1
|
Yu W, Liu J, Yang C, Luo Y, Mu H, Wang S, Dong W, Jia M, Dong Z, Lu X, Wang J. Cold atmospheric plasma enhances immune clearance of Porphyromonas gingivalis via LC3-associated phagocytosis in mice with experimental periodontitis. Int Immunopharmacol 2025; 153:114494. [PMID: 40117805 DOI: 10.1016/j.intimp.2025.114494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/23/2025]
Abstract
Periodontitis is a microbe-driven infectious disease, in which Porphyromonas gingivalis (Pg) plays a keystone role. As the front line to eliminate dysbiotic microbiota, macrophages are critical for recognition, phagocytosis and digestion of bacteria. However, deficiencies in the antimicrobial function of periodontal macrophages lead to diminished Pg clearance and destructive periodontal inflammation. Cold atmospheric plasma (CAP) enables non-invasive treatment by producing reactive species including reactive oxygen species (ROS), reactive nitrogen species (RNS) and electro-magnetic field, and is of great interest for infectious diseases. These radicals have a significant influence on cellular biochemistry and are crucial components of the immune system. The CAP jet using helium gas was developed and driven by the bipolar pulse high voltage. The negative voltage was 5 kV and the positive voltage was 10 kV. The irradiation time was set to 120 s for in vivo experiments and 80 s for in vitro experiments. In vivo experiments demonstrated that CAP significantly alleviated periodontitis. In addition to the directly antimicrobial effects, in vitro experiments demonstrated that CAP enhanced intracellular killing of Pg by bone marrow-derived macrophages (BMMs) and murine macrophage cell line RAW 264.7 in a ROS-dependent manner. BMMs were collected from the tibias and femurs of healthy C57BL/6 mice aged 6-8 weeks old. Mechanistically, it is found that CAP promotes microtubule-associated protein 1A/1B-light chain 3 (MAP1LC3, LC3)-associated phagocytosis (LAP) in macrophages to defend against Pg. Therefore, CAP is proposed a potential therapy for effectively alleviating periodontitis through regulating the bactericidal activity of macrophages.
Collapse
Affiliation(s)
- Wenqian Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Jialin Liu
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chang Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Yao Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Hailin Mu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Shuo Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Meie Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Zhipeng Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xinpei Lu
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiawei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.
| |
Collapse
|
2
|
Fang C, He X, Tang F, Wang Z, Pan C, Zhang Q, Wu J, Wang Q, Liu D, Zhang Y. Where lung cancer and tuberculosis intersect: recent advances. Front Immunol 2025; 16:1561719. [PMID: 40242762 PMCID: PMC11999974 DOI: 10.3389/fimmu.2025.1561719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/12/2025] [Indexed: 04/18/2025] Open
Abstract
Lung cancer (LC) and tuberculosis (TB) represent two major global public health issues. Prior evidence has suggested a link between TB infection and an increased risk of LC. As advancements in LC treatment have led to extended survival rates for LC patients, the co-occurrence of TB and LC has grown more prevalent and poses novel clinical challenges. The intricate molecular mechanisms connecting TB and LC are closely intertwined and many issues remain to be addressed. This review focuses on resemblance between the immunosuppression in tumor and granuloma microenvironments, exploring immunometabolism, cell plasticity, inflammatory signaling pathways, microbiomics, and up-to-date information derived from spatial multi-omics between TB and LC. Furthermore, we outline immunization-related molecular mechanisms underlying these two diseases and propose future research directions. By discussing recent advances and potential targets, this review aims to establish a foundation for developing future therapeutic strategies targeting LC with concurrent TB infection.
