1
|
Albright ER, Kalejta RF. cGAS-STING-TBK1 Signaling Promotes Valproic Acid-Responsive Human Cytomegalovirus Immediate-Early Transcription during Infection of Incompletely Differentiated Myeloid Cells. Viruses 2024; 16:877. [PMID: 38932169 PMCID: PMC11209474 DOI: 10.3390/v16060877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Repression of human cytomegalovirus (HCMV) immediate-early (IE) gene expression is a key regulatory step in the establishment and maintenance of latent reservoirs. Viral IE transcription and protein accumulation can be elevated during latency by treatment with histone deacetylase inhibitors such as valproic acid (VPA), rendering infected cells visible to adaptive immune responses. However, the latency-associated viral protein UL138 inhibits the ability of VPA to enhance IE gene expression during infection of incompletely differentiated myeloid cells that support latency. UL138 also limits the accumulation of IFNβ transcripts by inhibiting the cGAS-STING-TBK1 DNA-sensing pathway. Here, we show that, in the absence of UL138, the cGAS-STING-TBK1 pathway promotes both IFNβ accumulation and VPA-responsive IE gene expression in incompletely differentiated myeloid cells. Inactivation of this pathway by either genetic or pharmacological inhibition phenocopied UL138 expression and reduced VPA-responsive IE transcript and protein accumulation. This work reveals a link between cytoplasmic pathogen sensing and epigenetic control of viral lytic phase transcription and suggests that manipulation of pattern recognition receptor signaling pathways could aid in the refinement of MIEP regulatory strategies to target latent viral reservoirs.
Collapse
Affiliation(s)
- Emily R. Albright
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin—Madison, Madison, WI 53706, USA;
| | | |
Collapse
|
2
|
Eberhage J, Bresch IP, Ramani R, Viohl N, Buchta T, Rehfeld CL, Hinse P, Reubold TF, Brinkmann MM, Eschenburg S. Crystal structure of the tegument protein UL82 (pp71) from human cytomegalovirus. Protein Sci 2024; 33:e4915. [PMID: 38358250 PMCID: PMC10868460 DOI: 10.1002/pro.4915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Human cytomegalovirus (HCMV) is an opportunistic pathogen that infects a majority of the world population. It may cause severe disease in immunocompromised people and lead to pregnancy loss or grave disabilities of the fetus upon congenital infection. For effective replication and lifelong persistence in its host, HCMV relies on diverse functions of its tegument protein UL82, also known as pp71. Up to now, little is known about the molecular mechanisms underlying the multiple functions of this crucial viral protein. Here, we describe the X-ray structure of full-length UL82 to a resolution of 2.7 Å. A single polypeptide chain of 559 amino acids mainly folds into three ß-barrels. We show that UL82 forms a dimer in the crystal as well as in solution. We identify point mutations that disturb the dimerization interface and show that the mutant protein is monomeric in solution and upon expression in human cells. On the basis of the three-dimensional structure, we identify structural homologs of UL82 from other herpesviruses and analyze whether their functions are preserved in UL82. We demonstrate that UL82, despite its structural homology to viral deoxyuridinetriphosphatases (dUTPases), does not possess dUTPase activity. Prompted by the structural homology of UL82 to the ORF10 protein of murine herpesvirus 68 (MHV68), which is known to interact with the RNA export factor ribonucleic acid export 1 (Rae1), we performed coimmunoprecipitations and demonstrated that UL82 indeed interacts with Rae1. This suggests that HCMV UL82 may play a role in mRNA export from the nucleus similar to ORF10 encoded by the gammaherpesviruses MHV68.
