1
|
Znaidi S. When HSFs bring the heat-mapping the transcriptional circuitries of HSF-type regulators in Candida albicans. mSphere 2025; 10:e0064423. [PMID: 39704513 PMCID: PMC11774045 DOI: 10.1128/msphere.00644-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
Heat shock factor (HSF)-type regulators are stress-responsive transcription factors widely distributed among eukaryotes, including fungi. They carry a four-stranded winged helix-turn-helix DNA-binding domain considered as the signature domain for HSFs. The genome of the opportunistic yeast Candida albicans encodes four HSF members, namely, Sfl1, Sfl2, Skn7, and the essential regulator, Hsf1. C. albicans HSFs do not only respond to heat shock and/or temperature variation but also to CO2 levels, oxidative stress, and quorum sensing, acting this way as central decision makers. In this minireview, I follow on the heels of my mSphere of Influence commentary (2020) to provide an overview of the repertoire of HSF regulators in Saccharomyces cerevisiae and C. albicans and describe how their genetic perturbation in C. albicans, coupled with genome-wide expression and location analyses, allow to map their transcriptional circuitry. I highlight how they can regulate, in common, a crucial developmental program: filamentous growth.
Collapse
Affiliation(s)
- Sadri Znaidi
- Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, Tunis, Tunisia
- Institut Pasteur, INRA, Département Mycologie, Unité Biologie et Pathogénicité Fongiques, Paris, France
| |
Collapse
|
2
|
Kim MJ, Mitchell AP. Strain-limited biofilm regulation through the Brg1-Rme1 circuit in Candida albicans. mSphere 2025; 10:e0098024. [PMID: 39745385 PMCID: PMC11774020 DOI: 10.1128/msphere.00980-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/13/2024] [Indexed: 01/29/2025] Open
Abstract
Prominent virulence traits of Candida albicans include its ability to produce filamentous hyphal cells and grow as a biofilm. These traits are under control of numerous transcription factors (TFs), including Brg1 and Rme1. In the reference strain SC5314, a brg1Δ/Δ mutant has reduced levels of biofilm/filament production; a brg1Δ/Δ rme1Δ/Δ double mutant has wild-type levels of biofilm/filament production. Here, we asked whether this suppression relationship is preserved in four additional strain backgrounds: P76067, P57055, P87, and P75010. These strains represent diverse clades and biofilm/filament production abilities. We find that a rme1Δ/Δ mutation restores biofilm/filament production in a brg1Δ/Δ mutant of P76067, but not in brg1Δ/Δ mutants of P57055, P87, and P75010. We speculate that variation in activities of two functionally related TFs, Nrg1, and Ume6, may cause the strain-limited impact of the rme1Δ/Δ mutation. IMPORTANCE Candida albicans is a widespread fungal pathogen. The regulatory circuitry underlying virulence traits is well studied in the reference strain background, but not in other clinical isolate backgrounds. Here, we describe a pronounced example of strain variation in the control of two prominent virulence traits, biofilm formation and filamentation.
Collapse
Affiliation(s)
- Min-Ju Kim
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
3
|
Wang D, Zeng N, Li C, Li C, Wang Y, Chen B, Long J, Zhang N, Li B. Integrative analysis of transcriptome and metabolome profiling uncovers underlying mechanisms of the enhancement of the synthesis of biofilm in Sporobolomyces pararoseus NGR under acidic conditions. Microb Cell Fact 2025; 24:9. [PMID: 39773469 PMCID: PMC11706151 DOI: 10.1186/s12934-024-02636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Sporobolomyces pararoseus is a well-studied oleaginous red yeast that can synthesize a variety of high value-added bioactive compounds. Biofilm is one of the important biological barriers for microbial cells to resist environmental stresses and maintain stable fermentation process. Here, the effect of acidic conditions on the biosynthesis of biofilms in S. pararoseus NGR was investigated through the combination of morphology, biochemistry, and multi-omics approaches. RESULTS The results showed that the acidic environment was the key factor to trigger the biofilm formation of S. pararoseus NGR. When S. pararoseus NGR was cultured under pH 4.7, the colony morphology was wrinkled, the cells were wrapped by a large amount of extracellular matrix, and the hydrophobicity and anti-oxidative stress ability were significantly improved, and the yield of intracellular carotenoids was significantly increased. Transcriptome and metabolome profiling indicated that carbohydrate metabolism, amino acid metabolism, lipid metabolism, and nucleic acid metabolism in S. pararoseus NGR cells were significantly enriched in biofilm cells under pH 4.7 culture conditions, including 56 differentially expressed genes and 341 differential metabolites. CONCLUSIONS These differential genes and metabolites may play an important role in the formation of biofilms by S. pararoseus NGR in response to acidic stress. The results will provide strategies for the development and utilization of beneficial microbial biofilms, and provide theoretical support for the industrial fermentation production of microorganisms to improve their resistance and maintain stable growth.
Collapse
Affiliation(s)
- Dandan Wang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Nan Zeng
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Chunji Li
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510225, People's Republic of China
| | - Chunwang Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Yunjiao Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Bin Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Jiajia Long
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Ning Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
| | - Bingxue Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
4
|
Phan-Canh T, Kuchler K. Do morphogenetic switching and intraspecies variation enhance virulence of Candida auris? PLoS Pathog 2024; 20:e1012559. [PMID: 39405274 PMCID: PMC11478855 DOI: 10.1371/journal.ppat.1012559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Intraspecies variations that affect pathogenicity and antifungal resistance traits pose a serious obstacle to efficient therapy of Candida auris infections. Recent reports indicate that mutations determine drug susceptibility and virulence. However, mutations alone cannot fully explain a bewildering variety of phenotypes in clinical isolates from known C. auris clades, suggesting an unprecedented complexity underlying virulence traits and antifungal resistance. Hence, we wish to discuss how phenotypic plasticity promotes morphogenetic switching and how that contributes to intraspecies variations in the human fungal pathogen C. auris. Further, we will also discuss how intraspecies variations and morphogenetic events can impact the progress in molecular mycology research that aims to find better treatments for C. auris infections. Finally, we will present our opinion as to the most relevant questions to be addressed when trying to better understand the pathophysiology of C. auris.
