (CAR) T cell therapy for patients with B lineage acute lymphoblastic leukemia (B-ALL) presents limited treatment options with dismal outcomes. Although CD22-CAR T cells mediate similarly potent antineoplastic effects in patients with CD19dim or even CD19-negative relapse following CD19-directed immunotherapy, a high rate of relapse associated with diminished CD22 cell surface expression has also been observed. Therefore, it is unclear whether any other therapeutic options are available. Mitoxantrone has shown significant antineoplastic activity in patients with relapsed or refractory leukemia over the past decades, and in some cases, the addition of bortezomib to conventional chemotherapeutic agents has demonstrated improved response rates. However, whether this mitoxantrone and bortezomib combination therapy is effective for those patients who have relapsed B-ALL after receiving CD19-CAR T cell therapy remains to be elucidated. In this study, we established a cellular model system using a CD19-positive B-ALL cell line Nalm-6 to investigate the treatment options for CD19-negative relapsed B-ALL after CD19-CAR T cell therapy. In addition to CD22-CAR T therapy, we observed that the combination of bortezomib and mitoxantrone exhibited effective anti-leukemia activity in the CD19-negative Nalm-6 cell line by downregulating p-AKT and p-mTOR. These results suggest that this combination therapy is a possible option for target-negative refractory leukemia cells after CAR-T cell treatment.
Collapse
Affiliation(s)
- Diandian Ba
- Department/Center of Hematology-oncology, Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China
| | - Hongzhe Li
- Department/Center of Hematology-oncology, Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China
| | - Rongrong Liu
- Department/Center of Hematology-oncology, Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China
| | - Ping Zhang
- Department/Center of Hematology-oncology, Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China
| | - Yongmin Tang
- Department/Center of Hematology-oncology, Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China.
| |
Collapse
|
9
|
Pal A, Tripathi SK, Rani P, Rastogi M, Das S. p53 and RNA viruses: The tug of war. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023:e1826. [PMID: 37985142 DOI: 10.1002/wrna.1826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023]
Abstract
Host factors play essential roles in viral infection, and their interactions with viral proteins are necessary for establishing effective pathogenesis. p53 is a host factor that maintains genomic integrity by controlling cell-cycle progression and cell survival. It is a well-known tumor suppressor protein that gets activated by various stress signals, thereby regulating cellular pathways. The cellular outcomes from different stresses are tightly related to p53 dynamics, including its alterations at gene, mRNA, or protein levels. p53 also contributes to immune responses leading to the abolition of viral pathogens. In turn, the viruses have evolved strategies to subvert p53-mediated host responses to improve their life cycle and pathogenesis. Some viruses attenuate wild-type p53 (WT-p53) function for successful pathogenesis, including degradation and sequestration of p53. In contrast, some others exploit the WT-p53 function through regulation at the transcriptional/translational level to spread infection. One area in which the importance of such host factors is increasingly emerging is the positive-strand RNA viruses that cause fatal viral infections. In this review, we provide insight into all the possible mechanisms of p53 modulation exploited by the positive-strand RNA viruses to establish infection. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Regulation RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Apala Pal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sachin Kumar Tripathi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Priya Rani
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Meghana Rastogi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India, Kalyani, West Bengal, India
| |
Collapse
|
10
|
Garg P, Garg R, Horne D, Awasthi S, Salgia R, Singhal SS. Prognostic significance of natural products against multidrug tumor resistance. Cancer Lett 2023; 557:216079. [PMID: 36736532 DOI: 10.1016/j.canlet.2023.216079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Cancer is a pervasive, constantly evolving, and significant public health concern. The number of new cancer cases has risen dramatically in the last decades, making it one of the top causes of poor health and mortality worldwide. Although various treatment strategies, including surgery, radiation, and pharmaceutical therapies, have evolved into more sophisticated, precise methods, there is not much improvement in the cancer-related death toll. Consequently, natural product-based therapeutic discoveries have recently been considered an alternative approach. According to an estimate, one-third of the top twenty medications in today's market have a natural plant-product-based origin. Accordingly, primary prevention is an essential component of worldwide cancer control. This review provides an overview of the mechanisms of action of bioactive ingredients in natural dietary products that may contribute to the prevention and management of multiple malignancies.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Rachana Garg
- Department of Surgery, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Sanjay Awasthi
- Cayman Health, CTMH Doctors Hospital, George Town, Grand Cayman, KY1-1104, Cayman Islands
| | - Ravi Salgia
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA
| | - Sharad S Singhal
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
11
|
Shi H, Liu S, Tan Z, Yin L, Zeng L, Liu T, Zhang S, Zhang L. Proteomic and metabonomic analysis uncovering Enterovirus A71 reprogramming host cell metabolic pathway. Proteomics 2023; 23:e2200362. [PMID: 36254857 DOI: 10.1002/pmic.202200362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/04/2022] [Indexed: 01/19/2023]
Abstract
Enterovirus A71 (EV71) infection can cause hand, foot, and mouth disease (HFMD) and severe neurological complications in children. However, the biological processes regulated by EV71 remain poorly understood. Herein, proteomics and metabonomics studies were conducted to uncover the mechanism of EV71 infection in rhabdomyosarcoma (RD) cells and identify potential drug targets. Differential expressed proteins from enriched membrane were analyzed by isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics technology. Twenty-six differential proteins with 1.5-fold (p < 0.05) change were detected, including 14 upregulated proteins and 12 downregulated proteins. The upregulated proteins are mainly involved in metabolic process, especially in the glycolysis pathway. Alpha-enolase (ENO1) protein was found to increase with temporal dependence following EV71 infection. The targeted metabolomics analysis revealed that glucose absorption and glycolysis metabolites were increased after EV71 infection. The glycolysis pathway was inhibited by knocking down ENO1 or the use of a glycolysis inhibitor (dichloroacetic acid [DCA]); and we found that EV71 infection was inhibited by depleting ENO1 or using DCA. Our study indicates that EV71 may reprogram glucose metabolism by activating glycolysis, and EV71 infection can be inhibited by interrupting the glycolysis pathway. ENO1 may be a potential target against EV71, and DCA could act as an inhibitor of EV71.
Collapse
Affiliation(s)
- Huichun Shi
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Siyuan Liu
- The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai, China
| | - Zhimi Tan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lin Yin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Liyan Zeng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tiefu Liu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shuye Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lijun Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Chang Z, Kuang HX, Zhou X, Zhu H, Zhang Y, Fu Y, Fu Q, Jiang B, Wang W, Jiang S, Ren L, Ma L, Pan X, Feng XL. Temporal changes in cyclinD-CDK4/CDK6 and cyclinE-CDK2 pathways: implications for the mechanism of deficient decidualization in an immune-based mouse model of unexplained recurrent spontaneous abortion. Mol Med 2022; 28:100. [PMID: 36050637 PMCID: PMC9438304 DOI: 10.1186/s10020-022-00523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deficient endometrial decidualization has been associated with URSA. However, the underlying mechanism is poorly understood. This study aimed to investigate the temporal cytokine changes and the involvement of CyclinD-CDK4/6 and CyclinE-CDK2 pathways in the regulation of the G1 phase of the cell cycle during decidualization in a murine model of URSA. METHODS Serum and decidual tissues of mice were collected from GD4 to GD8. The embryo resorption and abortion rates were observed on GD8 and the decidual tissue status was assessed. In addition, PRL, Cyclin D, CDK6, CDK4, Cyclin E, CDK2 expression in mice were measured. RESULTS URSA mice showed high embryo resorption rate and PRL, Cyclin D, Cyclin E CDK2, CDK4, CDK6 down-regulation during decidualization. The hyperactivated Cyclin D-CDK4/CDK6 and cyclin E/CDK2 pathways inhibit the decidualization process and leading to deficient decidualization. CONCLUSION Insufficient decidualization is an important mechanism of URSA. which is related to the decrease of Cyclin D、Cyclin E、 CDK2、CDK4 and CDK6 in decidualization process of URSA.