Collapse
Affiliation(s)
- Jan Eberhage
- Institute for Biophysical ChemistryHannover Medical SchoolHannoverGermany
- Cluster of Excellence RESIST (EXC 2155)Hannover Medical SchoolHannoverGermany
| | - Ian P. Bresch
- Institute for Biophysical ChemistryHannover Medical SchoolHannoverGermany
- Cluster of Excellence RESIST (EXC 2155)Hannover Medical SchoolHannoverGermany
| | - Ramya Ramani
- Institute of GeneticsTechnische Universität BraunschweigGermany
- Virology and Innate Immunity Research GroupHelmholtz Centre for Infection Research (HZI)BraunschweigGermany
| | - Niklas Viohl
- Institute for Biophysical ChemistryHannover Medical SchoolHannoverGermany
- Cluster of Excellence RESIST (EXC 2155)Hannover Medical SchoolHannoverGermany
| | - Thalea Buchta
- Institute of GeneticsTechnische Universität BraunschweigGermany
| | - Christopher L. Rehfeld
- Institute for Biophysical ChemistryHannover Medical SchoolHannoverGermany
- Cluster of Excellence RESIST (EXC 2155)Hannover Medical SchoolHannoverGermany
| | - Petra Hinse
- Institute for Biophysical ChemistryHannover Medical SchoolHannoverGermany
| | - Thomas F. Reubold
- Institute for Biophysical ChemistryHannover Medical SchoolHannoverGermany
| | - Melanie M. Brinkmann
- Institute of GeneticsTechnische Universität BraunschweigGermany
- Virology and Innate Immunity Research GroupHelmholtz Centre for Infection Research (HZI)BraunschweigGermany
| | - Susanne Eschenburg
- Institute for Biophysical ChemistryHannover Medical SchoolHannoverGermany
- Cluster of Excellence RESIST (EXC 2155)Hannover Medical SchoolHannoverGermany
| |
Collapse
|
3
|
Simon F, Thoma-Kress AK. Intercellular Transport of Viral Proteins. Results Probl Cell Differ 2024; 73:435-474. [PMID: 39242389 DOI: 10.1007/978-3-031-62036-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Viruses are vehicles to exchange genetic information and proteins between cells and organisms by infecting their target cells either cell-free, or depending on cell-cell contacts. Several viruses like certain retroviruses or herpesviruses transmit by both mechanisms. However, viruses have also evolved the properties to exchange proteins between cells independent of viral particle formation. This exchange of viral proteins can be directed to target cells prior to infection to interfere with restriction factors and intrinsic immunity, thus, making the target cell prone to infection. However, also bystander cells, e.g. immune cell populations, can be targeted by viral proteins to dampen antiviral responses. Mechanistically, viruses exploit several routes of cell-cell communication to exchange viral proteins like the formation of extracellular vesicles or the formation of long-distance connections like tunneling nanotubes. Although it is known that viral nucleic acids can be transferred between cells as well, this chapter concentrates on viral proteins of human pathogenic viruses covering all Baltimore classes and summarizes our current knowledge on intercellular transport of viral proteins between cells.
Collapse
Affiliation(s)
- Florian Simon
- Institute of Clinical and Molecular Virology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andrea K Thoma-Kress
- Institute of Clinical and Molecular Virology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
4
|
Albright ER, Walter RM, Saffert RT, Kalejta RF. NFκB and Cyclic AMP Response Element Sites Mediate the Valproic Acid and UL138 Responsiveness of the Human Cytomegalovirus Major Immediate Early Enhancer and Promoter. J Virol 2023; 97:e0002923. [PMID: 36856444 PMCID: PMC10062163 DOI: 10.1128/jvi.00029-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/08/2023] [Indexed: 03/02/2023] Open
Abstract
The major immediate early enhancer and promoter (MIEP) of human cytomegalovirus (HCMV) drives the transcription of the immediate early one (IE1) and IE2 genes, whose encoded proteins stimulate productive, lytic replication. The MIEP is activated by the virally encoded and tegument-delivered pp71 protein at the start of de novo lytic infections of fully differentiated cells. Conversely, the MIEP is silenced at the start of de novo latent infections within incompletely differentiated myeloid cells in part because tegument-delivered pp71 is sequestered in the cytoplasm in these cells, but also by viral factors that repress transcription from this locus, including the UL138 protein. During both modes of infection, MIEP activity can be increased by the histone deacetylase inhibitor valproic acid (VPA); however, UL138 inhibits the VPA-responsiveness of the MIEP. Here, we show that two families of cellular transcription factors, NF-κB and cAMP response element-binding protein (CREB), together control the VPA-mediated activation and UL138-mediated repression of the HCMV MIEP. IMPORTANCE Artificial regulation of the HCMV MIEP, either activation or repression, is an attractive potential means to target the latent reservoirs of virus for which there is currently no available intervention. The MIEP could be repressed to prevent latency reactivation or induced to drive the virus into the lytic stage that is visible to the immune system and inhibited by multiple small-molecule antiviral drugs. Understanding how the MIEP is regulated is a critical part of designing and implementing either strategy. Our revelation here that NF-κB and CREB control the responsiveness of the MIEP to the viral UL138 protein and the FDA-approved drug VPA could help in the formulation and execution of promoter regulatory strategies against latent HCMV.