Collapse
Affiliation(s)
- Trinh Phan-Canh
- Max Perutz Labs Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Karl Kuchler
- Max Perutz Labs Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Fong JL, Ong Eng Yong V, Yeo C, Adamson C, Li L, Zhang D, Qiao Y. Biochemical Characterization of Recombinant Enterococcus faecalis EntV Peptide to Elucidate Its Antihyphal and Antifungal Mechanisms against Candida albicans. ACS Infect Dis 2024; 10:3408-3418. [PMID: 39137394 DOI: 10.1021/acsinfecdis.4c00515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Candida albicans is a common opportunistic fungus in humans, whose morphological switch between yeast and hyphae forms represents a key virulence trait. Developing strategies to inhibit C. albicans hyphal growth may provide insights into designs of novel antivirulent therapeutics. Importantly, the gut commensal bacterium, Enterococcus faecalis, secretes a bacteriocin EntV which has potent antivirulent and antifungal effects against C. albicans in infection models; however, hampered by the challenges to access large quantities of bioactive EntV, the detailed understanding of its mechanisms on C. albicans has remained elusive. In this work, we biochemically reconstituted the proteolytic cleavage reaction to obtain recombinant EntV88-His6 on a large preparative scale, providing facile access to the C-terminal EntV construct. Under in vitro C. albicans hyphal assay with specific inducers, we demonstrated that EntV88-His6 exhibits potent bioactivity against GlcNAc-triggered hyphal growth. Moreover, with fluorescent FITC-EntV88-His6, we revealed that EntV88-His6 enters C. albicans via endocytosis and perturbs the proper localization of the polarisome scaffolding Spa2 protein. Our findings provide important clues on EntV's mechanism of action. Surprisingly, we showed that EntV88-His6 does not affect C. albicans yeast cell growth but potently exerts cytotoxicity against C. albicans under hyphal-inducing conditions in vitro. The combination of EntV88-His6 and GlcNAc displays rapid killing of C. albicans, rendering it a promising antivirulent and antifungal agent.
Collapse
Affiliation(s)
- Jia Li Fong
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), 21 Nanyang Link, Singapore 637371, Singapore
| | - Victor Ong Eng Yong
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore
| | - Claresta Yeo
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), 21 Nanyang Link, Singapore 637371, Singapore
| | - Christopher Adamson
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), 21 Nanyang Link, Singapore 637371, Singapore
| | - Lanxin Li
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), 21 Nanyang Link, Singapore 637371, Singapore
| | - Dan Zhang
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore
| | - Yuan Qiao
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
6
|
Kim MJ, Cravener M, Solis N, Filler SG, Mitchell AP. A Brg1-Rme1 circuit in Candida albicans hyphal gene regulation. mBio 2024; 15:e0187224. [PMID: 39078139 PMCID: PMC11389389 DOI: 10.1128/mbio.01872-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
Major Candida albicans virulence traits include its ability to make hyphae, to produce a biofilm, and to damage host cells. These traits depend upon expression of hypha-associated genes. A gene expression comparison among clinical isolates suggested that transcription factor Rme1, established by previous studies to be a positive regulator of chlamydospore formation, may also be a negative regulator of hypha-associated genes. Engineered RME1 overexpression supported this hypothesis, but no relevant rme1Δ/Δ mutant phenotype was detected. We reasoned that Rme1 may function within a specific regulatory pathway. This idea was supported by our finding that an rme1Δ/Δ mutation relieves the need for biofilm regulator Brg1 in biofilm formation. The impact of the rme1Δ/Δ mutation is most prominent under static or "biofilm-like" growth conditions. RNA sequencing (RNA-seq) of cells grown under biofilm-like conditions indicates that Brg1 activates hypha-associated genes indirectly via repression of RME1: hypha-associated gene expression levels are substantially reduced in a brg1Δ/Δ mutant and partially restored in a brg1Δ/Δ rme1Δ/Δ double mutant. An rme1Δ/Δ mutation does not simply bypass Brg1, because iron homeostasis genes depend upon Brg1 regardless of Rme1. Rme1 thus connects Brg1 to the targets relevant to hypha and biofilm formation under biofilm growth conditions.IMPORTANCECandida albicans is a major fungal pathogen of humans, and its ability to grow as a surface-associated biofilm on implanted devices is a common cause of infection. Here, we describe a new regulator of biofilm formation, RME1, whose activity is most prominent under biofilm-like growth conditions.
Collapse
Affiliation(s)
- Min-Ju Kim
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Max Cravener
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Norma Solis
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Scott G Filler
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Aaron P Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
7
|
Cui H, Yang D, Gong S, Zhang Y, Dong B, Su C, Yang L, Lu Y. The transcription factor Ofi1 is critical for white-opaque switching in natural MTLa/α isolates of Candida albicans. Mol Microbiol 2024; 121:275-290. [PMID: 38167837 DOI: 10.1111/mmi.15222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024]
Abstract
Candida albicans, an opportunistic fungal pathogen, is able to switch between two distinct cell types: white and opaque. While white-to-opaque switching is typically repressed by the a1/α2 heterodimer in MTLa/α cells, it was recently reported that switching can also occur in some natural MTLa/α strains under certain environmental conditions. However, the regulatory program governing white-opaque switching in MTLa/α cells is not fully understood. Here, we collected 90 clinical isolates of C. albicans, 16 of which possess the ability to form opaque colonies. Among the known regulators implicated in white-opaque switching, only OFI1 exhibited significantly higher expression in these 16 strains compared to the reference strain SC5314. Importantly, ectopic expression of OFI1 in both clinical isolates and laboratory strains promoted switching frequency even in the absence of N-acetylglucosamine and high CO2 , the optimal condition for white-to-opaque switching in MTLa/α strains. Deleting OFI1 resulted in a reduction in opaque-formation frequency and the stability of the opaque cell in MTLa/α cells. Ofi1 binds to the promoters of WOR1 and WOR3 to induce their expression, which facilitates white-to-opaque switching. Ofi1 is conserved across the CTG species. Altogether, our study reported the identification of a transcription factor Ofi1 as the critical regulator that promotes white-to-opaque switching in natural MTLa/α isolates of C. albicans.
Collapse
Affiliation(s)
- Hao Cui
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Dandan Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shengwei Gong
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yaling Zhang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Bin Dong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chang Su
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lianjuan Yang
- Shanghai Dermatology Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yang Lu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Zore G, Abdulghani M, Kodgire S, Kazi R, Shelar A, Patil R. Proteome dataset of Candida albicans (ATCC10231) opaque cell. BMC Res Notes 2024; 17:2. [PMID: 38167002 PMCID: PMC10759580 DOI: 10.1186/s13104-023-06661-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVES Candida albicans, a polymorphic yeast, is one of the most common, opportunistic fungal pathogens of humans. Among the different morphological forms, opaque form is one of the least-studied ones. This opaque phenotype is essential for mating and is also reported to be involved in colonizing the gastrointestinal tract. Considering the significance of the clinical and sexual reproduction of C. albicans, we have investigated the morphophysiological modulations in opaque form using a proteomic approach. DATA DESCRIPTION In the current investigation, we have used Micro-Liquid Chromatography-Mass Spectrometry (LC-MS/MS) analysis to create a protein profile for opaque-specific proteins. Whole-cell proteins from C. albicans (ATCC10231) cells that had been cultured for seven days on synthetic complete dextrose (SCD) medium in both as an opaque (test) and as a white (control) form cells were extracted, digested, and identified using LC-MS/MS. This information is meant to serve the scientific community and represents the proteome profile (SWATH Spectral Libraries) of C. albicans opaque form.