Collapse
Affiliation(s)
- Chunju Fang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Xuanlu He
- School of Clinical Medicine, Zunyi Medical University, Zunyi, China
| | - Fei Tang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Zi Wang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Cong Pan
- School of Biological Sciences, Guizhou Education University, Guiyang, China
- Translational Medicine Research Center, eBond Pharmaceutical Technology Co., Ltd., Chengdu, China
| | - Qi Zhang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jing Wu
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Qinglan Wang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Daishun Liu
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yu Zhang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
- National Health Commission Key Laboratory of Pulmonary Immune-Related Diseases, Guizhou Provincial People’s Hospital, Guiyang, China
| |
Collapse
|
3
|
Fan S, Wang W, Che W, Xu Y, Jin C, Dong L, Xia Q. Nanomedicines Targeting Metabolic Pathways in the Tumor Microenvironment: Future Perspectives and the Role of AI. Metabolites 2025; 15:201. [PMID: 40137165 PMCID: PMC11943624 DOI: 10.3390/metabo15030201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Tumor cells engage in continuous self-replication by utilizing a large number of resources and capabilities, typically within an aberrant metabolic regulatory network to meet their own demands. This metabolic dysregulation leads to the formation of the tumor microenvironment (TME) in most solid tumors. Nanomedicines, due to their unique physicochemical properties, can achieve passive targeting in certain solid tumors through the enhanced permeability and retention (EPR) effect, or active targeting through deliberate design optimization, resulting in accumulation within the TME. The use of nanomedicines to target critical metabolic pathways in tumors holds significant promise. However, the design of nanomedicines requires the careful selection of relevant drugs and materials, taking into account multiple factors. The traditional trial-and-error process is relatively inefficient. Artificial intelligence (AI) can integrate big data to evaluate the accumulation and delivery efficiency of nanomedicines, thereby assisting in the design of nanodrugs. Methods: We have conducted a detailed review of key papers from databases, such as ScienceDirect, Scopus, Wiley, Web of Science, and PubMed, focusing on tumor metabolic reprogramming, the mechanisms of action of nanomedicines, the development of nanomedicines targeting tumor metabolism, and the application of AI in empowering nanomedicines. We have integrated the relevant content to present the current status of research on nanomedicines targeting tumor metabolism and potential future directions in this field. Results: Nanomedicines possess excellent TME targeting properties, which can be utilized to disrupt key metabolic pathways in tumor cells, including glycolysis, lipid metabolism, amino acid metabolism, and nucleotide metabolism. This disruption leads to the selective killing of tumor cells and disturbance of the TME. Extensive research has demonstrated that AI-driven methodologies have revolutionized nanomedicine development, while concurrently enabling the precise identification of critical molecular regulators involved in oncogenic metabolic reprogramming pathways, thereby catalyzing transformative innovations in targeted cancer therapeutics. Conclusions: The development of nanomedicines targeting tumor metabolic pathways holds great promise. Additionally, AI will accelerate the discovery of metabolism-related targets, empower the design and optimization of nanomedicines, and help minimize their toxicity, thereby providing a new paradigm for future nanomedicine development.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Dong
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (S.F.); (W.W.); (W.C.); (Y.X.); (C.J.)
| | - Qin Xia
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (S.F.); (W.W.); (W.C.); (Y.X.); (C.J.)
| |
Collapse
|
4
|
Li X, Huang D, Liu C, Yu W, Bi L. Causal association and potential mediator between lung cancer and tuberculosis: A Mendelian randomization study. Microb Pathog 2025; 200:107346. [PMID: 39884473 DOI: 10.1016/j.micpath.2025.107346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/24/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND The coexistence of tuberculosis (TB) and lung cancer (LC) is not rare, but their causal association are underexplored. This study aims to elucidate these bidirectional correlations and investigate the mediating effects of immunophenotypes and plasma metabolites. METHODS Genetic variants for TB and LC were sourced from the IEU Open GWAS Project, while data for 731 immunophenotypes and 1400 plasma metabolites from previously published GWAS. Our core methodology centered on inverse-variance weighted method, supplemented by MR-Egger, weighted median, simple mode, and weighted mode analyses to evaluate the bidirectional causal association between TB and LC. Additionally, a two-step Mendelian randomization analysis was performed to assess mediators of the association and calculate the mediated proportions. Multiple sensitivity analyses ensured the reliability of results. RESULTS Inverse-variance weighted results indicated a positive causal association between TB and LC (odds ratio: 1.072, 95 % confidence interval: 1.010-1.137, P < 0.05), with no reverse relationship. Causal associations were found between 30 immunophenotypes and 106 metabolites with LC (all P < 0.05). Among these, 1 immunophenotype, 6 metabolite levels, and 1 metabolite ratio were potential mediators of the TB-LC association. Specifically, CD4 on CD39+ resting regulatory T cells showed an inverse association, suggesting a protective role, while pantoate, ethylparaben sulfate, dopamine 4-sulfate, pentose acid, N-formylmethionine, N6,N6,N6-trimethyllysine, and the tryptophan to pyruvate ratio exhibited positive correlations, indicating risk factors. No heterogeneity or horizontal pleiotropy was observed. CONCLUSION TB is a risk factor for LC at a genetically predicted level, potentially mediated through immune cell and metabolite regulation.