Collapse
Affiliation(s)
- Emily R. Albright
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ryan M. Walter
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ryan T. Saffert
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Robert F. Kalejta
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Hansen SG, Womack JL, Perez W, Schmidt KA, Marshall E, Iyer RF, Cleveland Rubeor H, Otero CE, Taher H, Vande Burgt NH, Barfield R, Randall KT, Morrow D, Hughes CM, Selseth AN, Gilbride RM, Ford JC, Caposio P, Tarantal AF, Chan C, Malouli D, Barry PA, Permar SR, Picker LJ, Früh K. Late gene expression-deficient cytomegalovirus vectors elicit conventional T cells that do not protect against SIV. JCI Insight 2023; 8:e164692. [PMID: 36749635 PMCID: PMC10070102 DOI: 10.1172/jci.insight.164692] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Rhesus cytomegalovirus-based (RhCMV-based) vaccine vectors induce immune responses that protect ~60% of rhesus macaques (RMs) from SIVmac239 challenge. This efficacy depends on induction of effector memory-based (EM-biased) CD8+ T cells recognizing SIV peptides presented by major histocompatibility complex-E (MHC-E) instead of MHC-Ia. The phenotype, durability, and efficacy of RhCMV/SIV-elicited cellular immune responses were maintained when vector spread was severely reduced by deleting the antihost intrinsic immunity factor phosphoprotein 71 (pp71). Here, we examined the impact of an even more stringent attenuation strategy on vector-induced immune protection against SIV. Fusion of the FK506-binding protein (FKBP) degradation domain to Rh108, the orthologue of the essential human CMV (HCMV) late gene transcription factor UL79, generated RhCMV/SIV vectors that conditionally replicate only when the FK506 analog Shield-1 is present. Despite lacking in vivo dissemination and reduced innate and B cell responses to vaccination, Rh108-deficient 68-1 RhCMV/SIV vectors elicited high-frequency, durable, EM-biased, SIV-specific T cell responses in RhCMV-seropositive RMs at doses of ≥ 1 × 106 PFU. Strikingly, elicited CD8+ T cells exclusively targeted MHC-Ia-restricted epitopes and failed to protect against SIVmac239 challenge. Thus, Rh108-dependent late gene expression is required for both induction of MHC-E-restricted T cells and protection against SIV.
Collapse
Affiliation(s)
- Scott G. Hansen
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Jennie L. Womack
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Wilma Perez
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | | | - Emily Marshall
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Ravi F. Iyer
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Hillary Cleveland Rubeor
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Claire E. Otero
- Duke Human Vaccine Institute, Duke University Medical School, Durham, North Carolina, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Husam Taher
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Nathan H. Vande Burgt
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Richard Barfield
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina, USA
- Center for Human Systems Immunology, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Kurt T. Randall
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - David Morrow
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Colette M. Hughes
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Andrea N. Selseth
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Roxanne M. Gilbride
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Julia C. Ford
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Patrizia Caposio
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Alice F. Tarantal
- California National Primate Research Center, UCD, Davis, California, USA
- Departments of Pediatrics and Cell Biology and Human Anatomy, School of Medicine, UCD, Davis, California, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina, USA
- Center for Human Systems Immunology, School of Medicine, Duke University, Durham, North Carolina, USA
| | - Daniel Malouli
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Peter A. Barry
- California National Primate Research Center, UCD, Davis, California, USA
| | - Sallie R. Permar
- Duke Human Vaccine Institute, Duke University Medical School, Durham, North Carolina, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Klaus Früh
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| |
Collapse
|
6
|
Monti CE, Mokry RL, Schumacher ML, Dash RK, Terhune SS. Computational modeling of protracted HCMV replication using genome substrates and protein temporal profiles. Proc Natl Acad Sci U S A 2022; 119:e2201787119. [PMID: 35994667 PMCID: PMC9437303 DOI: 10.1073/pnas.2201787119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a major cause of illness in immunocompromised individuals. The HCMV lytic cycle contributes to the clinical manifestations of infection. The lytic cycle occurs over ∼96 h in diverse cell types and consists of viral DNA (vDNA) genome replication and temporally distinct expression of hundreds of viral proteins. Given its complexity, understanding this elaborate system can be facilitated by the introduction of mechanistic computational modeling of temporal relationships. Therefore, we developed a multiplicity of infection (MOI)-dependent mechanistic computational model that simulates vDNA kinetics and late lytic replication based on in-house experimental data. The predictive capabilities were established by comparison to post hoc experimental data. Computational analysis of combinatorial regulatory mechanisms suggests increasing rates of protein degradation in association with increasing vDNA levels. The model framework also allows expansion to account for additional mechanisms regulating the processes. Simulating vDNA kinetics and the late lytic cycle for a wide range of MOIs yielded several unique observations. These include the presence of saturation behavior at high MOIs, inefficient replication at low MOIs, and a precise range of MOIs in which virus is maximized within a cell type, being 0.382 IU to 0.688 IU per fibroblast. The predicted saturation kinetics at high MOIs are likely related to the physical limitations of cellular machinery, while inefficient replication at low MOIs may indicate a minimum input material required to facilitate infection. In summary, we have developed and demonstrated the utility of a data-driven and expandable computational model simulating lytic HCMV infection.