Collapse
Affiliation(s)
- Gajanan Zore
- Dept. of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, Bandersindri NH 8, Kishangarh Dist Ajmer (Rajasthan), India
| | - Mazen Abdulghani
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded, 431606, MS, India.
| | - Santosh Kodgire
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded, 431606, MS, India
| | - Rubina Kazi
- Division of Biochemical Sciences, CSIR-NCL, Pune-8, Pune, MS, India
| | - Amruta Shelar
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, MS, India
| | - Rajendra Patil
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, MS, India
| |
Collapse
|
9
|
Ganser C, Staples MI, Dowell M, Frazer C, Dainis J, Sircaik S, Bennett RJ. Filamentation and biofilm formation are regulated by the phase-separation capacity of network transcription factors in Candida albicans. PLoS Pathog 2023; 19:e1011833. [PMID: 38091321 PMCID: PMC10718430 DOI: 10.1371/journal.ppat.1011833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
The ability of the fungus Candida albicans to filament and form biofilms contributes to its burden as a leading cause of hospital-acquired infections. Biofilm development involves an interconnected transcriptional regulatory network (TRN) consisting of nine transcription factors (TFs) that bind both to their own regulatory regions and to those of the other network TFs. Here, we show that seven of the nine TFs in the C. albicans biofilm network contain prion-like domains (PrLDs) that have been linked to the ability to form phase-separated condensates. Construction of PrLD mutants in four biofilm TFs reveals that these domains are essential for filamentation and biofilm formation in C. albicans. Moreover, biofilm PrLDs promote the formation of phase-separated condensates in the nuclei of live cells, and PrLD mutations that abolish phase separation (such as the removal of aromatic residues) also prevent biofilm formation. Biofilm TF condensates can selectively recruit other TFs through PrLD-PrLD interactions and can co-recruit RNA polymerase II, implicating condensate formation in the assembly of active transcriptional complexes. Finally, we show that PrLD mutations that block the phase separation of biofilm TFs also prevent filamentation in an in vivo model of gastrointestinal colonization. Together, these studies associate transcriptional condensates with the regulation of filamentation and biofilm formation in C. albicans, and highlight how targeting of PrLD-PrLD interactions could prevent pathogenesis by this species.
Collapse
Affiliation(s)
- Collin Ganser
- Molecular Microbiology and Immunology Department, Brown University, Providence, Rhode Island, United States of America
| | - Mae I. Staples
- Molecular Microbiology and Immunology Department, Brown University, Providence, Rhode Island, United States of America
| | - Maureen Dowell
- Molecular Microbiology and Immunology Department, Brown University, Providence, Rhode Island, United States of America
| | - Corey Frazer
- Molecular Microbiology and Immunology Department, Brown University, Providence, Rhode Island, United States of America
| | - Joseph Dainis
- Molecular Microbiology and Immunology Department, Brown University, Providence, Rhode Island, United States of America
| | - Shabnam Sircaik
- Molecular Microbiology and Immunology Department, Brown University, Providence, Rhode Island, United States of America
| | - Richard J. Bennett
- Molecular Microbiology and Immunology Department, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
10
|
Lohse MB, Ziv N, Johnson AD. Variation in transcription regulator expression underlies differences in white-opaque switching between the SC5314 reference strain and the majority of Candida albicans clinical isolates. Genetics 2023; 225:iyad162. [PMID: 37811798 PMCID: PMC10627253 DOI: 10.1093/genetics/iyad162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/26/2023] [Indexed: 10/10/2023] Open
Abstract
Candida albicans, a normal member of the human microbiome and an opportunistic fungal pathogen, undergoes several morphological transitions. One of these transitions is white-opaque switching, where C. albicans alternates between 2 stable cell types with distinct cellular and colony morphologies, metabolic preferences, mating abilities, and interactions with the innate immune system. White-to-opaque switching is regulated by mating type; it is repressed by the a1/α2 heterodimer in a/α cells, but this repression is lifted in a/a and α/α mating type cells (each of which are missing half of the repressor). The widely used C. albicans reference strain, SC5314, is unusual in that white-opaque switching is completely blocked when the cells are a/α; in contrast, most other C. albicans a/α strains can undergo white-opaque switching at an observable level. In this paper, we uncover the reason for this difference. We show that, in addition to repression by the a1/α2 heterodimer, SC5314 contains a second block to white-opaque switching: 4 transcription regulators of filamentous growth are upregulated in this strain and collectively suppress white-opaque switching. This second block is missing in the majority of clinical strains, and, although they still contain the a1/α2 heterodimer repressor, they exhibit a/α white-opaque switching at an observable level. When both blocks are absent, white-opaque switching occurs at very high levels. This work shows that white-opaque switching remains intact across a broad group of clinical strains, but the precise way it is regulated and therefore the frequency at which it occurs varies from strain to strain.
Collapse
Affiliation(s)
- Matthew B Lohse
- Department of Microbiology and Immunology, University of California - San Francisco, San Francisco, CA 94143, USA
| | - Naomi Ziv
- Department of Microbiology and Immunology, University of California - San Francisco, San Francisco, CA 94143, USA
| | - Alexander D Johnson
- Department of Microbiology and Immunology, University of California - San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
11
|
Kabir AR, Chaudhary AA, Aladwani MO, Podder S. Decoding the host-pathogen interspecies molecular crosstalk during oral candidiasis in humans: an in silico analysis. Front Genet 2023; 14:1245445. [PMID: 37900175 PMCID: PMC10603195 DOI: 10.3389/fgene.2023.1245445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction: The objective of this study is to investigate the interaction between Candida albicans and human proteins during oral candidiasis, with the aim of identifying pathways through which the pathogen subverts host cells. Methods: A comprehensive list of interactions between human proteins and C. albicans was obtained from the Human Protein Interaction Database using specific screening criteria. Then, the genes that exhibit differential expression during oral candidiasis in C. albicans were mapped with the list of human-Candida interactions to identify the corresponding host proteins. The identified host proteins were further compared with proteins specific to the tongue, resulting in a final list of 99 host proteins implicated in oral candidiasis. The interactions between host proteins and C. albicans proteins were analyzed using the STRING database, enabling the construction of protein-protein interaction networks. Similarly, the gene regulatory network of Candida proteins was reconstructed using data from the PathoYeastract and STRING databases. Core module proteins within the targeted host protein-protein interaction network were identified using ModuLand, a Cytoscape plugin. The expression levels of the core module proteins under diseased conditions were assessed using data from the GSE169278 dataset. To gain insights into the functional characteristics of both host and pathogen proteins, ontology analysis was conducted using Enrichr and YeastEnrichr, respectively. Result: The analysis revealed that three Candida proteins, HHT21, CYP5, and KAR2, interact with three core host proteins, namely, ING4 (in the DNMT1 module), SGTA, and TOR1A. These interactions potentially impair the immediate immune response of the host against the pathogen. Additionally, differential expression analysis of fungal proteins and their transcription factors in Candida-infected oral cell lines indicated that Rob1p, Tye7p, and Ume6p could be considered candidate transcription factors involved in instigating the pathogenesis of oral candidiasis during host infection. Conclusion: Our study provides a molecular map of the host-pathogen interaction during oral candidiasis, along with potential targets for designing regimens to overcome oral candidiasis, particularly in immunocompromised individuals.