Collapse
Affiliation(s)
- Xianwen Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China; Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Dayin Huang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chang Liu
- Department of Thoracic Surgery, Shenyang Tenth People's Hospital and Shenyang Chest Hospital, Shenyang, Liaoning, China
| | - Wei Yu
- Guangzhou National Laboratory, Guangzhou, Guangdong, China.
| | - Lijun Bi
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China; Guangzhou National Laboratory, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Zhang T, Chen L, Kueth G, Shao E, Wang X, Ha T, Williams DL, Li C, Fan M, Yang K. Lactate's impact on immune cells in sepsis: unraveling the complex interplay. Front Immunol 2024; 15:1483400. [PMID: 39372401 PMCID: PMC11449721 DOI: 10.3389/fimmu.2024.1483400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Lactate significantly impacts immune cell function in sepsis and septic shock, transcending its traditional view as just a metabolic byproduct. This review summarizes the role of lactate as a biomarker and its influence on immune cell dynamics, emphasizing its critical role in modulating immune responses during sepsis. Mechanistically, key lactate transporters like MCT1, MCT4, and the receptor GPR81 are crucial in mediating these effects. HIF-1α also plays a significant role in lactate-driven immune modulation. Additionally, lactate affects immune cell function through post-translational modifications such as lactylation, acetylation, and phosphorylation, which alter enzyme activities and protein functions. These interactions between lactate and immune cells are central to understanding sepsis-associated immune dysregulation, offering insights that can guide future research and improve therapeutic strategies to enhance patient outcomes.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Linjian Chen
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Gatkek Kueth
- James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Emily Shao
- Program in Neuroscience, College of Arts and Science, Vanderbilt University, Nashville, TN, United States
| | - Xiaohui Wang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Tuanzhu Ha
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - David L. Williams
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Chuanfu Li
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Min Fan
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Kun Yang
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
6
|
Basheeruddin M, Qausain S. Hypoxia-Inducible Factor 1-Alpha (HIF-1α): An Essential Regulator in Cellular Metabolic Control. Cureus 2024; 16:e63852. [PMID: 39099978 PMCID: PMC11297807 DOI: 10.7759/cureus.63852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
The element that causes hypoxia when the von Hippel-Lindau (VHL) protein is not functioning is hypoxia-inducible factor 1-alpha (HIF-1α), which is the essential protein linked to cell control under hypoxia. Consequently, in situations where cells are oxygen-deficient, HIF-1α carries out a variety of essential functions. Citations to relevant literature support the notion that HIF-1α regulates the mitochondrial and glycolytic pathways, as well as the transition from the former to the latter. Cells with limited oxygen supply benefit from this change, which is especially beneficial for the inhibition of the mitochondrial electron transport chain and enhanced uptake of glucose and lactate. During hypoxic stress, HIF-1α also controls proline and glycolytic transporters such as lactate dehydrogenase A (LDHA) and glucose transporter 1 (GLUT1). These mechanisms help the cell return to homeostasis. Therefore, through metabolic change promoting adenosine triphosphate (ATP) synthesis and reducing reactive oxygen species (ROS) creation, HIF-1α may have a role in reducing oxidative stress in cells. This evidence, which describes the function of HIF-1α in many molecular pathways, further supports the notion that it is prognostic and that it contributes to hypoxic cell adaption. Understanding more about disorders, including inflammation, cancer, and ischemia, is possible because of HIF-1α's effect on metabolic changes. Gaining knowledge about the battle between metabolism, which is directed by HIF-1α, would help advance the research on pathophysiological situations involving dysregulated hypoxia and metabolism.
Collapse
Affiliation(s)
- Mohd Basheeruddin
- Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sana Qausain
- Biomedical Sciences, Allied Health Sciences, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
7
|
Wang C, Forsman LD, Wang S, Wang S, Shao G, Xiong H, Bao Z, Hu Y. The diagnostic performance of GeneXpert MTB/RIF in tuberculosis meningitis: A multicentre accuracy study. Diagn Microbiol Infect Dis 2024; 109:116277. [PMID: 38677052 DOI: 10.1016/j.diagmicrobio.2024.116277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/10/2024] [Accepted: 03/18/2024] [Indexed: 04/29/2024]
Abstract
OBJECTIVES To evaluate the performance of GeneXpert MTB/RIF (Xpert) for tuberculous meningitis (TBM) and to identify additional indicators to improve diagnostic accuracy. METHODS An accuracy study was conducted. During 2011-2019, 243 TBM with 140 non-TBM in three TB-designated facilities in China were enrolled. Microbiological evidence of M tuberculosis (Mtb) in CSF was used as the reference. Additional indicators were identified by Boosted-Classification and Regression Tree (CART), the improvement of diagnostic performance was evaluated by ROC. RESULTS The diagnostic sensitivity of Xpert was 71.1 % for definite TBM, and 5.5 % for probable/possible TBM. The positive rate of Xpert was improved with cerebrospinal fluid (CSF) increasing volume and was associated with CSF color (yellow). The additional indicators obtained by CART were CSF lactate and glucose and increased the sensitivity to 96.1 % (definite TBM) and 84.6 % (probable/possible TBM). CONCLUSIONS The diagnostic performance of Xpert was satisfactory in definite TBM and would significantly be improved by the additional use of CSF lactate and glucose.