Collapse
Affiliation(s)
- Christopher E. Monti
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
- Center of Systems and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Rebekah L. Mokry
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Megan L. Schumacher
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Ranjan K. Dash
- Center of Systems and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Scott S. Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
- Center of Systems and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
7
|
Braun B, Laib Sampaio K, Kuderna AK, Widmann M, Sinzger C. Viral and Cellular Factors Contributing to the Hematogenous Dissemination of Human Cytomegalovirus via Polymorphonuclear Leukocytes. Viruses 2022; 14:v14071561. [PMID: 35891541 PMCID: PMC9323586 DOI: 10.3390/v14071561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 02/06/2023] Open
Abstract
Polymorphonuclear leukocytes (PMNs) presumably transmit human cytomegalovirus (HCMV) between endothelial cells in blood vessels and thereby facilitate spread to peripheral organs. We aimed to identify viral components that contribute to PMN-mediated transmission and test the hypothesis that cellular adhesion molecules shield transmission sites from entry inhibitors. Stop codons were introduced into the genome of HCMV strain Merlin to delete pUL74 of the trimeric and pUL128 of the pentameric glycoprotein complex and the tegument proteins pp65 and pp71. Mutants were analyzed regarding virus uptake by PMNs and transfer of infection to endothelial cells. Cellular adhesion molecules were evaluated for their contribution to virus transmission using function-blocking antibodies, and hits were further analyzed regarding shielding against inhibitors of virus entry. The viral proteins pUL128, pp65, and pp71 were required for efficient PMN-mediated transmission, whereas pUL74 was dispensable. On the cellular side, the blocking of the αLβ2-integrin LFA-1 reduced virus transfer by 50% and allowed entry inhibitors to reduce it further by 30%. In conclusion, these data show that PMN-mediated transmission depends on the pentameric complex and an intact tegument and supports the idea of a virological synapse that promotes this dissemination mode both directly and via immune evasion.
Collapse
|
8
|
Abstract
Cytomegaloviruses (CMVs) are among the largest pathogenic viruses in mammals. To enable replication of their long double-stranded DNA genomes, CMVs induce profound changes in cell cycle regulation. A hallmark of CMV cell cycle control is the establishment of an unusual cell cycle arrest at the G1/S transition, which is characterized by the coexistence of cell cycle stimulatory and inhibitory activities. While CMVs interfere with cellular DNA synthesis and cell division, they activate S-phase-specific gene expression and nucleotide metabolism. This is facilitated by a set of CMV gene products that target master regulators of G1/S progression such as cyclin E and A kinases, Rb-E2F transcription factors, p53-p21 checkpoint proteins, the APC/C ubiquitin ligase, and the nucleotide hydrolase SAMHD1. While the major themes of cell cycle regulation are well conserved between human and murine CMVs (HCMV and MCMV), there are considerable differences at the level of viral cell cycle effectors and their mechanisms of action. Furthermore, both viruses have evolved unique mechanisms to sense the host cell cycle state and modulate the infection program accordingly. This review provides an overview of conserved and divergent features of G1/S control by MCMV and HCMV.