Collapse
Affiliation(s)
- Ali Rejwan Kabir
- Computational and System Biology Lab, Department of Microbiology, Raiganj University, Raiganj, West Bengal, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Malak O Aladwani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Soumita Podder
- Computational and System Biology Lab, Department of Microbiology, Raiganj University, Raiganj, West Bengal, India
| |
Collapse
|
12
|
Sharma A, Mitchell AP. Strain variation in gene expression impact of hyphal cyclin Hgc1 in Candida albicans. G3 (BETHESDA, MD.) 2023; 13:jkad151. [PMID: 37405402 PMCID: PMC10468301 DOI: 10.1093/g3journal/jkad151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023]
Abstract
Formation of hyphae is a key virulence trait of the fungal pathogen Candida albicans. Hypha morphogenesis depends upon the cyclin Hgc1, which acts together with cyclin-dependent protein kinase Cdc28 to phosphorylate effectors that drive polarized growth. Hgc1 has also been implicated in gene regulation through its effects on 2 transcription factors, Efg1 and Ume6. Here, we report RNA-sequencing (RNA-seq) analysis of 2 pairs of hgc1Δ/Δ mutants and their respective wild-type strains, which lie in 2 different genetic backgrounds. We find that hgc1Δ/Δ mutations alter expression of 271 genes in both genetic backgrounds and 266 of those genes respond consistently with regard to up- or down-regulation. Consistency is similar to what has been observed with efg1Δ/Δ mutations and greater than observed with nrg1Δ/Δ mutations in these 2 backgrounds. The gene expression response includes genes under Efg1 control, as expected from prior studies. Hgc1-responsive genes also include ergosterol biosynthetic genes and bud neck-related genes, which may reflect interactions between Hgc1 and additional transcription factors as well as effects of Hgc1 on cellular length-to-width ratios.
Collapse
Affiliation(s)
- Anupam Sharma
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Aaron P Mitchell
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
13
|
Silva ML, Carneiro MN, Cavalcante RMB, Guerrero JAP, Fontenelle ROS, Lorenzón EN, Cilli EM, Carneiro VA. K-aurein: A notable aurein 1.2-derived peptide that modulates Candida albicans filamentation and reduces biofilm biomass. Amino Acids 2023; 55:1003-1012. [PMID: 37442853 DOI: 10.1007/s00726-023-03288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/25/2023] [Indexed: 07/15/2023]
Abstract
Candida albicans is considered one of the most important opportunistic fungi due to the large arsenal of virulence factors that help throughout the progress of the infection. In this sense, antimicrobial peptides (AMPs) appear as an alternative, with great antifungal action. Among these, aurein 1.2 has been widely explored, becoming the basis for the discovery of new AMPs, such as K-aurein (K-au). Thus, this study evaluated the anti-C. albicans potential of K-au against virulence factors, planktonic growth, and biofilm formation of clinical isolates. Firstly, K-au antifungal activity was determined by the microdilution method and time-kill curve. The inhibition of hydrolytic enzyme secretion (proteinase, phospholipase, and hemolysin) and germ tube formation was tested. Then, the antibiofilm potential of K-au was verified through biomass quantification and scanning electron microscopy (SEM). All tests were compared with the classical antifungal drug, amphotericin B (AmB). The outcomes showed fungicidal action of K-au at 62.50 µg mL-1 for all isolates, with a time of action around 150-180 min, determined by the time-kill curve. K-au-treated cells decreased by around 40% of the germinative tube compared to the control. Additionally, K-au inhibited the biofilm formation by more than 90% compared to AmB and the control group. SEM images show apparent cellular disaggregation without the formation of filamentous structures. Therefore, the findings suggest a promising anti-C. albicans effect of K-au due to its fungicidal activity against planktonic cells, or its ability to inhibit important virulence factors like germ tube and biofilm formation. Thus, this peptide could be explored as a useful compound against C. albicans-related infection.
Collapse
Affiliation(s)
- Maria Laína Silva
- Laboratory of Biofilms and Antimicrobial Agents (LaBAM), Faculty of Medicine, Federal University of Ceara-UFC, Sobral, 62048-280, Brazil
| | - Maria Nágila Carneiro
- Laboratory of Biofilms and Antimicrobial Agents (LaBAM), Faculty of Medicine, Federal University of Ceara-UFC, Sobral, 62048-280, Brazil
| | - Rafaela Mesquita Bastos Cavalcante
- Laboratory of Biofilms and Antimicrobial Agents (LaBAM), Faculty of Medicine, Federal University of Ceara-UFC, Sobral, 62048-280, Brazil
| | - Jesús Alberto Pérez Guerrero
- Laboratory of Biofilms and Antimicrobial Agents (LaBAM), Faculty of Medicine, Federal University of Ceara-UFC, Sobral, 62048-280, Brazil
| | | | | | - Eduardo Maffud Cilli
- Department of Biochemistry and Organic Chemistry, Estadual University of São Paulo-UNESP, Araraquara, 14800-900, Brazil
| | - Victor Alves Carneiro
- Laboratory of Biofilms and Antimicrobial Agents (LaBAM), Faculty of Medicine, Federal University of Ceara-UFC, Sobral, 62048-280, Brazil.
- Center for Bioprospecting and Applied Molecular Experimentation (NUBEM), University Center INTA-UNINTA, Sobral, 62050-100, Brazil.
| |
Collapse
|
14
|
Jin X, Luan X, Xie F, Chang W, Lou H. Erg6 Acts as a Downstream Effector of the Transcription Factor Flo8 To Regulate Biofilm Formation in Candida albicans. Microbiol Spectr 2023; 11:e0039323. [PMID: 37098889 PMCID: PMC10269489 DOI: 10.1128/spectrum.00393-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/06/2023] [Indexed: 04/27/2023] Open
Abstract
The yeast-to-hyphal morphotype transition and subsequent biofilm formation are important virulence factors of Candida albicans and are closely associated with ergosterol biosynthesis. Flo8 is an important transcription factor that determines filamentous growth and biofilm formation in C. albicans. However, the relationship between Flo8 and regulation of the ergosterol biosynthesis pathway remains elusive. Here, we analyzed the sterol composition of a flo8-deficient C. albicans strain by gas chromatography-mass spectrometry and observed the accumulation of the sterol intermediate zymosterol, the substrate of Erg6 (C-24 sterol methyltransferase). Accordingly, the transcription level of ERG6 was reduced in the flo8-deficient strain. Yeast one-hybrid experiments revealed that Flo8 physically interacted with the ERG6 promoter. Ectopic overexpression of ERG6 in the flo8-deficient strain partially restored biofilm formation and in vivo virulence in a Galleria mellonella infection model. These findings suggest that Erg6 is a downstream effector of the transcription factor Flo8 that mediates the cross talk between sterol synthesis and virulence factors in C. albicans. IMPORTANCE Biofilm formation by C. albicans hinders its eradication by immune cells and antifungal drugs. Flo8 is an important morphogenetic transcription factor that regulates the biofilm formation and in vivo virulence of C. albicans. However, little is known about how Flo8 regulates biofilm formation and fungal pathogenicity. Here, we determined that Flo8 directly binds to the promoter of ERG6 to positively regulate its transcriptional expression. Consistently, loss of flo8 results in the accumulation of the substrate of Erg6. Moreover, ectopic overexpression of ERG6 at least partially restores the biofilm formation and virulence of the flo8-deficient strain both in vitro and in vivo. This work provides a new perspective on the metabolic link between transcription factors and morphotypes in C. albicans.