Collapse
Affiliation(s)
- Zhuo Chang
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Hai-Xue Kuang
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xueming Zhou
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Hui Zhu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yang Zhang
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yin Fu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Qiang Fu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Bei Jiang
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Wei Wang
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Sha Jiang
- Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, China
| | - Li Ren
- Hospital of Traditional Chinese Medicine of Qiqihar, Qiqihar, China
| | - Lei Ma
- Zhaoqing City Guangdong Province Hospital of Traditional Chinese Medicine, Zhaoqing, China
| | - Xue Pan
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Xiao-Ling Feng
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| |
Collapse
|
13
|
Effect of Fumonisin B1 on Proliferation and Apoptosis of Intestinal Porcine Epithelial Cells. Toxins (Basel) 2022; 14:toxins14070471. [PMID: 35878209 PMCID: PMC9323054 DOI: 10.3390/toxins14070471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022] Open
Abstract
Fumonisin B1 (FB1), which is a mycotoxin produced by Fusarium moniliforme and Fusarium rotarum, has a number of toxic effects in animals. Moldy feed containing FB1 can damage the intestine. In this study, we used intestinal porcine epithelial cells (IPEC-J2) as an in vitro model to explore the effects of FB1 on cell cycle and apoptosis. The results showed that IPEC-J2 cells treated with 10, 20, and 40 μg/mL FB1 for 48 h experienced different degrees of damage manifested as decreases in cell number and viability, as well as cell shrinkage and floating. In addition, FB1 reduced cell proliferation and the mRNA and protein expression of proliferating cell nuclear antigen (PCNA), cyclin-dependent kinase 2 (CDK2), CDK4, cyclinD1, and cyclinE1. FB1 blocked the cell cycle in the G1 phase. FB1 also induced mitochondrial pathway apoptosis, reduced mitochondrial membrane potential, and promoted mRNA and protein expression of Caspase3, Caspase9, and Bax. The findings suggest that FB1 can induce IPEC-J2 cell damage, block the cell cycle, and promote cell apoptosis.
Collapse
|
14
|
Liu Y, Li Y, Wang M, Cheng A, Ou X, Mao S, Sun D, Wu Y, Yang Q, Jia R, Tian B, Zhang S, Zhu D, Chen S, Liu M, Zhao X, Huang J, Gao Q, Yu Y, Zhang L. Duck hepatitis A virus type 1 mediates cell cycle arrest in the S phase. Virol J 2022; 19:111. [PMID: 35761382 PMCID: PMC9235186 DOI: 10.1186/s12985-022-01839-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/03/2022] [Indexed: 11/18/2022] Open
Abstract
Background Duck hepatitis A virus type 1 (DHAV-1) is one of the most serious pathogens endangering the duck industry. However, there are few studies on the regulation of the cell cycle by DHAV-1. Methods In this study, flow cytometry was applied to analyze the effect of DHAV-1 infection on the cell cycle of duck embryo fibroblasts (DEFs). Subsequently, we analyzed the effects of cell cycle phases on DHAV-1 replication by real-time reverse transcriptase quantitative PCR (real-time RT-qPCR). Results Flow cytometry data analysis found that DEFs in the S phase increased by 25.85% and 54.21% at 24 h and 48 h after DHAV-1 infection, respectively. The levels of viral RNA detected by real-time RT-qPCR were higher in the DEFs with synchronization in the S phase or G0/G1 phase than in the control group. However, there was no difference in viral copy number between the G2/M phase arrest and control groups. In addition, non-structural protein 3D of DHAV-1 significantly increased cells in the S phase, indicating that 3D protein is one of the reasons for the cell cycle arrest in the S phase. Conclusions In summary, DHAV-1 infection induces the cell cycle arrest of DEFs in the S phase. Both S phase and G0/G1 phase synchronization facilitate the replication of DHAV-1, and 3D protein is one of the reasons for the S phase arrest.
Collapse
Affiliation(s)
- Yuanzhi Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Yanglin Li
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China. .,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, China
| |
Collapse
|
15
|
Yang C, Mai Z, Liu C, Yin S, Cai Y, Xia C. Natural Products in Preventing Tumor Drug Resistance and Related Signaling Pathways. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113513. [PMID: 35684449 PMCID: PMC9181879 DOI: 10.3390/molecules27113513] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/13/2022]
Abstract
Drug resistance is still an obstacle in cancer therapy, leading to the failure of tumor treatment. The emergence of tumor drug resistance has always been a main concern of oncologists. Therefore, overcoming tumor drug resistance and looking for new strategies for tumor treatment is a major focus in the field of tumor research. Natural products serve as effective substances against drug resistance because of their diverse chemical structures and pharmacological effects. We reviewed the signaling pathways involved in the development of tumor drug resistance, including Epidermal growth factor receptor (EGFR), Renin-angiotensin system (Ras), Phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), Wnt, Notch, Transforming growth factor-beta (TGF-β), and their specific signaling pathway inhibitors derived from natural products. This can provide new ideas for the prevention of drug resistance in cancer therapy.
Collapse
Affiliation(s)
- Chuansheng Yang
- Department of Head-Neck and Breast Surgery, Yuebei People’s Hospital of Shantou University, Shaoguan 512027, China;
| | - Zhikai Mai
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Can Liu
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuanghong Yin
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yantao Cai
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- Correspondence: (Y.C.); (C.X.)
| | - Chenglai Xia
- Affiliated Foshan Maternity and Chlid Healthcare Hospital, Southern Medical University, Foshan 528000, China; (Z.M.); (C.L.); (S.Y.)
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Correspondence: (Y.C.); (C.X.)
| |
Collapse
|
16
|
Chen Y, Qiao S, Liu H, Xing H, Chen P. Structural Characterization and Anti-breast Cancer Activity in vitro of a Novel Polysaccharide From Cymbopogon citratus. Front Nutr 2022; 9:911838. [PMID: 35634368 PMCID: PMC9130703 DOI: 10.3389/fnut.2022.911838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Abstract
Cymbopogon citratus is an important functional food, widely used for flavoring in Africa and South America. In this study, a novel high-molecular-weight polysaccharide (CCP) from C. citratus was extracted, and its structural characteristics and anti-breast cancer activity in vitro were investigated. CCP contained both α and β configurations and mainly composed of galactose (36.89%), arabinose (23.97%), glucose (18.35%) and rhamnose (9.36%) with an average molecular weight of 1.98 × 106 Da. The main glycosyl residues of CCP detected by methylation analysis were 1,3,6-linked Galp, 1,3-linked Glcp, 1,5-linked Araf , T-Araf , and T-Rhap. In vitro experiments suggested that CCP significantly inhibited the proliferation of MDA-MB-231 cells, decreased the expressions of cyclin D1 and CDK4 and stocked cells at G0/G1 phase. Meanwhile, the typical morphological features of apoptotic cells were also observed. Combining with the consequences of Annexin V-FITC/PI staining, Hoechst 33258 staining and western blot analysis, CCP induced apoptosis of MDA-MB-231 cells by triggering the Fas/FasL-mediated death receptor pathway. Overall, these results provide a theoretical basis for the application of C. citratus polysaccharide as a potential anti-breast cancer agent in functional food and medicine.
Collapse
|
17
|
Cheng Z, Zhang Y, Zhuo Y, Fan J, Xu Y, Li M, Chen H, Zhou L. LncRNA TARID induces cell proliferation through cell cycle pathway associated with coronary artery disease. Mol Biol Rep 2022; 49:4573-4581. [PMID: 35304681 DOI: 10.1007/s11033-022-07304-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/23/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND/AIM Long non-coding RNA TARID (lncRNA TARID) can activate the tumor suppressor TCF21 in tumorigenesis by inducing promoter demethylation. However, the impact on lncRNA TARID and its variants of coronary artery disease (CAD) are poorly understood. METHODS We performed a case-control study enrolling 949 cases and 892 controls to assess genotype. Five variants were genotyped by TaqMan assay. 20 cases and 20 controls were used to evaluate the expression of lncRNA TARID. The cell proliferation rate was evaluated by CCK-8. The RT-qPCR and cell cycle analysis were applied to examine cell proliferation-related mRNA and cell distribution. RESULTS This study indicated that rs2327433 GG genotype was associated with CAD risk adjusting for traditional risk factors (OR = 2.74, 95%CI: 1.10-6.83, P = 0.03). Our results analyses revealed that the genotype of rs2327433 was related to the proportion of CAD patients with left anterior descending artery disease and left circumflex artery disease (P = 0.025 and P = 0.025, respectively). The results showed that the minor allele frequency of rs2327433 was significantly correlated with the severity of the disease (P = 0.029). The eQTL analysis showed that rs2327433 may affect the transcription factors TCF21 regulated by lncRNA TARID. We found that TARID silencing regulated cell proliferation and altered cell cycle progression by induced upregulation of CDK1 and PCNA. CONCLUSIONS SNP rs2327433 in lncRNA TARID was associated with CAD risk and the severity of CAD in the Chinese Han population. Furthermore, SNP rs2327433 may affect the expression of atherosclerosis-related transcription factor TCF21 regulated by lncRNA TARID. Finally, our study provided a new lncRNA-dictated regulatory mechanism participating in cell proliferation.