Collapse
Affiliation(s)
- Chenyuan Wang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, China and Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, China
| | - Lina Davies Forsman
- Division of Infectious Diseases, Department of Medicine, Karolinska Institutet, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Shanshan Wang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, China and Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, China
| | - Sainan Wang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, China and Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, China
| | - Ge Shao
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, China and Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, China
| | - Haiyan Xiong
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, China and Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, China
| | - Ziwei Bao
- Suzhou Fifth People's Hospital, Suzhou City, Jiangsu, China.
| | - Yi Hu
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai 200032, China and Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, China
| |
Collapse
|
8
|
Wang C, Lou C, Yang Z, Shi J, Niu N. Plasma metabolomic analysis reveals the metabolic characteristics and potential diagnostic biomarkers of spinal tuberculosis. Heliyon 2024; 10:e27940. [PMID: 38571585 PMCID: PMC10987919 DOI: 10.1016/j.heliyon.2024.e27940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 02/16/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Objectives This study aimed to conduct a non-targeted metabolomic analysis of plasma from patients with spinal tuberculosis (STB) to systematically elucidate the metabolomic alterations associated with STB, and explore potential diagnostic biomarkers for STB. Methods From January 2020 to January 2022, 30 patients with spinal tuberculosis (STBs) clinically diagnosed at the General Hospital of Ningxia Medical University and 30 age- and sex-matched healthy controls (HCs) were selected for this study. Using ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) based metabolomics, we analyzed the metabolic profiles of 60 plasma samples. Statistical analyses, pathway enrichment, and receiver operating characteristic (ROC) analyses were performed to screen and evaluate potential diagnostic biomarkers. Results Metabolomic profiling revealed distinct alterations between the STBs and HCs cohorts. A total of 1635 differential metabolites were screened, functionally clustered, and annotated. The results showed that the differential metabolites were enriched in sphingolipid metabolism, tuberculosis, cutin, suberine and wax biosynthesis, beta-alanine metabolism, methane metabolism, and other pathways. Through the random forest algorithm, LysoPE (18:1(11Z)/0:0), 8-Demethyl-8-formylriboflavin 5'-phosphate, Glutaminyl-Gamma-glutamate, (2R)-O-Phospho-3-sulfolactate, and LysoPE (P-16:0/0:0) were determined to have high independent diagnostic value. Conclusions STBs exhibited significantly altered metabolite profiles compared with HCs. Here, we provide a global metabolomic profile and identify potential diagnostic biomarkers of STB. Five potential independent diagnostic biomarkers with high diagnostic value were screened. This study provides novel insights into the pathogenesis, diagnosis, and treatment strategies of STB.
Collapse
Affiliation(s)
- Chaoran Wang
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Caili Lou
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Zongqiang Yang
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Jiandang Shi
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Ningkui Niu
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Research Center for Prevention and Control of Bone and Joint Tuberculosis, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| |
Collapse
|
9
|
Yunusbaeva M, Borodina L, Terentyeva D, Bogdanova A, Zakirova A, Bulatov S, Altinbaev R, Bilalov F, Yunusbayev B. Excess fermentation and lactic acidosis as detrimental functions of the gut microbes in treatment-naive TB patients. Front Cell Infect Microbiol 2024; 14:1331521. [PMID: 38440790 PMCID: PMC10910113 DOI: 10.3389/fcimb.2024.1331521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction The link between gut microbiota and host immunity motivated numerous studies of the gut microbiome in tuberculosis (TB) patients. However, these studies did not explore the metabolic capacity of the gut community, which is a key axis of impact on the host's immunity. Methods We used deep sequencing of fecal samples from 23 treatment-naive TB patients and 48 healthy donors to reconstruct the gut microbiome's metabolic capacity and strain/species-level content. Results We show that the systematic depletion of the commensal flora of the large intestine, Bacteroidetes, and an increase in Actinobacteria, Firmicutes, and Proteobacteria such as Streptococcaceae, Erysipelotrichaceae, Lachnospiraceae, and Enterobacteriaceae explains the strong taxonomic divergence of the gut community in TB patients. The cumulative expansion of diverse disease-associated pathobionts in patients reached 1/4 of the total gut microbiota, suggesting a heavy toll on host immunity along with MTB infection. Reconstruction of metabolic pathways showed that the microbial community in patients shifted toward rapid growth using glycolysis and excess fermentation to produce acetate and lactate. Higher glucose availability in the intestine likely drives fermentation to lactate and growth, causing acidosis and endotoxemia. Discussion Excessive fermentation and lactic acidosis likely characterize TB patients' disturbed gut microbiomes. Since lactic acidosis strongly suppresses the normal gut flora, directly interferes with macrophage function, and is linked to mortality in TB patients, our findings highlight gut lactate acidosis as a novel research focus. If confirmed, gut acidosis may be a novel potential host-directed treatment target to augment traditional TB treatment.