Collapse
Affiliation(s)
- Xueyang Jin
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xiaoyi Luan
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Fei Xie
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Wenqiang Chang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
15
|
Wangsanut T, Arnold SJY, Jilani SZ, Marzec S, Monsour RC, Rolfes RJ. Grf10 regulates the response to copper, iron, and phosphate in Candida albicans. G3 (BETHESDA, MD.) 2023; 13:jkad070. [PMID: 36966423 PMCID: PMC10234403 DOI: 10.1093/g3journal/jkad070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 03/27/2023]
Abstract
The pathogenic yeast, Candida albicans, and other microbes must be able to handle drastic changes in nutrient availability within the human host. Copper, iron, and phosphate are essential micronutrients for microbes that are sequestered by the human host as nutritional immunity; yet high copper levels are employed by macrophages to induce toxic oxidative stress. Grf10 is a transcription factor important for regulating genes involved in morphogenesis (filamentation, chlamydospore formation) and metabolism (adenylate biosynthesis, 1-carbon metabolism). The grf10Δ mutant exhibited resistance to excess copper in a gene dosage-dependent manner but grew the same as the wild type in response to other metals (calcium, cobalt, iron, manganese, and zinc). Point mutations in the conserved residues D302 and E305, within a protein interaction region, conferred resistance to high copper and induced hyphal formation similar to strains with the null allele. The grf10Δ mutant misregulated genes involved with copper, iron, and phosphate uptake in YPD medium and mounted a normal transcriptional response to high copper. The mutant accumulated lower levels of magnesium and phosphorus, suggesting that copper resistance is linked to phosphate metabolism. Our results highlight new roles for Grf10 in copper and phosphate homeostasis in C. albicans and underscore the fundamental role of Grf10 in connecting these with cell survival.
Collapse
Affiliation(s)
- Tanaporn Wangsanut
- Department of Biology, Georgetown University, Washington, DC 20057, USA
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sylvia J Y Arnold
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Safia Z Jilani
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
- Center for Sustainable Nanotechnology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sarah Marzec
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Robert C Monsour
- Department of Biology, Georgetown University, Washington, DC 20057, USA
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Ronda J Rolfes
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
16
|
Feng W, Yang J, Ma Y, Zhang L, Yin R, Qiao Z, Ji Y, Zhou Y. Relationships between Secreted Aspartyl Proteinase 2 and General Control Nonderepressible 4 gene in the Candida albicans resistant to itraconazole under planktonic and biofilm conditions. Braz J Microbiol 2023; 54:619-627. [PMID: 37087512 PMCID: PMC10235319 DOI: 10.1007/s42770-023-00961-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/29/2023] [Indexed: 04/24/2023] Open
Abstract
This study aimed to explore the roles of SAP2 and GCN4 in itraconazole (ITR) resistance of C. albicans under different conditions, and their correlations. A total of 20 clinical strains of C. albicans, including 10 ITR resistant strains and 10 sensitive strains, were used. Then, SAP2 sequencing and GCN4 sequencing were performed, and the biofilm formation ability of different C. albicans strains was determined. Finally, real-time quantitative PCR was used to measure the expression of SAP2 and GCN4 in C. albicans under planktonic and biofilm conditions, as well as their correlation was also analyzed. No missense mutations and three synonymous mutation sites, including T276A, G543A, and A675C, were found in SAP2 sequencing. GCN4 sequencing showed one missense mutation site (A106T (T36S)) and six synonymous mutation sites (A147C, C426T, T513C, T576A, G624A and C732T). The biofilm formation ability of drug-resistant C. albicans strains was significantly higher than that of sensitive strains (P < 0.05). Additionally, SAP2 and GCN4 were up-regulated in the ITR-resistant strains, and were both significantly higher in C. albicans under biofilm condition. The mRNA expression levels of SAP2 and GCN4 had significantly positive correlation. The higher expression levels of SAP2 and GCN4 were observed in the ITR-resistant strains of C. albicans under planktonic and biofilm conditions, as well as there was a positive correlation between SAP2 and GCN4 mRNA expression.
Collapse
Affiliation(s)
- Wenli Feng
- The Department of Dermatovenereology, The Second Hospital, Shanxi Medical University, NO.382, Wuyi Road, Taiyuan, 030001, Shanxi, China.
| | - Jing Yang
- The Department of Dermatovenereology, The Second Hospital, Shanxi Medical University, NO.382, Wuyi Road, Taiyuan, 030001, Shanxi, China.
| | - Yan Ma
- The Department of Dermatovenereology, The Second Hospital, Shanxi Medical University, NO.382, Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Luwen Zhang
- The Department of Dermatovenereology, The Second Hospital, Shanxi Medical University, NO.382, Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Rong Yin
- The Department of Dermatovenereology, The Second Hospital, Shanxi Medical University, NO.382, Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Zusha Qiao
- The Department of Dermatovenereology, The Second Hospital, Shanxi Medical University, NO.382, Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Ying Ji
- The Department of Bluttranfusion, The Second Hospital, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yong'an Zhou
- The Department of Bluttranfusion, The Second Hospital, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| |
Collapse
|
17
|
Mao Y, Solis NV, Filler SG, Mitchell AP. Functional Dichotomy for a Hyphal Repressor in Candida albicans. mBio 2023; 14:e0013423. [PMID: 36883818 PMCID: PMC10127614 DOI: 10.1128/mbio.00134-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Nrg1 is a repressor of hypha formation and hypha-associated gene expression in the fungal pathogen Candida albicans. It has been well studied in the genetic background of the type strain SC5314. Here, we tested Nrg1 function in four other diverse clinical isolates through an analysis of nrg1Δ/Δ mutants, with SC5314 included as a control. In three strains, nrg1Δ/Δ mutants unexpectedly produced aberrant hyphae under inducing conditions, as assayed by microscopic observation and endothelial cell damage. The nrg1Δ/Δ mutant of strain P57055 had the most severe defect. We examined gene expression features under hypha-inducing conditions by RNA-sequencing (RNA-Seq) for the SC5314 and P57055 backgrounds. The SC5314 nrg1Δ/Δ mutant expressed six hypha-associated genes at reduced levels compared with wild-type SC5314. The P57055 nrg1Δ/Δ mutant expressed 17 hypha-associated genes at reduced levels compared with wild-type P57055, including IRF1, RAS2, and ECE1. These findings indicate that Nrg1 has a positive role in hypha-associated gene expression and that this role is magnified in strain P57055. Remarkably, the same hypha-associated genes affected by the nrg1Δ/Δ mutation in strain P57055 were also naturally expressed at lower levels in wild-type P57055 than those in wild-type SC5314. Our results suggest that strain P57055 is defective in a pathway that acts in parallel with Nrg1 to upregulate the expression of several hypha-associated genes. IMPORTANCE Hypha formation is a central virulence trait of the fungal pathogen Candida albicans. Control of hypha formation has been studied in detail in the type strain but not in other diverse C. albicans clinical isolates. Here, we show that the hyphal repressor Nrg1 has an unexpected positive role in hypha formation and hypha-associated gene expression, as revealed by the sensitized P57055 strain background. Our findings indicate that reliance on a single type strain limits understanding of gene function and illustrate that strain diversity is a valuable resource for C. albicans molecular genetic analysis.