Collapse
Affiliation(s)
- Zheng Cheng
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, China
| | - Yonghong Zhang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yang Zhuo
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, China
| | - Jie Fan
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, China
| | - Ying Xu
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, China
| | - Mengmeng Li
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, China
| | - Hao Chen
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, China
| | - Li Zhou
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, China.
| |
Collapse
|
18
|
Zhang X, Mu X, Huang O, Wang Z, Chen J, Chen D, Wang G. ZNF703 promotes triple-negative breast cancer cells through cell-cycle signaling and associated with poor prognosis. BMC Cancer 2022; 22:226. [PMID: 35236318 PMCID: PMC8889678 DOI: 10.1186/s12885-022-09286-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 02/10/2022] [Indexed: 11/10/2022] Open
Abstract
Background The oncogenic drivers of triple-negative breast cancer (TNBC), which is characterized by worst prognosis compared with other subtypes, are poorly understood. Although next-generation sequencing technology has facilitated identifying potential targets, few of the findings have been translated into daily clinical practice. The present study is aimed to explore ZNF703 (Zinc finger 703) function and its underlying mechanism in TNBC. Methods ZNF703 expressions in tissue microarray were retrospectively examined by immunohistochemistry. The cell proliferation by SRB assay and colony formation assay, as well as cell cycle distribution by flow cytometry were assessed. The protein levels associated with possible underlying molecular mechanisms were evaluated by western blotting. Kaplan-Meier analysis was used to plot survival analysis. Results Our data suggest that ZNF703 expressed in 34.2% of triple-negative human breast tumors by immunohistochemistry. In vitro, ZNF703 knockdown had potent inhibitory effects on TNBC cell proliferation and cell cycle, with cyclin D1, CDK4, CDK6, and E2F1 downregulated, while Rb1 upregulated. Moreover, Kaplan-Meier analysis showed that high mRNA expression of ZNF703 was correlated to worse overall survival (HR for high expression was 3.04; 95% CI, 1.22 to 7.57, P = 0.017). Conclusions Taken together, the results identified that targeting ZNF703 contributed to the anti-proliferative effects in TNBC cells, due to induced G1-phase arrest. This study is the first to identify ZNF703 as a potentially important protein that is involved in TNBC progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09286-w.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Breast Oncology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Anji Rd, 362000, Quanzhou, China. .,Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, China.
| | - Xin Mu
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, China
| | - Ou Huang
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, China
| | - Zhitang Wang
- Department of Breast Oncology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Anji Rd, 362000, Quanzhou, China
| | - Jialin Chen
- Department of Breast Oncology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Anji Rd, 362000, Quanzhou, China
| | - Debo Chen
- Department of Breast Oncology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Anji Rd, 362000, Quanzhou, China.
| | - Gen Wang
- Department of Pharmacology, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, University Town, 1 Xue Yuan Road, 350122, Fuzhou, China.
| |
Collapse
|
19
|
Liang Q, Liu M, Li J, Tong R, Hu Y, Bai L, Shi J. NAE modulators: A potential therapy for gastric carcinoma. Eur J Med Chem 2022; 231:114156. [DOI: 10.1016/j.ejmech.2022.114156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 12/24/2022]
|
20
|
Li Q, Yuan Q, Wang T, Zhan Y, Yang L, Fan Y, Lei H, Su J. Fumonisin B 1 Inhibits Cell Proliferation and Decreases Barrier Function of Swine Umbilical Vein Endothelial Cells. Toxins (Basel) 2021; 13:toxins13120863. [PMID: 34941701 PMCID: PMC8704807 DOI: 10.3390/toxins13120863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022] Open
Abstract
The fumonisins are a group of common mycotoxins found around the world that mainly contaminate maize. As environmental toxins, they pose a threat to human and animal health. Fumonisin B1 (FB1) is the most widely distributed and the most toxic. FB1 can cause pulmonary edema in pigs. However, the current toxicity mechanism of fumonisins is still in the exploratory stage, which may be related to sphingolipid metabolism. Our study is designed to investigate the effect of FB1 on the cell proliferation and barrier function of swine umbilical vein endothelial cells (SUVECs). We show that FB1 can inhibit the cell viability of SUVECs. FB1 prevents cells from entering the S phase from the G1 phase by regulating the expression of the cell cycle-related genes cyclin B1, cyclin D1, cyclin E1, Cdc25c, and the cyclin-dependent kinase-4 (CDK-4). This results in an inhibition of cell proliferation. In addition, FB1 can also change the cell morphology, increase paracellular permeability, destroy tight junctions and the cytoskeleton, and reduce the expression of tight junction-related genes claudin 1, occludin, and ZO-1. This indicates that FB1 can cause cell barrier dysfunction of SUVECs and promote the weakening or even destruction of the connections between endothelial cells. In turn, this leads to increased blood vessel permeability and promotes exudation. Our findings suggest that FB1 induces toxicity in SUVECs by affecting cell proliferation and disrupting the barrier function.
Collapse
|
21
|
Selina PI, Karaseva MA, Komissarov AA, Safina DR, Lunina NA, Roschina MP, Sverdlov ED, Demidyuk IV, Kostrov SV. Embryotoxic activity of 3C protease of human hepatitis A virus in developing Danio rerio embryos. Sci Rep 2021; 11:18196. [PMID: 34521911 PMCID: PMC8440601 DOI: 10.1038/s41598-021-97641-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/27/2021] [Indexed: 11/23/2022] Open
Abstract
The 3C protease is a key factor in picornavirus-induced pathologies with a comprehensive action on cell targets. However, the effects induced by the enzyme have not been described at the organismic level. Here, the model of developing Danio rerio embryos was used to analyze possible toxic effects of the 3C protease of human hepatitis A virus (3Cpro) at the whole-body level. The transient 3Cpro expression had a notable lethal effect and induced a number of specific abnormalities in Danio rerio embryos within 24 h. These effects are due to the proteolytic activity of the enzyme. At the same time, the 3Cpro variant with reduced catalytic activity (3Cmut) increased the incidence of embryonic abnormalities; however, this effect was smaller compared to the native enzyme form. While the expression of 3Cmut increased the overall rate of abnormalities, no predominance of specific ones was observed. The data obtained point to a presence significant impact of picornavirus 3Cprotease at the whole-organism level and make contribution to the study of the infectious process caused by human hepatitis A virus.
Collapse
Affiliation(s)
- Polina I Selina
- Institute of Molecular Genetics of National Research Center, Kurchatov Institute, 123182, Moscow, Russia.