Collapse
Affiliation(s)
- Milyausha Yunusbaeva
- Laboratory of Evolutionary Biomedicine, International Institute “Solution Chemistry of Advanced Materials and Technologies”, ITMO University, Saint Petersburg, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - Liliya Borodina
- Department of Tuberculosis Monitoring, Republican Clinical Antituberculous Dispensary, Ufa, Russia
| | - Darya Terentyeva
- Laboratory of Evolutionary Biomedicine, International Institute “Solution Chemistry of Advanced Materials and Technologies”, ITMO University, Saint Petersburg, Russia
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, Saint Petersburg Pasteur Institute, Saint Petersburg, Russia
| | - Anna Bogdanova
- Laboratory of Evolutionary Biomedicine, International Institute “Solution Chemistry of Advanced Materials and Technologies”, ITMO University, Saint Petersburg, Russia
| | - Aigul Zakirova
- Department of Tuberculosis Monitoring, Republican Clinical Antituberculous Dispensary, Ufa, Russia
| | - Shamil Bulatov
- Department of Tuberculosis Monitoring, Republican Clinical Antituberculous Dispensary, Ufa, Russia
| | - Radick Altinbaev
- Laboratory of Neurophysiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Fanil Bilalov
- Laboratory of Molecular Genetics, Republic Medical Genetic Centre, Ufa, Russia
- Department of Public Health and Health Organization with a course of ICPE, Bashkir State Medical University, Ufa, Russia
| | - Bayazit Yunusbayev
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
10
|
Datta M, Kennedy M, Siri S, Via LE, Baish JW, Xu L, Dartois V, Barry CE, Jain RK. Mathematical model of oxygen, nutrient, and drug transport in tuberculosis granulomas. PLoS Comput Biol 2024; 20:e1011847. [PMID: 38335224 PMCID: PMC10883541 DOI: 10.1371/journal.pcbi.1011847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/22/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Physiological abnormalities in pulmonary granulomas-pathological hallmarks of tuberculosis (TB)-compromise the transport of oxygen, nutrients, and drugs. In prior studies, we demonstrated mathematically and experimentally that hypoxia and necrosis emerge in the granuloma microenvironment (GME) as a direct result of limited oxygen availability. Building on our initial model of avascular oxygen diffusion, here we explore additional aspects of oxygen transport, including the roles of granuloma vasculature, transcapillary transport, plasma dilution, and interstitial convection, followed by cellular metabolism. Approximate analytical solutions are provided for oxygen and glucose concentration, interstitial fluid velocity, interstitial fluid pressure, and the thickness of the convective zone. These predictions are in agreement with prior experimental results from rabbit TB granulomas and from rat carcinoma models, which share similar transport limitations. Additional drug delivery predictions for anti-TB-agents (rifampicin and clofazimine) strikingly match recent spatially-resolved experimental results from a mouse model of TB. Finally, an approach to improve molecular transport in granulomas by modulating interstitial hydraulic conductivity is tested in silico.
Collapse
Affiliation(s)
- Meenal Datta
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - McCarthy Kennedy
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Saeed Siri
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Laura E. Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health, Bethesda, Maryland, United States of America
| | - James W. Baish
- Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania, United States of America
| | - Lei Xu
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, New Jersey, United States of America
| | - Clifton E. Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rakesh K. Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
11
|
Zmyslia M, Fröhlich K, Dao T, Schmidt A, Jessen-Trefzer C. Deep Proteomic Investigation of Metabolic Adaptation in Mycobacteria under Different Growth Conditions. Proteomes 2023; 11:39. [PMID: 38133153 PMCID: PMC10747050 DOI: 10.3390/proteomes11040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Understanding the complex mechanisms of mycobacterial pathophysiology and adaptive responses presents challenges that can hinder drug development. However, employing physiologically relevant conditions, such as those found in human macrophages or simulating physiological growth conditions, holds promise for more effective drug screening. A valuable tool in this pursuit is proteomics, which allows for a comprehensive analysis of adaptive responses. In our study, we focused on Mycobacterium smegmatis, a model organism closely related to the pathogenic Mycobacterium tuberculosis, to investigate the impact of various carbon sources on mycobacterial growth. To facilitate this research, we developed a cost-effective, straightforward, and high-quality pipeline for proteome analysis and compared six different carbon source conditions. Additionally, we have created an online tool to present and analyze our data, making it easily accessible to the community. This user-friendly platform allows researchers and interested parties to explore and interpret the results effectively. Our findings shed light on mycobacterial adaptive physiology and present potential targets for drug development, contributing to the fight against tuberculosis.
Collapse
Affiliation(s)
- Mariia Zmyslia
- Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany; (M.Z.); (T.D.)
| | - Klemens Fröhlich
- Proteomics Core Facility, Biozentrum Basel, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland; (K.F.); (A.S.)
| | - Trinh Dao
- Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany; (M.Z.); (T.D.)