Collapse
Affiliation(s)
- Yinhe Mao
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Norma V. Solis
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Scott G. Filler
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
18
|
Sharma A, Solis NV, Huang MY, Lanni F, Filler SG, Mitchell AP. Hgc1 Independence of Biofilm Hyphae in Candida albicans. mBio 2023; 14:e0349822. [PMID: 36779720 PMCID: PMC10128054 DOI: 10.1128/mbio.03498-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/25/2023] [Indexed: 02/14/2023] Open
Abstract
Biofilm and hypha formation are central to virulence of the fungal pathogen Candida albicans. The G1 cyclin gene HGC1 is required for hypha formation under diverse in vitro and in vivo growth conditions. Hgc1 is required for disseminated infection and is a linchpin in the argument that hyphal morphogenesis itself is required for pathogenicity. We report here that HGC1 is dispensable for hypha formation during biofilm formation both in vitro, under strong inducing conditions, and in vivo, in a mouse oropharyngeal candidiasis model. These findings are validated with two or more C. albicans isolates. Systematic screening of overexpressed cyclin genes indicates that CCN1 and CLN3 can compensate partially for Hgc1 function during biofilm growth. This conclusion is also supported by the severity of the hgc1Δ/Δ ccn1Δ/Δ double mutant biofilm defect. Our results suggest that hypha formation in biofilm is accomplished by combined action of multiple cyclins, not solely by Hgc1. IMPORTANCE The HGC1 gene encodes a cyclin that is required for virulence of the fungal pathogen Candida albicans. It is required to produce the elongated hyphal filaments of free-living planktonic cells that are associated with virulence. Here, we show that HGC1 is not required to produce hyphae in the alternative growth form of a biofilm community. We observe Hgc1-independent hyphae in two infection-relevant situations, biofilm growth in vitro and biofilm-like oropharyngeal infection. Our analysis suggests that hypha formation in the biofilm state reflects combined action of multiple cyclins.
Collapse
Affiliation(s)
- Anupam Sharma
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Norma V. Solis
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Manning Y. Huang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Frederick Lanni
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Scott G. Filler
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
19
|
Kunyeit L, Rao RP, Anu-Appaiah KA. Yeasts originating from fermented foods, their potential as probiotics and therapeutic implication for human health and disease. Crit Rev Food Sci Nutr 2023; 64:6660-6671. [PMID: 36728916 DOI: 10.1080/10408398.2023.2172546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Yeasts derived from fermented foods have historically been known for their organoleptic properties, enriching nutritional values, and producing bioactive metabolites with therapeutic potential. In this review, we discuss the yeast flora in fermented foods, their functional aspects in fermentation, as well as their probiotic and biotherapeutic properties. These yeasts have numerous physical and biochemical characteristics, such as larger cells as compared to bacteria, a rigid cell wall composed primarily of glucans and mannans, natural resistance to antibiotics, and the secretion of secondary metabolites that are both pleasing to the consumer and beneficial to the host's health and well-being. The review also focused on therapeutic applications of probiotic yeasts derived from fermented foods on infections associated with Candida species. These potential probiotic yeasts present an additional avenue to treat dysbiosis of the gut microbiota and prevent health complications that arise from opportunistic fungal colonization, especially drug-resistant superbugs, which are highlighted in this review.
Collapse
Affiliation(s)
- Lohith Kunyeit
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Reeta P Rao
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - K A Anu-Appaiah
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
| |
Collapse
|
20
|
Cravener MV, Do E, May G, Zarnowski R, Andes DR, McManus CJ, Mitchell AP. Reinforcement amid genetic diversity in the Candida albicans biofilm regulatory network. PLoS Pathog 2023; 19:e1011109. [PMID: 36696432 PMCID: PMC9901766 DOI: 10.1371/journal.ppat.1011109] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/06/2023] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Biofilms of the fungal pathogen Candida albicans include abundant long filaments called hyphae. These cells express hypha-associated genes, which specify diverse virulence functions including surface adhesins that ensure biofilm integrity. Biofilm formation, virulence, and hypha-associated gene expression all depend upon the transcription factor Efg1. This transcription factor has been characterized extensively in the C. albicans type strain SC5314 and derivatives, but only recently has its function been explored in other clinical isolates. Here we define a principal set of Efg1-responsive genes whose expression is significantly altered by an efg1Δ/Δ mutation across 17 clinical isolates. This principal gene set includes 68 direct Efg1 targets, whose 5' regions are bound by Efg1 in five clinical isolates, and 42 indirect Efg1 targets, whose 5' regions are not detectably bound by Efg1. Three direct Efg1 target genes encode transcription factors-BRG1, UME6, and WOR3 -whose increased expression in an efg1Δ/Δ mutant restores expression of multiple indirect and direct principal targets, as well as biofilm formation ability. Although BRG1 and UME6 are well known positive regulators of hypha-associated genes and biofilm formation, WOR3 is best known as an antagonist of Efg1 in the sexual mating pathway. We confirm the positive role of WOR3 in biofilm formation with the finding that a wor3Δ/Δ mutation impairs biofilm formation in vitro and in an in vivo biofilm model. Positive control of Efg1 direct target genes by other Efg1 direct target genes-BRG1, UME6, and WOR3 -may buffer principal Efg1-responsive gene expression against the impact of genetic variation in the C. albicans species.
Collapse
Affiliation(s)
- Max V. Cravener
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Eunsoo Do
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Gemma May
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Robert Zarnowski
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - David R. Andes
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - C. Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
21
|
Brenes LR, Johnson AD, Lohse MB. Farnesol and phosphorylation of the transcriptional regulator Efg1 affect Candida albicans white-opaque switching rates. PLoS One 2023; 18:e0280233. [PMID: 36662710 PMCID: PMC9858334 DOI: 10.1371/journal.pone.0280233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/24/2022] [Indexed: 01/21/2023] Open
Abstract
Candida albicans is a normal member of the human microbiome and an opportunistic fungal pathogen. This species undergoes several morphological transitions, and here we consider white-opaque switching. In this switching program, C. albicans reversibly alternates between two cell types, named "white" and "opaque," each of which is normally stable across thousands of cell divisions. Although switching under most conditions is stochastic and rare, certain environmental signals or genetic manipulations can dramatically increase the rate of switching. Here, we report the identification of two new inputs which affect white-to-opaque switching rates. The first, exposure to sub-micromolar concentrations of (E,E)-farnesol, reduces white-to-opaque switching by ten-fold or more. The second input, an inferred PKA phosphorylation of residue T208 on the transcriptional regulator Efg1, increases white-to-opaque switching ten-fold. Combining these and other environmental inputs results in a variety of different switching rates, indicating that a given rate represents the integration of multiple inputs.