| | - Maria A Karaseva
- Institute of Molecular Genetics of National Research Center, Kurchatov Institute, 123182, Moscow, Russia
| | - Alexey A Komissarov
- Institute of Molecular Genetics of National Research Center, Kurchatov Institute, 123182, Moscow, Russia
| | - Dina R Safina
- Institute of Molecular Genetics of National Research Center, Kurchatov Institute, 123182, Moscow, Russia
| | - Nataliya A Lunina
- Institute of Molecular Genetics of National Research Center, Kurchatov Institute, 123182, Moscow, Russia
| | - Marina P Roschina
- Institute of Molecular Genetics of National Research Center, Kurchatov Institute, 123182, Moscow, Russia
| | - Eugene D Sverdlov
- Institute of Molecular Genetics of National Research Center, Kurchatov Institute, 123182, Moscow, Russia
| | - Ilya V Demidyuk
- Institute of Molecular Genetics of National Research Center, Kurchatov Institute, 123182, Moscow, Russia
| | - Sergey V Kostrov
- Institute of Molecular Genetics of National Research Center, Kurchatov Institute, 123182, Moscow, Russia
| |
Collapse
|
22
|
Zhang X, Zhang H, Qi G, Gu X, Zhao Y, Zhang J. TPD7 inhibits the non-small cell lung cancer HCC827 cell growth by regulating EGFR signalling pathway. J Chemother 2021; 34:110-116. [PMID: 34210250 DOI: 10.1080/1120009x.2021.1945790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Non-small cell lung cancer (NSCLC) accounts for 85% of lung cancer cases, and is characterized by more insensitivity to chemotherapy and poor prognosis. Epidermal growth factor receptor (EGFR) has been confirmed as a tumorigenic driving factor of NSCLC. Taspine has been proved effective in the inhibition of malignant tumours. Here, we found TPD7, a novel taspine derivative, exerted most inhibitory effect on EGFR-dependent HCC827 cells and investigated the underling mechanism. In addition, TPD7 could block cell cycle at G0/G1 phase of HCC827 cells by regulating the expression of cyclin D1 and cyclin E. Furthermore, TPD7 induced HCC827 cell apoptosis by regulating the expression of BCL-2 family proteins. Further study revealed that TPD7 could down-regulate the phosphorylation of EGFR and downstream members. TPD7 might present a potential EGFR inhibitor in the treatment of NSCLC.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Pulmonary and Critical Care Medicine, Xi'an Chest Hospital, Xi'an, Shaanxi, China
| | - Hongjun Zhang
- Department of Pulmonary and Critical Care Medicine, Xi'an Chest Hospital, Xi'an, Shaanxi, China
| | - Gangqiang Qi
- Department of Pulmonary and Critical Care Medicine, Xi'an Chest Hospital, Xi'an, Shaanxi, China
| | - Xing Gu
- Department of Pulmonary and Critical Care Medicine, Xi'an Chest Hospital, Xi'an, Shaanxi, China
| | - Yanjun Zhao
- Department of Pulmonary and Critical Care Medicine, Xi'an Chest Hospital, Xi'an, Shaanxi, China
| | - Jie Zhang
- Department of Oncology, Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
23
|
Yang W, Feng Q, Li M, Su J, Wang P, Wang X, Yin Y, Wang X, Zhao M. Sinomenine Suppresses Development of Hepatocellular Carcinoma Cells via Inhibiting MARCH1 and AMPK/STAT3 Signaling Pathway. Front Mol Biosci 2021; 8:684262. [PMID: 34179090 PMCID: PMC8222788 DOI: 10.3389/fmolb.2021.684262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/27/2021] [Indexed: 01/09/2023] Open
Abstract
Promotion of apoptosis and suppression of proliferation in tumor cells are popular strategies for developing anticancer drugs. Sinomenine (SIN), a plant-derived alkaloid, displays antitumor activity. However, the mechanism of action of SIN against hepatocellular carcinoma (HCC) is unclear. Herein, several molecular technologies, such as Western Blotting, qRT-PCR, flow cytometry, and gene knockdown were applied to explore the role and mechanism of action of SIN in the treatment of HCC. It was found that SIN arrests HCC cell cycle at G0/G1 phase, induces apoptosis, and suppresses proliferation of HCC cells via down-regulating the expression of membrane-associated RING-CH finger protein 1 (MARCH1). Moreover, SIN induces cell death and growth inhibition through AMPK/STAT3 signaling pathway. MARCH1 expression was silenced by siRNA to explore its involvement in the regulation of AMPK/STAT3 signaling pathway. Silencing MARCH1 caused down-regulation of phosphorylation of AMPK, STAT3 and decreased cell viability and function. Our results suggested that SIN inhibits proliferation and promotes apoptosis of HCC cells by MARCH1-mediated AMPK/STAT3 signaling pathway. This study provides new support for SIN as a clinical anticancer drug and illustrates that targeting MARCH1 could be a novel treatment strategy in developing anticancer therapeutics.
Collapse
Affiliation(s)
- Wei Yang
- Department of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Qihua Feng
- Department of Imaging, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Minjing Li
- Department of Chinese Medicine Prescription, Binzhou Medical University, Yantai, China
| | - Jiaqi Su
- Department of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Peiyuan Wang
- Department of Imaging, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Xu Wang
- Department of Imaging, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Yancun Yin
- Department of Human Anatomy, Binzhou Medical University, Yantai, China
| | - Xia Wang
- Department of Oral Pathology, Binzhou Medical University, Yantai, China
| | - Mingdong Zhao
- Department of Medical Imaging, Binzhou Medical University, Yantai, China
| |
Collapse
|
24
|
Yang J, Tian G, Chen D, Mao X, He J, Zheng P, Yu J, Luo Y, Luo J, Huang Z, Wu A, Yan H, Yu B. 1,25-Dihydroxyvitamin D 3 inhibits porcine epidemic diarrhea virus replication by regulating cell cycle resumption in IPEC-J2 porcine epithelial cells. Microb Pathog 2021; 158:105017. [PMID: 34098020 DOI: 10.1016/j.micpath.2021.105017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/06/2021] [Accepted: 05/24/2021] [Indexed: 11/15/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) infection causes heavy economic losses in the pig industry. Currently, the lack of effective treatments prompts new antiviral researches. We have shown that 25-hydroxyvitamin D3 supplementation alleviated PEDV infection in weaned pigs before. However, it is not clear whether vitamin D inhibits PEDV replication. In this study, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) inhibited PEDV induced mitochondria damage and cell apoptosis. In addition, 1,25(OH)2D3 treatment decreased PEDV nucleocapsid gene and protein levels in IPEC-J2 cells. Transcriptomic data showed that PEDV infection altered the expression of 5316 genes (2498 up, 2818 down) in IPEC-J2 cells. The differentially expressed genes were mainly involved in cell cycle process, ribonucleoprotein complex biogenesis, mitotic nuclear division, and other biological processes. Then we examined the effects of PEDV infection on cell cycle progression in IPEC-J2 cells, and the results showed that PEDV induced G0/G1 phase arrest. G0/G1-phase arrest was also conducive to PEDV replication. However, 1,25(OH)2D3 treatment decreased G0/G1 phase percentage induced by PEDV. Cyclin D and cyclin E mRNA expression were also increased by 1,25(OH)2D3 supplementation upon PEDV infection. Moreover, the regulation of 1,25(OH)2D3 on cell cycle progression was abrogated by ERK1/2 inhibitor, as well as the mRNA expression of cyclin D. The inhibition of 1,25(OH)2D3 on PEDV replication was also eliminated by ERK1/2 inhibitor. Taken together, these results demonstrated that 1,25(OH)2D3 supplementation inhibited PEDV replication, and the anti-virus effect of 1,25(OH)2D3 was mediated in part by regulating cell cycle progression through ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Jiwen Yang
- Institute of Animal Nutrition, Sichuan Agricultural University, NO. 46 Xinkang Road, Yucheng District, Yaan, Sichuan, 625014, People's Republic of China
| | - Gang Tian
- Institute of Animal Nutrition, Sichuan Agricultural University, NO. 46 Xinkang Road, Yucheng District, Yaan, Sichuan, 625014, People's Republic of China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, NO. 46 Xinkang Road, Yucheng District, Yaan, Sichuan, 625014, People's Republic of China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, NO. 46 Xinkang Road, Yucheng District, Yaan, Sichuan, 625014, People's Republic of China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, NO. 46 Xinkang Road, Yucheng District, Yaan, Sichuan, 625014, People's Republic of China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, NO. 46 Xinkang Road, Yucheng District, Yaan, Sichuan, 625014, People's Republic of China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, NO. 46 Xinkang Road, Yucheng District, Yaan, Sichuan, 625014, People's Republic of China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, NO. 46 Xinkang Road, Yucheng District, Yaan, Sichuan, 625014, People's Republic of China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, NO. 46 Xinkang Road, Yucheng District, Yaan, Sichuan, 625014, People's Republic of China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, NO. 46 Xinkang Road, Yucheng District, Yaan, Sichuan, 625014, People's Republic of China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, NO. 46 Xinkang Road, Yucheng District, Yaan, Sichuan, 625014, People's Republic of China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, NO. 46 Xinkang Road, Yucheng District, Yaan, Sichuan, 625014, People's Republic of China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, NO. 46 Xinkang Road, Yucheng District, Yaan, Sichuan, 625014, People's Republic of China.
| |
Collapse
|
25
|
Duan E, Zhang B, Liang X, Jing H, Liu C, Zhang F, Huang J, Su L, Wang J. Effects of glycyrrhizin on the growth cycle and ATPase activity of PRRSV-2-infected MARC-145 cells. Res Vet Sci 2021; 138:30-38. [PMID: 34091227 DOI: 10.1016/j.rvsc.2021.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 11/29/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a viral infectious disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV) and is devastating the swine industry. MARC-145 cells, an African green monkey kidney cell line, are sensitive to PRRSV-2, and are often used for in vitro studies on PRRSV-2. Preliminary research has shown that glycyrrhizin, an important active component extracted from traditional Chinese medicinal licorice, significantly inhibits the proliferation of PRRSV-2 in MARC-145 cells; however, the in-depth molecular mechanism remains unclear. By determining the cell growth cycle, this study found that PRRSV-2 infection first increased the content of G1-phase MARC-145 cells and then decreased the content of G1-phase cells. Moreover, glycyrrhizin affected the role of PRRSV-2 in regulating the cell cycle. Furthermore, PRRSV-2 had the highest proliferation titer in G0/G1-phase MARC-145 cells, and glycyrrhizin reduced the content of PRRSV-2 in synchronized MARC-145 cells. According to the results of ATPase detection, PRRSV-2 infection weakened the Na+/K+-ATPase and Ca2+/Mg2+-ATPase activities in MARC-145 cells, while glycyrrhizin significantly enhanced their activities in PRRSV-2-infected MARC-145 cells. The above results provide theoretical support toward clarifying the mechanism by which glycyrrhizin inhibits the proliferation of PRRSV-2 in MARC-145 cells. Moreover, these results offer references for the development and use of glycyrrhizin and the clinical treatment of PRRSV-2 infection.