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstrasse 19A, 79104 Freiburg, Germany
- The Center for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum Basel, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland; (K.F.); (A.S.)
| | - Claudia Jessen-Trefzer
- Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany; (M.Z.); (T.D.)
- The Center for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
12
|
Borah Slater K, Moraes L, Xu Y, Kim D. Metabolic flux reprogramming in Mycobacterium tuberculosis-infected human macrophages. Front Microbiol 2023; 14:1289987. [PMID: 38045029 PMCID: PMC10690623 DOI: 10.3389/fmicb.2023.1289987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023] Open
Abstract
Metabolic fluxes are at the heart of metabolism and growth in any living system. During tuberculosis (TB) infection, the pathogenic Mycobacterium tuberculosis (Mtb) adapts its nutritional behaviour and metabolic fluxes to survive in human macrophages and cause infection. The infected host cells also undergo metabolic changes. However, our knowledge of the infected host metabolism and identification of the reprogrammed metabolic flux nodes remains limited. In this study, we applied systems-based 13C-metabolic flux analysis (MFA) to measure intracellular carbon metabolic fluxes in Mtb-infected human THP-1 macrophages. We provide a flux map for infected macrophages that quantified significantly increased fluxes through glycolytic fluxes towards pyruvate synthesis and reduced pentose phosphate pathway fluxes when compared to uninfected macrophages. The tri carboxylic acid (TCA) cycle fluxes were relatively low, and amino acid fluxes were reprogrammed upon Mtb infection. The knowledge of host metabolic flux profiles derived from our work expands on how the host cell adapts its carbon metabolism in response to Mtb infection and highlights important nodes that may provide targets for developing new therapeutics to improve TB treatment.
Collapse
Affiliation(s)
| | - Luana Moraes
- School of Biosciences, University of Surrey, Guildford, United Kingdom
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia-USP, São Paulo, Brazil
| | - Ye Xu
- School of Biosciences, University of Surrey, Guildford, United Kingdom
| | - Daniel Kim
- School of Biosciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
13
|
Chen J, Zhu Y, Wu C, Shi J. Engineering lactate-modulating nanomedicines for cancer therapy. Chem Soc Rev 2023; 52:973-1000. [PMID: 36597879 DOI: 10.1039/d2cs00479h] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Lactate in tumors has long been considered "metabolic junk" derived from the glycolysis of cancer cells and utilized only as a biomarker of malignancy, but is presently believed to be a pivotal regulator of tumor development, maintenance and metastasis. Indeed, tumor lactate can be a "fuel" for energy supply and functions as a signaling molecule, which actively contributes to tumor progression, angiogenesis, immunosuppression, therapeutic resistance, etc., thus providing promising opportunities for cancer treatment. However, the current approaches for regulating lactate homeostasis with available agents are still challenging, which is mainly due to the short half-life, low bioavailability and poor specificity of these agents and their unsatisfactory therapeutic outcomes. In recent years, lactate modulation nanomedicines have emerged as a charming and efficient strategy for fighting cancer, which play important roles in optimizing the delivery of lactate-modulating agents for more precise and effective modulation and treatment. Integrating specific lactate-modulating functions in diverse therapeutic nanomedicines may overcome the intrinsic restrictions of different therapeutic modalities by remodeling the pathological microenvironment for achieving enhanced cancer therapy. In this review, the most recent advances in the engineering of functional nanomedicines that can modulate tumor lactate for cancer therapy are summarized and discussed, and the fundamental mechanisms by which lactate modulation benefits various therapeutics are elucidated. Finally, the challenges and perspectives of this emerging strategy in the anti-tumor field are highlighted.
Collapse
Affiliation(s)
- Jiajie Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200331, P. R. China
| |
Collapse
|
14
|
Malsagova KA, Astrelina TA, Balakin EI, Kobzeva IV, Adoeva EY, Yurku KA, Suchkova YB, Stepanov AA, Izotov AA, Butkova TV, Kaysheva AL, Pustovoyt VI. Influence of Sports Training in Foothills on the Professional Athlete's Immunity. Sports (Basel) 2023; 11:sports11020030. [PMID: 36828315 PMCID: PMC9959015 DOI: 10.3390/sports11020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Neuroplasticity and inflammation play important part in the body's adaptive reactions in response to prolonged physical activity. These processes are associated with the cross-interaction of the nervous and immune systems, which is realized through the transmission of signals from neurotransmitters and cytokines. Using the methods of flow cytometry and advanced biochemical analysis of blood humoral parameters, we showed that intense and prolonged physical activity at the anaerobic threshold, without nutritional and metabolic support, contributes to the development of exercise-induced immunosuppression in sportsmen. These athletes illustrate the following signs of a decreased immune status: fewer absolute indicators of the content of leukocytes, lowered values in the immunoregulatory index (CD4+/CD8+), and diminished indicators of humoral immunity (immunoglobulins A, M, and G, and IFN-γ). These factors characterize the functional state of cellular and humoral immunity and their reduction affects the prenosological risk criteria, indicative of the athletes' susceptibility to develop exercise-induced immunosuppression.