Collapse
Affiliation(s)
- Lucas R. Brenes
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Alexander D. Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
| | - Matthew B. Lohse
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
22
|
Menthol Inhibits Candida albicans Growth by Affecting the Membrane Integrity Followed by Apoptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1297888. [PMID: 36337581 PMCID: PMC9635957 DOI: 10.1155/2022/1297888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/29/2022] [Accepted: 10/15/2022] [Indexed: 11/09/2022]
Abstract
Inclusion of Candida albicans in the list of pathogens with potential drug resistance threat in recent years has compelled scientists to explore novel and potent antifungal agents. In this study, we have evaluated anti-Candida potential of menthol against different growth forms and synergistic potential with fluconazole. Menthol inhibited planktonic growth of all the isolates completely at ≤3.58 mM and killed 99.9% inoculum at MIC, indicating that menthol is fungicidal. Menthol inhibited hyphal form growth completely at 0.62 mM. It has inhibited developing a biofilm by 79% at 3.58 mM, exhibiting excellent activity against recalcitrant biofilms. FIC index values of 0.182 and 0.093 indicate excellent synergistic activity between fluconazole and menthol against planktonic and biofilm growth, respectively. Menthol enhanced rate of OxPhos among 22% cells; arrested 71% cells at G2-M phase of cell cycle and induced apoptosis in 15% cells. Thus, menthol exhibits excellent anti-Candida activity against differentially susceptible isolates as well as various growth and morphological forms of C. albicans. Menthol affects membrane integrity thereby inducing oxidative stress followed by cell cycle arrest and apoptosis. Considering the excellent anti-Candida potential and as it is Generally Recognized as Safe by the Food and Drug Administration, it may find use in antifungal chemotherapy, alone or in combination.
Collapse
|
23
|
Impaired amino acid uptake leads to global metabolic imbalance of Candida albicans biofilms. NPJ Biofilms Microbiomes 2022; 8:78. [PMID: 36224215 PMCID: PMC9556537 DOI: 10.1038/s41522-022-00341-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/23/2022] [Indexed: 12/01/2022] Open
Abstract
Candida albicans biofilm maturation is accompanied by enhanced expression of amino acid acquisition genes. Three state-of-the-art omics techniques were applied to detail the importance of active amino acid uptake during biofilm development. Comparative analyses of normoxic wild-type biofilms were performed under three metabolically challenging conditions: aging, hypoxia, and disabled amino acid uptake using a strain lacking the regulator of amino acid permeases Stp2. Aging-induced amino acid acquisition and stress responses to withstand the increasingly restricted environment. Hypoxia paralyzed overall energy metabolism with delayed amino acid consumption, but following prolonged adaptation, the metabolic fingerprints aligned with aged normoxic biofilms. The extracellular metabolome of stp2Δ biofilms revealed deficient uptake for 11 amino acids, resulting in extensive transcriptional and metabolic changes including induction of amino acid biosynthesis and carbohydrate and micronutrient uptake. Altogether, this study underscores the critical importance of a balanced amino acid homeostasis for C. albicans biofilm development.
Collapse
|
24
|
Interkingdom assemblages in human saliva display group-level surface mobility and disease-promoting emergent functions. Proc Natl Acad Sci U S A 2022; 119:e2209699119. [PMID: 36191236 PMCID: PMC9565521 DOI: 10.1073/pnas.2209699119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Fungi and bacteria form multicellular biofilms causing many human infections. How such distinctive microbes act in concert spatiotemporally to coordinate disease-promoting functionality remains understudied. Using multiscale real-time microscopy and computational analysis, we investigate the dynamics of fungal and bacterial interactions in human saliva and their biofilm development on tooth surfaces. We discovered structured interkingdom assemblages displaying emergent functionalities to enhance collective surface colonization, survival, and growth. Further analyses revealed an unexpected group-level surface mobility with coordinated “leaping-like” and “walking-like” motions while continuously growing. These mobile groups of growing cells promote rapid spatial spreading of both species across surfaces, causing more extensive tooth decay. Our findings show multicellular interkingdom assemblages acting like supraorganisms with functionalities that cannot be achieved without coassembly. Fungi and bacteria often engage in complex interactions, such as the formation of multicellular biofilms within the human body. Knowledge about how interkingdom biofilms initiate and coalesce into higher-level communities and which functions the different species carry out during biofilm formation remain limited. We found native-state assemblages of Candida albicans (fungi) and Streptococcus mutans (bacteria) with highly structured arrangement in saliva from diseased patients with childhood tooth decay. Further analyses revealed that bacterial clusters are attached within a network of fungal yeasts, hyphae, and exopolysaccharides, which bind to surfaces as a preassembled cell group. The interkingdom assemblages exhibit emergent functions, including enhanced surface colonization and growth rate, stronger tolerance to antimicrobials, and improved shear resistance, compared to either species alone. Notably, we discovered that the interkingdom assemblages display a unique form of migratory spatial mobility that enables fast spreading of biofilms across surfaces and causes enhanced, more extensive tooth decay. Using mutants, selective inactivation of species, and selective matrix removal, we demonstrate that the enhanced stress resistance and surface mobility arise from the exopolymeric matrix and require the presence of both species in the assemblage. The mobility is directed by fungal filamentation as hyphae extend and contact the surface, lifting the assemblage with a “forward-leaping motion.” Bacterial cell clusters can “hitchhike” on this mobile unit while continuously growing, to spread across the surface three-dimensionally and merge with other assemblages, promoting community expansion. Together, our results reveal an interkingdom assemblage in human saliva that behaves like a supraorganism, with disease-causing emergent functionalities that cannot be achieved without coassembly.
Collapse
|
25
|
Collaboration between Antagonistic Cell Type Regulators Governs Natural Variation in the Candida albicans Biofilm and Hyphal Gene Expression Network. mBio 2022; 13:e0193722. [PMID: 35993746 PMCID: PMC9600859 DOI: 10.1128/mbio.01937-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida albicans is among the most significant human fungal pathogens. However, the vast majority of C. albicans studies have focused on a single clinical isolate and its marked derivatives. We investigated natural variation among clinical C. albicans isolates in gene regulatory control of biofilm formation, a process crucial to virulence. The transcription factor Efg1 is required for biofilm-associated gene expression and biofilm formation. Previously, we found extensive variation in Efg1-responsive gene expression among 5 diverse clinical isolates. However, chromatin immunoprecipitation sequencing analysis showed that Efg1 binding to genomic loci was uniform among the isolates. Functional dissection of strain differences identified three transcription factors, Brg1, Tec1, and Wor1, for which small changes in expression levels reshaped the Efg1 regulatory network. Brg1 and Tec1 are known biofilm activators, and their role in Efg1 network variation may be expected. However, Wor1 is a known repressor of EFG1 expression and an inhibitor of biofilm formation. In contrast, we found that a modest increase in WOR1 RNA levels, reflecting the expression differences between C. albicans strains, could augment biofilm formation and expression of biofilm-related genes. The analysis of natural variation here reveals a novel function for a well-characterized gene and illustrates that strain diversity offers a unique resource for elucidation of network interactions.