Collapse
Affiliation(s)
- Erzhen Duan
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Beibei Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Xiaoqing Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Huiyuan Jing
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China
| | - Cen Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Fenghua Zhang
- Kaifeng Center for Animal Disease Control and Prevention, Kaifeng, Henan, China
| | - Jin Huang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Lanli Su
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Jinrong Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.
| |
Collapse
|
26
|
Zheng Q, Qiu Z, Sun Z, Cao L, Li F, Liu D, Wu D. In Vitro Validation of Network Pharmacology Predictions: Ginsenoside Rg3 Inhibits Hepatocellular Carcinoma Cell Proliferation via SIRT2. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211004826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To elucidate the molecular mechanisms underlying the therapeutic activity of ginsenoside Rg3 (Gs-Rg3) in the context of hepatocellular carcinoma (HCC). Methods Relevant databases were searched to identify protein targets that were both dysregulated and implicated in HCC, as well as targeted by Gs-Rg3. Generation of a protein-protein interaction network facilitated the selection of connected nodes for the construction of a shared disease- and drug-target interaction network model, and topological analysis identified the most highly connected nodes. Targets were annotated with their associated Gene Ontology terms, followed by Kyoto Encyclopedia of Genes and Genomes biological pathway enrichment analysis. In vitro experiments using 2 hours CC cell lines (Bel-7402 and HCCLM3) were performed to investigate the impact of Gs-Rg3 on cell proliferation, viability, cell cycle, cyclin D1 and sirtuin 2 (SIRT2) levels, and global cellular histone acetylation (specifically H3K18ac and H4K16ac). Results Network pharmacology suggested that Gs-Rg3 synergistically targets multiple proteins and pathways relevant to HCC pathogenesis, including those involved in cell cycle and proliferation. In vitro experiments confirmed that Gs-Rg3 dose-dependently inhibits cell proliferation and viability; induces G1 phase cell cycle arrest; decreases cyclin D1, cyclin-dependent kinase 2 (CDK2), and SIRT2 levels; and enhances global H3K18ac and H4K16ac. Conclusions Hypotheses derived from the network analysis were confirmed in vitro. Gs-Rg3 induces G1 phase cell cycle arrest, concomitant with decreased cyclin D1 and CDK2 levels, suggesting a possible mechanism for inhibiting proliferation. In addition, Gs-Rg3 decreases SIRT2 levels, concomitant with enhanced global H3K18ac and H4K16ac. These findings provide a theoretical basis and a support for further preclinical study of the safety and antineoplastic molecular mechanisms of Gs-Rg3, with the goal of eventual clinical translation.
Collapse
Affiliation(s)
- Qiyu Zheng
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Zhidong Qiu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Zhiyuan Sun
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Lingling Cao
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
- School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China
| | - Fuqiang Li
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Donglu Wu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
- School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
27
|
Geddes VEV, Brustolini OJB, Cavalcante LTDF, Moreira FRR, de Castro FL, Guimarães APDC, Gerber AL, Figueiredo CM, Diniz LP, Neto EDA, Tanuri A, Souza RP, Assunção-Miranda I, Alves-Leon SV, Romão LF, de Souza JPBM, de Vasconcelos ATR, de Aguiar RS. Common Dysregulation of Innate Immunity Pathways in Human Primary Astrocytes Infected With Chikungunya, Mayaro, Oropouche, and Zika Viruses. Front Cell Infect Microbiol 2021; 11:641261. [PMID: 33791243 PMCID: PMC8006316 DOI: 10.3389/fcimb.2021.641261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/28/2021] [Indexed: 12/22/2022] Open
Abstract
Arboviruses pose a major threat throughout the world and represent a great burden in tropical countries of South America. Although generally associated with moderate febrile illness, in more severe cases they can lead to neurological outcomes, such as encephalitis, Guillain-Barré syndrome, and Congenital Syndromes. In this context astrocytes play a central role in production of inflammatory cytokines, regulation of extracellular matrix, and control of glutamate driven neurotoxicity in the central nervous system. Here, we presented a comprehensive genome-wide transcriptome analysis of human primary astrocytes infected with Chikungunya, Mayaro, Oropouche, or Zika viruses. Analyses of differentially expressed genes (DEGs), pathway enrichment, and interactomes have shown that Alphaviruses up-regulated genes related to elastic fiber formation and N-glycosylation of glycoproteins, with down-regulation of cell cycle and DNA stability and chromosome maintenance genes. In contrast, Oropouche virus up-regulated cell cycle and DNA maintenance and condensation pathways while down-regulated extracellular matrix, collagen metabolism, glutamate and ion transporters pathways. Zika virus infection only up-regulated eukaryotic translation machinery while down-regulated interferon pathways. Reactome and integration analysis revealed a common signature in down-regulation of innate immune response, antiviral response, and inflammatory cytokines associated to interferon pathway for all arboviruses tested. Validation of interferon stimulated genes by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) corroborated our transcriptome findings. Altogether, our results showed a co-evolution in the mechanisms involved in the escape of arboviruses to antiviral immune response mediated by the interferon (IFN) pathway.
Collapse
Affiliation(s)
- Victor Emmanuel Viana Geddes
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Biologia Integrativa, Departamento de Genética Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Otávio José Bernardes Brustolini
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Ministério de Ciência Tecnologia e Comunicações, Petrópolis, Brazil
| | - Liliane Tavares de Faria Cavalcante
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Filipe Romero Rebello Moreira
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando Luz de Castro
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula de Campos Guimarães
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Ministério de Ciência Tecnologia e Comunicações, Petrópolis, Brazil
| | - Alexandra Lehmkuhl Gerber
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Ministério de Ciência Tecnologia e Comunicações, Petrópolis, Brazil
| | - Camila Menezes Figueiredo
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luan Pereira Diniz
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eurico de Arruda Neto
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Amilcar Tanuri
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renan Pedra Souza
- Laboratório de Biologia Integrativa, Departamento de Genética Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Iranaia Assunção-Miranda
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Soniza Vieira Alves-Leon
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Ferreira Romão
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ana Tereza Ribeiro de Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Ministério de Ciência Tecnologia e Comunicações, Petrópolis, Brazil
| | - Renato Santana de Aguiar
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Biologia Integrativa, Departamento de Genética Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
28
|
Nakagawa K, Makino S. Mechanisms of Coronavirus Nsp1-Mediated Control of Host and Viral Gene Expression. Cells 2021; 10:cells10020300. [PMID: 33540583 PMCID: PMC7912902 DOI: 10.3390/cells10020300] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/20/2022] Open
Abstract
Many viruses disrupt host gene expression by degrading host mRNAs and/or manipulating translation activities to create a cellular environment favorable for viral replication. Often, virus-induced suppression of host gene expression, including those involved in antiviral responses, contributes to viral pathogenicity. Accordingly, clarifying the mechanisms of virus-induced disruption of host gene expression is important for understanding virus–host cell interactions and virus pathogenesis. Three highly pathogenic human coronaviruses (CoVs), including severe acute respiratory syndrome (SARS)-CoV, Middle East respiratory syndrome (MERS)-CoV, and SARS-CoV-2, have emerged in the past two decades. All of them encode nonstructural protein 1 (nsp1) in their genomes. Nsp1 of SARS-CoV and MERS-CoV exhibit common biological functions for inducing endonucleolytic cleavage of host mRNAs and inhibition of host translation, while viral mRNAs evade the nsp1-induced mRNA cleavage. SARS-CoV nsp1 is a major pathogenic determinant for this virus, supporting the notion that a viral protein that suppresses host gene expression can be a virulence factor, and further suggesting the possibility that SARS-CoV-2 nsp1, which has high amino acid identity with SARS-CoV nsp1, may serve as a major virulence factor. This review summarizes the gene expression suppression functions of nsp1 of CoVs, with a primary focus on SARS-CoV nsp1 and MERS-CoV nsp1.