Collapse
Affiliation(s)
- Kristina A. Malsagova
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia
- Correspondence: ; Tel.: +7-(499)-764-98-78
| | - Tatiana A. Astrelina
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| | - Evgenii I. Balakin
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| | - Irina V. Kobzeva
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| | - Elena Ya. Adoeva
- S.M. Kirov Military Medical Academy, 194044 St. Petersburg, Russia
| | - Kseniya A. Yurku
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| | - Yuliya B. Suchkova
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| | - Alexander A. Stepanov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia
| | - Alexander A. Izotov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia
| | - Tatyana V. Butkova
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia
| | - Anna L. Kaysheva
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia
| | - Vasiliy I. Pustovoyt
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| |
Collapse
|
15
|
Chen W, Liu J, Zheng C, Bai Q, Gao Q, Zhang Y, Dong K, Lu T. Research Progress on Improving the Efficiency of CDT by Exacerbating Tumor Acidification. Int J Nanomedicine 2022; 17:2611-2628. [PMID: 35712639 PMCID: PMC9196673 DOI: 10.2147/ijn.s366187] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/16/2022] [Indexed: 12/21/2022] Open
Abstract
In recent years, chemodynamic therapy (CDT) has received extensive attention as a novel means of cancer treatment. The CDT agents can exert Fenton and Fenton-like reactions in the acidic tumor microenvironment (TME), converting hydrogen peroxide (H2O2) into highly toxic hydroxyl radicals (·OH). However, the pH of TME, as an essential factor in the Fenton reaction, does not catalyze the reaction effectively, hindering its efficiency, which poses a significant challenge for the future clinical application of CDT. Therefore, this paper reviews various strategies to enhance the antitumor properties of nanomaterials by modulating tumor acidity. Ultimately, the performance of CDT can be further improved by inducing strong oxidative stress to produce sufficient ·OH. In this paper, the various acidification pathways and proton pumps with potential acidification functions are mainly discussed, such as catalytic enzymes, exogenous acids, CAIX, MCT, NHE, NBCn1, etc. The problems, opportunities, and challenges of CDT in the cancer field are also discussed, thereby providing new insights for the design of nanomaterials and laying the foundation for their future clinical applications.
Collapse
Affiliation(s)
- Wenting Chen
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Jinxi Liu
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Caiyun Zheng
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Que Bai
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Qian Gao
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Yanni Zhang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Kai Dong
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710072, People's Republic of China
| | - Tingli Lu
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| |
Collapse
|
16
|
Diagnostic and Prognostic Value of Cerebrospinal Fluid Lactate and Glucose in HIV-Associated Tuberculosis Meningitis. Microbiol Spectr 2022; 10:e0161822. [PMID: 35727068 PMCID: PMC9430741 DOI: 10.1128/spectrum.01618-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of cerebrospinal fluid (CSF) lactate in tuberculosis meningitis (TBM) diagnosis and prognosis is unclear. The aim of this study was to evaluate the performance of CSF lactate alone and in combination with CSF glucose in predicting a diagnosis of TBM and 14-day survival. HIV-positive Ugandan adults were investigated for suspected meningitis. The baseline CSF tests included smear microscopy; Gram stain; cell count; protein; and point-of-care glucose, lactate, and cryptococcal antigen (CrAg) assays. Where CrAg was negative or there was suspicion of TBM, a CSF Xpert MTB/RIF Ultra (Xpert Ultra) test was performed. We recorded baseline demographic and clinical data and 2-week outcomes. Of 667 patients, 25% (n = 166) had TBM, and of these, 49 had definite, 47 probable, and 70 possible TBM. CSF lactate was higher in patients with definite TBM (8.0 mmol/L; interquartile ratio [IQR], 6.1 to 9.8 mmol/L) than in those with probable TBM (3.4 [IQR, 2.5 to 7.0] mmol/L), possible TBM (2.6 [IQR 2.1 to 3.8] mmol/L), and non-TBM disease (3.5 [IQR 2.5 to 5.0] mmol/L). A 2-fold increase in CSF lactate was associated with 8-fold increased odds of definite TBM (odds ratio, 8.3; 95% confidence interval [CI], 3.6 to 19.1; P < 0.01) and 2-fold increased odds of definite/probable TBM (odds ratio, 2.3; 95% CI, 1.4 to 3.7; P < 0.001). At a cut point of >5.5 mmol/L, CSF lactate could be used to diagnose definite TBM with a sensitivity of 87.7%, specificity of 80.7%, and a negative predictive value of 98.8%. CSF lactate was not predictive of 2-week mortality. IMPORTANCE Tuberculosis meningitis (TBM) is the most severe form of tuberculosis, and its fatality is largely due to delays in diagnosis. The role of CSF lactate has not been evaluated in patients with HIV presenting with signs and symptoms of meningitis. In this study, using a point-of-care handheld lactate machine in patients with HIV-associated meningitis, we showed that high baseline CSF lactate (>5.5 mmol) may be used to rapidly identify patients with TBM and shorten the time to initiate treatment with a similar performance to the Xpert Ultra assay for definite TBM. Elevated CSF lactate levels, however, were not associated with increased 2-week mortality in patients with HIV-associated TBM. Due to moderate specificity, other etiologies of meningitis should be investigated.