Collapse
|
9
|
Patra U, Müller S. A Tale of Usurpation and Subversion: SUMO-Dependent Integrity of Promyelocytic Leukemia Nuclear Bodies at the Crossroad of Infection and Immunity. Front Cell Dev Biol 2021; 9:696234. [PMID: 34513832 PMCID: PMC8430037 DOI: 10.3389/fcell.2021.696234] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022] Open
Abstract
Promyelocytic leukemia nuclear bodies (PML NBs) are multi-protein assemblies representing distinct sub-nuclear structures. As phase-separated molecular condensates, PML NBs exhibit liquid droplet-like consistency. A key organizer of the assembly and dynamics of PML NBs is the ubiquitin-like SUMO modification system. SUMO is covalently attached to PML and other core components of PML NBs thereby exhibiting a glue-like function by providing multivalent interactions with proteins containing SUMO interacting motifs (SIMs). PML NBs serve as the catalytic center for nuclear SUMOylation and SUMO-SIM interactions are essential for protein assembly within these structures. Importantly, however, formation of SUMO chains on PML and other PML NB-associated proteins triggers ubiquitylation and proteasomal degradation which coincide with disruption of these nuclear condensates. To date, a plethora of nuclear activities such as transcriptional and post-transcriptional regulation of gene expression, apoptosis, senescence, cell cycle control, DNA damage response, and DNA replication have been associated with PML NBs. Not surprisingly, therefore, SUMO-dependent PML NB integrity has been implicated in regulating many physiological processes including tumor suppression, metabolism, drug-resistance, development, cellular stemness, and anti-pathogen immune response. The interplay between PML NBs and viral infection is multifaceted. As a part of the cellular antiviral defense strategy, PML NB components are crucial restriction factors for many viruses and a mutual positive correlation has been found to exist between PML NBs and the interferon response. Viruses, in turn, have developed counterstrategies for disarming PML NB associated immune defense measures. On the other end of the spectrum, certain viruses are known to usurp specific PML NB components for successful replication and disruption of these sub-nuclear foci has recently been linked to the stimulation rather than curtailment of antiviral gene repertoire. Importantly, the ability of invading virions to manipulate the host SUMO modification machinery is essential for this interplay between PML NB integrity and viruses. Moreover, compelling evidence is emerging in favor of bacterial pathogens to negotiate with the SUMO system thereby modulating PML NB-directed intrinsic and innate immunity. In the current context, we will present an updated account of the dynamic intricacies between cellular PML NBs as the nuclear SUMO modification hotspots and immune regulatory mechanisms in response to viral and bacterial pathogens.
Collapse
Affiliation(s)
- Upayan Patra
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
| | - Stefan Müller
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
| |
Collapse
|
10
|
Epigenetic reprogramming of host and viral genes by Human Cytomegalovirus infection in Kasumi-3 myeloid progenitor cells at early times post-infection. J Virol 2021; 95:JVI.00183-21. [PMID: 33731453 PMCID: PMC10021080 DOI: 10.1128/jvi.00183-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HCMV establishes latency in myeloid cells. Using the Kasumi-3 latency model, we previously showed that lytic gene expression is activated prior to establishment of latency in these cells. The early events in infection may have a critical role in shaping establishment of latency. Here, we have used an integrative multi-omics approach to investigate dynamic changes in host and HCMV gene expression and epigenomes at early times post infection. Our results show dynamic changes in viral gene expression and viral chromatin. Analyses of Pol II, H3K27Ac and H3K27me3 occupancy of the viral genome showed that 1) Pol II occupancy was highest at the MIEP at 4 hours post infection. However, it was observed throughout the genome; 2) At 24 hours, H3K27Ac was localized to the major immediate early promoter/enhancer and to a possible second enhancer in the origin of replication OriLyt; 3) viral chromatin was broadly accessible at 24 hpi. In addition, although HCMV infection activated expression of some host genes, we observed an overall loss of de novo transcription. This was associated with loss of promoter-proximal Pol II and H3K27Ac, but not with changes in chromatin accessibility or a switch in modification of H3K27.Importance.HCMV is an important human pathogen in immunocompromised hosts and developing fetuses. Current anti-viral therapies are limited by toxicity and emergence of resistant strains. Our studies highlight emerging concepts that challenge current paradigms of regulation of HCMV gene expression in myeloid cells. In addition, our studies show that HCMV has a profound effect on de novo transcription and the cellular epigenome. These results may have implications for mechanisms of viral pathogenesis.