Collapse
|
26
|
van Wijlick L, Znaidi S, Hernández-Cervantes A, Basso V, Bachellier-Bassi S, d’Enfert C. Functional Portrait of Irf1 (Orf19.217), a Regulator of Morphogenesis and Iron Homeostasis in Candida albicans. Front Cell Infect Microbiol 2022; 12:960884. [PMID: 36004328 PMCID: PMC9393397 DOI: 10.3389/fcimb.2022.960884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
The alternate growth of Candida albicans between a unicellular yeast form and a multicellular hyphal form is crucial for its ability to cause disease. Interestingly, both morphological forms support distinct functions during proliferation in the human host. We previously identified ORF19.217 (C2_08890W_A), encoding a zinc-finger transcription factor of the C2H2 family, in a systematic screen of genes whose overexpression contributes to C. albicans' morphological changes. Conditional overexpression of ORF19.217 with the strong tetracycline-inducible promoter (P TET ) resulted in a hyperfilamentous phenotype. We examined growth of the orf19.217 knockout-mutant in different hypha-inducing conditions and found that the mutant still formed hyphae under standard hypha-inducing conditions. To further investigate the function of Orf19.217 in C. albicans, we combined genome-wide expression (RNA-Seq) and location (ChIP-Seq) analyses. We found that Orf19.217 is involved in regulatory processes comprising hyphal morphogenesis and iron acquisition. Comparative analysis with existing C. albicans hyphal transcriptomes indicates that Orf19.217-mediated filamentation is distinct from a true hyphal program. Further, the orf19.217 knockout-mutant did not show increased sensitivity to iron deprivation, but ORF19.217 overexpression was able to rescue the growth of a hap5-mutant, defective in a subunit of the CCAAT-complex, which is essential for iron acquisition. This suggested that Orf19.217 is involved in regulation of iron acquisition genes during iron deprivation and acts in a parallel pathway to the established CCAAT-complex. Interestingly, the orf19.217-mutant turned out to be defective in its ability to form filaments under iron-deficiency. Taken together our findings propose that the transcription factor Orf19.217 stimulates expression of the hyphal regulators EFG1 and BRG1 to promote filamentous growth under iron deprivation conditions, allowing the fungus to escape these iron-depleted conditions. The transcription factor therefore appears to be particularly important for adaptation of C. albicans to diverse environmental conditions in the human host. In regard to the newly identified functions, we have given the regulator the name Irf1, Iron-dependent Regulator of Filamentation.
Collapse
Affiliation(s)
- Lasse van Wijlick
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Sadri Znaidi
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Institut Pasteur de Tunis, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, Tunis-Belvédère, Tunisia
| | - Arturo Hernández-Cervantes
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Virginia Basso
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Sophie Bachellier-Bassi
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Christophe d’Enfert
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| |
Collapse
|
27
|
Abdulghani M, Iram R, Chidrawar P, Bhosle K, Kazi R, Patil R, Kharat K, Zore G. Proteomic profile of Candida albicans biofilm. J Proteomics 2022; 265:104661. [PMID: 35728770 DOI: 10.1016/j.jprot.2022.104661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/06/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022]
Abstract
Candida albicans biofilms are characterized by structural and cellular heterogeneity that confers antifungal resistance and immune evasion. Despite this, biofilm formation remains poorly understood. In this study, we used proteomic analysis to understand biofilm formation in C. albicans related to morphophysiological and architectural features. LC-MS/MS analysis revealed that 64 proteins were significantly modulated, of which 31 were upregulated and 33 were downregulated. The results indicate that metabolism (25 proteins), gene expression (13 proteins), stress response (7 proteins), and cell wall (5 proteins) composition are modulated. The rate of oxidative phosphorylation (OxPhos) and biosynthesis of UDP-N-acetylglucosamine, vitamin B6, and thiamine increased, while the rate of methionine biosynthesis decreased. There was a significant modification of the cell wall architecture due to higher levels of Sun41, Pir1 and Csh1 and increased glycosylation of proteins. It was observed that C. albicans induces hyphal growth by upregulating the expression of genes involved in cAMP-PKA and MAPK pathways. This study is significant in that it suggests an increase in OxPhos and alteration of cell wall architecture that could be contributing to the recalcitrance of C. albicans cells growing in biofilms. Nevertheless, a deeper investigation is needed to explore it further. SIGNIFICANCE: Candida sps is included in the list of pathogens with potential drug resistance threat due to the increased frequency especially colonization of medical devices, and tissues among the patients, in recent years. Significance of our study is that we are reporting traits like modulation in cell wall composition, amino acid and vitamin biosynthesis and importantly energy generation (OxPhos) etc. These traits could be conferring antifungal resistance, host immune evasion etc. and thus survival, in addition to facilitating biofilm formation. These findings are expected to prime the further studies on devising potent strategy against biofilm growth among the patients.
Collapse
Affiliation(s)
- Mazen Abdulghani
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, MS, India
| | - Rasiqua Iram
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, MS, India
| | - Priti Chidrawar
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, MS, India
| | - Kajal Bhosle
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, MS, India
| | - Rubina Kazi
- Division of Biochemical Sciences, CSIR-NCL, Pune 8, MS, India
| | - Rajendra Patil
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, MS, India
| | - Kiran Kharat
- Department of Biotechnology, Deogiri College, Aurangabad, MS, India
| | - Gajanan Zore
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, MS, India.
| |
Collapse
|
28
|
Glazier VE. EFG1, Everyone’s Favorite Gene in Candida albicans: A Comprehensive Literature Review. Front Cell Infect Microbiol 2022; 12:855229. [PMID: 35392604 PMCID: PMC8980467 DOI: 10.3389/fcimb.2022.855229] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/24/2022] [Indexed: 12/18/2022] Open
Abstract
Candida sp. are among the most common fungal commensals found in the human microbiome. Although Candida can be found residing harmlessly on the surface of the skin and mucosal membranes, these opportunistic fungi have the potential to cause superficial skin, nail, and mucus membrane infections as well as life threatening systemic infections. Severity of infection is dependent on both fungal and host factors including the immune status of the host. Virulence factors associated with Candida sp. pathogenicity include adhesin proteins, degradative enzymes, phenotypic switching, and morphogenesis. A central transcriptional regulator of morphogenesis, the transcription factor Efg1 was first characterized in Candida albicans in 1997. Since then, EFG1 has been referenced in the Candida literature over three thousand times, with the number of citations growing daily. Arguably one of the most well studied genes in Candida albicans, EFG1 has been referenced in nearly all contexts of Candida biology from the development of novel therapeutics to white opaque switching, hyphae morphology to immunology. In the review that follows we will synthesize the research that has been performed on this extensively studied transcription factor and highlight several important unanswered questions.
Collapse
|