Collapse
Affiliation(s)
- Keisuke Nakagawa
- Laboratory of Veterinary Microbiology, Joint Department of Veterinary Medicine, Gifu University, Gifu 501-1193, Japan;
| | - Shinji Makino
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA
- Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA
- UTMB Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA
- Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA
- Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA
- Correspondence: ; Tel.: +1-409-772-2323
| |
Collapse
|
29
|
Shen Z, Zhang G, Yang Y, Li M, Yang S, Peng G. Lysine 164 is critical for SARS-CoV-2 Nsp1 inhibition of host gene expression. J Gen Virol 2020; 102. [PMID: 33151142 PMCID: PMC8116783 DOI: 10.1099/jgv.0.001513] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The emerging pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused social and economic disruption worldwide, infecting over 9.0 million people and killing over 469 000 by 24 June 2020. Unfortunately, no vaccine or antiviral drug that completely eliminates the transmissible disease coronavirus disease 2019 (COVID-19) has been developed to date. Given that coronavirus nonstructural protein 1 (nsp1) is a good target for attenuated vaccines, it is of great significance to explore the detailed characteristics of SARS-CoV-2 nsp1. Here, we first confirmed that SARS-CoV-2 nsp1 had a conserved function similar to that of SARS-CoV nsp1 in inhibiting host-protein synthesis and showed greater inhibition efficiency, as revealed by ribopuromycylation and Renilla luciferase (Rluc) reporter assays. Specifically, bioinformatics and biochemical experiments showed that by interacting with 40S ribosomal subunit, the lysine located at amino acid 164 (K164) was the key residue that enabled SARS-CoV-2 nsp1 to suppress host gene expression. Furthermore, as an inhibitor of host-protein expression, SARS-CoV-2 nsp1 contributed to cell-cycle arrest in G0/G1 phase, which might provide a favourable environment for virus production. Taken together, this research uncovered the detailed mechanism by which SARS-CoV-2 nsp1 K164 inhibited host gene expression, laying the foundation for the development of attenuated vaccines based on nsp1 modification.
Collapse
Affiliation(s)
- Zhou Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, PR China
| | - Guangxu Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| | - Yilin Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, PR China
| | - Mengxia Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, PR China
| | - Siqi Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, PR China
- *Correspondence: Guiqing Peng,
| |
Collapse
|
30
|
Song J, Hu Y, Li W, Li H, Zheng H, Chen Y, Dong S, Liu L. Transcriptome analysis following enterovirus 71 and coxsackievirus A16 infection in respiratory epithelial cells. Arch Virol 2020; 165:2817-2828. [PMID: 32990841 PMCID: PMC7522011 DOI: 10.1007/s00705-020-04821-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/22/2020] [Indexed: 11/03/2022]
Abstract
Enterovirus 71 (EV-A71) and coxsackievirus A16 (CV-A16) are the major pathogens responsible for hand, foot and mouth disease (HFMD), but the mechanism by which these viruses cause disease remains unclear. In this study, we used transcriptome sequencing technology to investigate changes in the transcriptome profiles after infection with EV-A71 and CV-A16 in human bronchial epithelial (16HBE) cells. Using systematic bioinformatics analysis, we then searched for useful clues regarding the pathogenesis of HFMD. As a result, a total of 111 common differentially expressed genes were present in both EV-A71- and CV-A16-infected cells. A trend analysis of these 111 genes showed that 91 of them displayed the same trend in EV-A71 and CV-A16 infection, including 49 upregulated genes and 42 downregulated genes. These 91 genes were further used to conduct GO, pathway, and coexpression network analysis. It was discovered that enriched GO terms (such as histone acetylation and positive regulation of phosphorylation) and pathways (such as glycosylphosphatidylinositol (GPI)-anchor biosynthesis and DNA replication) might be closely associated with the pathogenic mechanism of these two viruses, and key genes (such as TBCK and GPC) might be involved in the progression of HFMD. Finally, we randomly selected 10 differentially expressed genes for qRT-PCR to validate the transcriptome sequencing data. The experimental qRT-PCR results were roughly in agreement with the results of transcriptome sequencing. Collectively, our results provide clues to the mechanism of pathogenesis of HFMD induced by EV-A71 and CV-A16.
Collapse
Affiliation(s)
- Jie Song
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Yajie Hu
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, 650002, China
| | - Weiyu Li
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Hui Li
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Huiwen Zheng
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China
| | - Yanli Chen
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China.,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, 650118, China
| | - Shaozhong Dong
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China.
| | - Longding Liu
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, 650118, China. .,Key Laboratory of Systemic Innovative Research on Virus Vaccine, Chinese Academy of Medical Sciences, Kunming, 650118, China.
| |
Collapse
|
31
|
Huo W, Yu J, Liu C, Wu T, Wang Y, Meng X, Song F, Zhang S, Su Y, Liu Y, Liu J, Yu X, Hua S. Caspase-3 inhibitor inhibits enterovirus D68 production. J Microbiol 2020; 58:812-820. [PMID: 32870487 PMCID: PMC7459088 DOI: 10.1007/s12275-020-0241-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
Enterovirus D68 (EVD68) is an emerging pathogen that recently caused a large worldwide outbreak of severe respiratory disease in children. However, the relationship between EVD68 and host cells remains unclear. Caspases are involved in cell death, immune response, and even viral production. We found that caspase-3 was activated during EVD68 replication to induce apoptosis. Caspase-3 inhibitor (Z-DEVD-FMK) inhibited viral production, protected host cells from the cytopathic effects of EVD68 infection, and prevented EVD68 from regulating the host cell cycle at G0/G1. Meanwhile, caspase-3 activator (PAC-1) increased EVD68 production. EVD68 infection therefore activates caspase-3 for virus production. This knowledge provides a potential direction for the prevention and treatment of disease related to EVD68.
Collapse
Affiliation(s)
- Wenbo Huo
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, 130000, P. R. China.,Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changhun, 130000, P. R. China
| | - Jinghua Yu
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, 130000, P. R. China
| | - Chunyu Liu
- Acupuncture Department, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130000, P. R. China
| | - Ting Wu
- Neonatal Intensive Care Unit, The First Hospital of Jilin University, Jilin University, Changchun, 130000, P. R. China
| | - Yue Wang
- Department of Chemistry of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130000, P. R. China
| | - Xiangling Meng
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changhun, 130000, P. R. China
| | - Fengmei Song
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changhun, 130000, P. R. China
| | - Shuxia Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changhun, 130000, P. R. China
| | - Ying Su
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changhun, 130000, P. R. China
| | - Yumeng Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changhun, 130000, P. R. China
| | - Jinming Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changhun, 130000, P. R. China
| | - Xiaoyan Yu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changhun, 130000, P. R. China
| | - Shucheng Hua
- Department of Internal Medicine, The First Hospital of Jilin University, Jilin University, Changchun, 130000, P. R. China.
| |
Collapse
|
32
|
Wu L, Cheng A, Wang M, Jia R, Yang Q, Wu Y, Zhu D, Zhao X, Chen S, Liu M, Zhang S, Ou X, Mao S, Gao Q, Sun D, Wen X, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Chen X. Alphaherpesvirus Major Tegument Protein VP22: Its Precise Function in the Viral Life Cycle. Front Microbiol 2020; 11:1908. [PMID: 32849477 PMCID: PMC7427429 DOI: 10.3389/fmicb.2020.01908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022] Open
Abstract
Alphaherpesviruses are zoonotic pathogens that can cause a variety of diseases in humans and animals and severely damage health. Alphaherpesvirus infection is a slow and orderly process that can lie dormant for the lifetime of the host but may be reactivated when the immune system is compromised. All alphaherpesviruses feature a protein layer called the tegument that lies between the capsid and the envelope. Virus protein (VP) 22 is one of the most highly expressed tegument proteins; there are more than 2,000 copies of this protein in each viral particle. VP22 can interact with viral proteins, cellular proteins, and chromatin, and these interactions play important roles. This review summarizes the latest literature and discusses the roles of VP22 in viral gene transcription, protein synthesis, virion assembly, and viral cell-to-cell spread with the purpose of enhancing understanding of the life cycle of herpesviruses and other pathogens in host cells. The molecular interaction information herein provides important reference data.