Collapse
|
11
|
Hearing Loss Caused by HCMV Infection through Regulating the Wnt and Notch Signaling Pathways. Viruses 2021; 13:v13040623. [PMID: 33917368 PMCID: PMC8067389 DOI: 10.3390/v13040623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 01/27/2023] Open
Abstract
Hearing loss is one of the most prevalent sensory disabilities worldwide with huge social and economic burdens. The leading cause of sensorineural hearing loss (SNHL) in children is congenital cytomegalovirus (CMV) infection. Though the implementation of universal screening and early intervention such as antiviral or anti-inflammatory ameliorate the severity of CMV-associated diseases, direct and targeted therapeutics is still seriously lacking. The major hurdle for it is that the mechanism of CMV induced SNHL has not yet been well understood. In this review, we focus on the impact of CMV infection on the key players in inner ear development including the Wnt and Notch signaling pathways. Investigations on these interactions may gain new insights into viral pathogenesis and reveal novel targets for therapy.
Collapse
|
12
|
Activator protein-1 transactivation of the major immediate early locus is a determinant of cytomegalovirus reactivation from latency. Proc Natl Acad Sci U S A 2020; 117:20860-20867. [PMID: 32788362 DOI: 10.1073/pnas.2009420117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen that latently infects hematopoietic cells and has the ability to reactivate when triggered by immunological stress. This reactivation causes significant morbidity and mortality in immune-deficient patients, who are unable to control viral dissemination. While a competent immune system helps prevent clinically detectable viremia, a portrait of the factors that induce reactivation following the proper cues remains incomplete. Our understanding of the complex molecular mechanisms underlying latency and reactivation continues to evolve. We previously showed the HCMV-encoded G protein-coupled receptor US28 is expressed during latency and facilitates latent infection by attenuating the activator protein-1 (AP-1) transcription factor subunit, c-fos, expression and activity. We now show AP-1 is a critical component for HCMV reactivation. Pharmacological inhibition of c-fos significantly attenuates viral reactivation. In agreement, infection with a virus in which we disrupted the proximal AP-1 binding site in the major immediate early (MIE) enhancer results in inefficient reactivation compared to WT. Concomitantly, AP-1 recruitment to the MIE enhancer is significantly decreased following reactivation of the mutant virus. Furthermore, AP-1 is critical for derepression of MIE-driven transcripts and downstream early and late genes, while immediate early genes from other loci remain unaffected. Our data also reveal MIE transcripts driven from the MIE promoter, the distal promoter, and the internal promoter, iP2, are dependent upon AP-1 recruitment, while iP1-driven transcripts are AP-1-independent. Collectively, our data demonstrate AP-1 binding to and activation of the MIE enhancer is a key molecular process controlling reactivation from latency.
Collapse
|
13
|
Ye L, Qian Y, Yu W, Guo G, Wang H, Xue X. Functional Profile of Human Cytomegalovirus Genes and Their Associated Diseases: A Review. Front Microbiol 2020; 11:2104. [PMID: 33013768 PMCID: PMC7498621 DOI: 10.3389/fmicb.2020.02104] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
The human cytomegalovirus (HCMV), whose genome is 235 ± 1.9 kbp long, is a common herpesvirus. However, the functions of many of its genes are still unknown. HCMV is closely associated with various human diseases and infects 60-90% of the global population. It can infect various human cells, including fibroblasts, epithelial cells, endothelial cells, smooth muscle cells, and monocytes. Although HCMV infection is generally asymptomatic and causes subtle clinical symptoms, it can generate a robust immune response and establish a latent infection in immunocompromised individuals, including those with AIDS, transplant recipients, and developing fetuses. Currently available antivirals approved for the treatment of HCMV-associated diseases are limited by dose-limiting toxicity and the emergence of resistance; however, vaccines and immunoglobulins are unavailable. In this review, we have summarized the recent literature on 43 newly identified HCMV genes. We have described their novel functions on the viral replication cycle, latency, and host immune evasion. Further, we have discussed HCMV-associated diseases and current therapeutic targets. Our review may provide a foundational basis for studies aiming to prevent and develop targeted therapies for HCMV-associated diseases.
Collapse
Affiliation(s)
- Lele Ye
- Department of Gynecologic Oncology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yunyun Qian
- First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Weijie Yu
- First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Gangqiang Guo
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hong Wang
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Hong Wang, ; Xiangyang Xue,
| | - Xiangyang Xue
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Hong Wang, ; Xiangyang Xue,
| |
Collapse
|