Collapse
Affiliation(s)
- Liping Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xuming Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
33
|
Liu Y, Wang M, Cheng A, Yang Q, Wu Y, Jia R, Liu M, Zhu D, Chen S, Zhang S, Zhao XX, Huang J, Mao S, Ou X, Gao Q, Wang Y, Xu Z, Chen Z, Zhu L, Luo Q, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Rehman MU, Chen X. The role of host eIF2α in viral infection. Virol J 2020; 17:112. [PMID: 32703221 PMCID: PMC7376328 DOI: 10.1186/s12985-020-01362-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
Background eIF2α is a regulatory node that controls protein synthesis initiation by its phosphorylation or dephosphorylation. General control nonderepressible-2 (GCN2), protein kinase R-like endoplasmic reticulum kinase (PERK), double-stranded RNA (dsRNA)-dependent protein kinase (PKR) and heme-regulated inhibitor (HRI) are four kinases that regulate eIF2α phosphorylation. Main body In the viral infection process, dsRNA or viral proteins produced by viral proliferation activate different eIF2α kinases, resulting in eIF2α phosphorylation, which hinders ternary tRNAMet-GTP-eIF2 complex formation and inhibits host or viral protein synthesis. The stalled messenger ribonucleoprotein (mRNP) complex aggregates under viral infection stress to form stress granules (SGs), which encapsulate viral RNA and transcription- and translation-related proteins, thereby limiting virus proliferation. However, many viruses have evolved a corresponding escape mechanism to synthesize their own proteins in the event of host protein synthesis shutdown and SG formation caused by eIF2α phosphorylation, and viruses can block the cell replication cycle through the PERK-eIF2α pathway, providing a favorable environment for their own replication. Subsequently, viruses can induce host cell autophagy or apoptosis through the eIF2α-ATF4-CHOP pathway. Conclusions This review summarizes the role of eIF2α in viral infection to provide a reference for studying the interactions between viruses and hosts.
Collapse
Affiliation(s)
- Yuanzhi Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China. .,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Yin Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Qihui Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Mujeeb Ur Rehman
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| |
Collapse
|
34
|
Li Y, Wang Q, Ning N, Tang F, Wang Y. Bioinformatic analysis reveals MIR502 as a potential tumour suppressor in ovarian cancer. J Ovarian Res 2020; 13:77. [PMID: 32660514 PMCID: PMC7359466 DOI: 10.1186/s13048-020-00683-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/07/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Ovarian cancer (OC) is a major cause of death among women due to the lack of early screening methods and its complex pathological progression. Increasing evidence has indicated that microRNAs regulate gene expression in tumours by interacting with mRNAs. Although the research regarding OC and microRNAs is extensive, the vital role of MIR502 in OC remains unclear. METHODS We integrated two microRNA expression arrays from GEO to identify differentially expressed genes. The Kaplan-Meier method was used to screen for miRNAs that had an influence on survival outcome. Upstream regulators of MIR502 were predicted by JASPAR and verified by ChIP-seq data. The LinkedOmics database was used to study genes that were correlated with MIR502. Gene Set Enrichment Analysis (GSEA) was conducted for functional annotation with GO and KEGG pathway enrichment analyses by using the open access WebGestalt tool. We constructed a PPI network by using STRING to further explore the core proteins. RESULTS We found that the expression level of MIR502 was significantly downregulated in OC, which was related to poor overall survival. NRF1, as an upstream regulator of MIR502, was predicted by JASPAR and verified by ChIP-seq data. In addition, anti-apoptosis and pro-proliferation genes in the Hippo signalling pathway, including CCND1, MYC, FGF1 and GLI2, were negatively regulated by MIR502, as shown in the GO and KEGG pathway enrichment results. The PPI network further demonstrated that CCND1 and MYCN were at core positions in the development of ovarian cancer. CONCLUSIONS MIR502, which is regulated by NRF1, acts as a tumour suppressor gene to accelerate apoptosis and suppress proliferation by targeting the Hippo signalling pathway in ovarian cancer.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang, China
| | - Qi Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang, China
| | - Ning Ning
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang, China
| | - Fanglan Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang, China
| | - Yan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang, China.
| |
Collapse
|
35
|
Wang D, Chen J, Ding Y, Kong H, You H, Zhao Y, Wei H, Liu Y. miR-188-5p Promotes Tumor Growth by Targeting CD2AP Through PI3K/AKT/mTOR Signaling in Children with Acute Promyelocytic Leukemia. Onco Targets Ther 2020; 13:6681-6697. [PMID: 32764959 PMCID: PMC7369302 DOI: 10.2147/ott.s244813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/02/2020] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Pediatric acute promyelocytic leukemia (APL) accounts for 10% of pediatric acute myelogenous leukemia (AML) case and is accompanied by a tendency to hemorrhage. miR-188-5p plays an important role in adult AML. Therefore, the purpose of this study was to explore the effects of miR-188-5p on cell proliferation and apoptosis and tumor growth, and its mechanism in pediatric APL patients. MATERIALS AND METHODS Survival-associated miRNAs or mRNAs from TCGA database associated with AML were identified via using the "survival R" package in R language. CCK8, clone formation, flow cytometry, RT-PCR, immunohistochemistry and Western blot assays were used to detect the viability, proliferation, apoptosis, cell cycle, and related gene expression in APL cell lines. The prognostic value of miR-188-5p was evaluated using a ROC curve. The tumorigenic ability of APL cell lines was determined using a nude mouse transplantation tumor experiment. Tumor cell apoptosis was determined by TUNEL assay in vivo. The target genes of miR-188-5p were predicted using the miRDB, miRTarBase, and TargetScan databases. A PPI network was constructed using STRING database and the hub gene was identified using the MCODE plug-in of the Cytoscape software. The DAVID database was used to perform GO and KEGG pathway enrichment analyses. A luciferase reporter assay was used to demonstrate the binding of miR-188-5p to CD2AP. RESULTS miR-188-5p overexpression or CD2 associated protein (CD2AP) inhibition was significantly associated with poor survival in pediatric APL patients. Upregulation of miR-188-5p was identified in the blood of pediatric APL patients and cell lines. Increased expression of miR-188-5p also promoted the viability, proliferation, and cell cycle progression, and reduced the apoptosis of APL cells. Additionally, upregulation of miR-188-5p regulated the expressions of cyclinD1, p53, Bax, Bcl-2 and cleaved caspase-3. The area under the ROC curve (AUC) of miR-188-5p was 0.661. miR-188-5p overexpression increased the tumorigenic ability of APL and Ki67 expression, and reduced cell apoptosis in vivo. CD2AP was identified as the only overlapping gene from the list of miR-188-5p target genes and survival-related mRNAs of the TCGA database. It was mainly enriched in the "biological process (BP)" and "cellular component (CC)" terms, and was downregulated in the blood of pediatric APL patients and cell lines. The luciferase reporter, RT-PCR, and Western blot assays demonstrated that the binding of miR-188-5p to CD2AP. CD2AP inhibition promoted the proliferation and inhibited the apoptosis of APL cells. Rescue experiments showed that inhibition of miR-188-5p inhibited cell proliferation, activated the PI3K/AKT/mTOR signaling pathway, induced G0/G1 phase arrest, regulated gene expression, and promoted cell apoptosis, which were reversed by CD2AP inhibition. CONCLUSION miR-188-5p, an oncogene, promoted tumor growth and progression of pediatric APL in vitro and in vivo via targeting CD2AP and activating the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Dao Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan, People’s Republic of China
| | - Jiao Chen
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan, People’s Republic of China
| | - Yanjie Ding
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan, People’s Republic of China
| | - Huimin Kong
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan, People’s Republic of China
| | - Hongliang You
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan, People’s Republic of China
| | - Yanting Zhao
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan, People’s Republic of China
| | - Huixia Wei
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan, People’s Republic of China
| | - Yufeng Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan, People’s Republic of China
| |
Collapse
|
36
|
Majer A, McGreevy A, Booth TF. Molecular Pathogenicity of Enteroviruses Causing Neurological Disease. Front Microbiol 2020; 11:540. [PMID: 32328043 PMCID: PMC7161091 DOI: 10.3389/fmicb.2020.00540] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Enteroviruses are single-stranded positive-sense RNA viruses that primarily cause self-limiting gastrointestinal or respiratory illness. In some cases, these viruses can invade the central nervous system, causing life-threatening neurological diseases including encephalitis, meningitis and acute flaccid paralysis (AFP). As we near the global eradication of poliovirus, formerly the major cause of AFP, the number of AFP cases have not diminished implying a non-poliovirus etiology. As the number of enteroviruses linked with neurological disease is expanding, of which many had previously little clinical significance, these viruses are becoming increasingly important to public health. Our current understanding of these non-polio enteroviruses is limited, especially with regards to their neurovirulence. Elucidating the molecular pathogenesis of these viruses is paramount for the development of effective therapeutic strategies. This review summarizes the clinical diseases associated with neurotropic enteroviruses and discusses recent advances in the understanding of viral invasion of the central nervous system, cell tropism and molecular pathogenesis as it correlates with host responses.
Collapse
Affiliation(s)
- Anna Majer
- Viral Diseases Division, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Alan McGreevy
- Viral Diseases Division, National Microbiology Laboratory, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - Timothy F Booth
- Viral Diseases Division, National Microbiology Laboratory, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
37
|
Guo F, Xue J. MicroRNA‑628‑5p inhibits cell proliferation and induces apoptosis in colorectal cancer through downregulating CCND1 expression levels. Mol Med Rep 2020; 21:1481-1490. [PMID: 32016467 PMCID: PMC7003041 DOI: 10.3892/mmr.2020.10945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022] Open
Abstract
MicroRNA (miR)-628-5p serves as an antitumor gene in a variety of cancers; however, the role of miR-628-5p in colorectal cancer remains largely unclear. The purpose of this study was to investigate the role and mechanism of miR-628-5p in colorectal cancer. Reverse transcription-quantitative PCR (RT-qPCR), colony formation assays and flow cytometric analysis were used to determine the expression levels of miR-628-5p in colorectal cancer tissues and cell lines, and the proliferative ability of colorectal cancer cells. TargetScan version 7.2 and dual-luciferase reporter assay were performed to predict and confirm miR-628-5p target genes. The expression levels of cyclin D1 (CCND1) and related genes were determined using RT-qPCR or/and western blotting analysis. miR-628-5p mimics and CCND1 plasmids were used to overexpress miR-628-5p and CCND1; it was demonstrated that the expression levels of miR-628-5p were significantly downregulated in colorectal cancer tissues and cell lines. miR-628-5p mimic-transfected cells inhibited the proliferation and induced apoptosis of HT-29 cells. CCND1, a downstream effector of miR-628-5p, promoted the proliferation and suppressed apoptosis of HT-29 cells, and the effects were reversed by miR-628-5p mimics. In conclusion, the present study suggested that colorectal cancer progression may be regulated through the miR-628-5p/CCND1 axis, and miR-628-5p could be used as a potential diagnostic and prognostic biomarker for colorectal cancer.
Collapse
Affiliation(s)
- Fei Guo
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075061, P.R. China
| | - Jun Xue
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075061, P.R. China
| |
Collapse
|
38
|
Zhang S, Yu X, Meng X, Huo W, Su Y, Liu J, Liu Y, Zhang J, Wang S, Yu J. Coxsackievirus A6 Induces Necroptosis for Viral Production. Front Microbiol 2020; 11:42. [PMID: 32117097 PMCID: PMC7011610 DOI: 10.3389/fmicb.2020.00042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a febrile exanthematous disease with typical or atypical symptoms. Typical HFMD is usually caused by enterovirus 71 (EV71) or coxsackievirus A16, while atypical HFMD is usually caused by coxsackievirus A6 (CA6). In recent years, worldwide outbreaks of CA6-associated HFMD have dramatically increased, although the pathogenic mechanism of CA6 is still unclear. EV71 has been established to induce caspase-dependent apoptosis, but in this study, we demonstrate that CA6 infection promotes a distinct pathway of cell death that involves loss of cell membrane integrity. Necrostatin-1, an inhibitor of necroptosis, blocks the cell death induced by CA6 infection, but Z-DEVD-FMK, an inhibitor of caspase-3, has no effect on CA6-induced cell death. Furthermore, CA6 infection up-regulates the expression of the necroptosis signaling molecule RIPK3. Importantly, necrostatin-1 inhibits CA6 viral production, as assessed by its ability to inhibit levels of VP1 protein and genomic RNA and infectious particles. CA6-induced necroptosis is not dependent on the generation of reactive oxygen species; however, viral 3D protein can directly bind RIPK3, which is suggestive of a direct mechanism of necroptosis induction. Therefore, these results indicate that CA6 induces a mechanism of RIPK3-dependent necroptosis for viral production that is distinct from the mechanism of apoptosis induced by typical HFMD viruses.
Collapse
Affiliation(s)
- Shuxia Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Xiaoyan Yu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Xiangling Meng
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Wenbo Huo
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Ying Su
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Jinming Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Yumeng Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Jun Zhang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Shaohua Wang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jinghua Yu
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
39
|
Matrine inhibits the development and progression of ovarian cancer by repressing cancer associated phosphorylation signaling pathways. Cell Death Dis 2019; 10:770. [PMID: 31601793 PMCID: PMC6787190 DOI: 10.1038/s41419-019-2013-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 01/18/2023]
Abstract
Ovarian cancer remains the most lethal gynecologic malignancy with late detection and acquired chemoresistance. Advanced understanding of the pathophysiology and novel treatment strategies are urgently required. A growing body of proteomic investigations suggest that phosphorylation has a pivotal role in the regulation of ovarian cancer associated signaling pathways. Matrine has been extensively studied for its potent anti-tumor activities. However, its effect on ovarian cancer cells and underlying molecular mechanisms remain unclear. Herein we showed that matrine treatment inhibited the development and progression of ovarian cancer cells by regulating proliferation, apoptosis, autophagy, invasion and angiogenesis. Matrine treatment retarded the cancer associated signaling transduction by decreasing the phosphorylation levels of ERK1/2, MEK1/2, PI3K, Akt, mTOR, FAK, RhoA, VEGFR2, and Tie2 in vitro and in vivo. Moreover, matrine showed excellent antitumor effect on chemoresistant ovarian cancer cells. No obvious toxic side effects were observed in matrine-administrated mice. As the natural agent, matrine has the potential to be the targeting drug against ovarian cancer cells with the advantages of overcoming the chemotherapy resistance and decreasing the toxic side effects.
Collapse
|
40
|
Owino CO, Chu JJH. Recent advances on the role of host factors during non-poliovirus enteroviral infections. J Biomed Sci 2019; 26:47. [PMID: 31215493 PMCID: PMC6582496 DOI: 10.1186/s12929-019-0540-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
Non-polio enteroviruses are emerging viruses known to cause outbreaks of polio-like infections in different parts of the world with several cases already reported in Asia Pacific, Europe and in United States of America. These outbreaks normally result in overstretching of health facilities as well as death in children under the age of five. Most of these infections are usually self-limiting except for the neurological complications associated with human enterovirus A 71 (EV-A71). The infection dynamics of these viruses have not been fully understood, with most inferences made from previous studies conducted with poliovirus.Non-poliovirus enteroviral infections are responsible for major outbreaks of hand, foot and mouth disease (HFMD) often associated with neurological complications and severe respiratory diseases. The myriad of disease presentations observed so far in children calls for an urgent need to fully elucidate the replication processes of these viruses. There are concerted efforts from different research groups to fully map out the role of human host factors in the replication cycle of these viral infections. Understanding the interaction between viral proteins and human host factors will unravel important insights on the lifecycle of this groups of viruses.This review provides the latest update on the interplay between human host factors/processes and non-polio enteroviruses (NPEV). We focus on the interactions involved in viral attachment, entry, internalization, uncoating, replication, virion assembly and eventual egress of the NPEV from the infected cells. We emphasize on the virus- human host interplay and highlight existing knowledge gaps that needs further studies. Understanding the NPEV-human host factors interactions will be key in the design and development of vaccines as well as antivirals against enteroviral infections. Dissecting the role of human host factors during NPEV infection cycle will provide a clear picture of how NPEVs usurp the human cellular processes to establish an efficient infection. This will be a boost to the drug and vaccine development against enteroviruses which will be key in control and eventual elimination of the viral infections.
Collapse
Affiliation(s)
- Collins Oduor Owino
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, National University of Singapore, Singapore, 117597, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
| |
Collapse
|