Collapse
|
17
|
Anand P, Akhter Y. A review on enzyme complexes of electron transport chain from Mycobacterium tuberculosis as promising drug targets. Int J Biol Macromol 2022; 212:474-494. [PMID: 35613677 DOI: 10.1016/j.ijbiomac.2022.05.124] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 12/20/2022]
Abstract
Energy metabolism is a universal process occurring in all life forms. In Mycobacterium tuberculosis (Mtb), energy production is carried out in two possible ways, oxidative phosphorylation (OxPhos) and substrate-level phosphorylation. Mtb is an obligate aerobic bacterium, making it dependent on OxPhos for ATP synthesis and growth. Mtb inhabits varied micro-niches during the infection cycle, outside and within the host cells, which alters its primary metabolic pathways during the pathogenesis. In this review, we discuss cellular respiration in the context of the mechanism and structural importance of the proteins and enzyme complexes involved. These protein-protein complexes have been proven to be essential for Mtb virulence as they aid the bacteria's survival during aerobic and hypoxic conditions. ATP synthase, a crucial component of the electron transport chain, has been in the limelight, as a prominent drug target against tuberculosis. Likewise, in this review, we have explored other protein-protein complexes of the OxPhos pathway, their functional essentiality, and their mechanism in Mtb's diverse lifecycle. The review summarises crucial target proteins and reported inhibitors of the electron transport chain pathway of Mtb.
Collapse
Affiliation(s)
- Pragya Anand
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh 226025, India
| | - Yusuf Akhter
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh 226025, India.
| |
Collapse
|
18
|
Awad K, Maghraby AS, Abd-Elshafy DN, Bahgat MM. Carbohydrates Metabolic Signatures in Immune Cells: Response to Infection. Front Immunol 2022; 13:912899. [PMID: 35983037 PMCID: PMC9380592 DOI: 10.3389/fimmu.2022.912899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/01/2022] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Metabolic reprogramming in immune cells is diverse and distinctive in terms of complexity and flexibility in response to heterogeneous pathogenic stimuli. We studied the carbohydrate metabolic changes in immune cells in different types of infectious diseases. This could help build reasonable strategies when understanding the diagnostics, prognostics, and biological relevance of immune cells under alternative metabolic burdens. METHODS Search and analysis were conducted on published peer-reviewed papers on immune cell metabolism of a single pathogen infection from the four known types (bacteria, fungi, parasites, and viruses). Out of the 131 selected papers based on the PIC algorithm (pathogen type/immune cell/carbohydrate metabolism), 30 explored immune cell metabolic changes in well-studied bacterial infections, 17 were on fungal infections of known medical importance, and 12 and 57 were on parasitic and viral infections, respectively. RESULTS AND DISCUSSION While carbohydrate metabolism in immune cells is signaled by glycolytic shift during a bacterial or viral infection, it is widely evident that effector surface proteins are expressed on the surface of parasites and fungi to modulate metabolism in these cells. CONCLUSIONS Carbohydrate metabolism in immune cells can be categorized according to the pathogen or the disease type. Accordingly, this classification can be used to adopt new strategies in disease diagnosis and treatment.
Collapse
Affiliation(s)
- Kareem Awad
- Department of Therapeutic Chemistry, Institute of Pharmaceutical and Drug Industries Research, National Research Center, Cairo, Egypt
- *Correspondence: Kareem Awad, ; Mahmoud Mohamed Bahgat, ,
| | - Amany Sayed Maghraby
- Department of Therapeutic Chemistry, Institute of Pharmaceutical and Drug Industries Research, National Research Center, Cairo, Egypt
- Research Group Immune- and Bio-Markers for Infection, the Center of Excellence for Advanced Sciences, National Research Center, Cairo, Egypt
| | - Dina Nadeem Abd-Elshafy
- Research Group Immune- and Bio-Markers for Infection, the Center of Excellence for Advanced Sciences, National Research Center, Cairo, Egypt
- Department of Water Pollution Research, Institute of Environmental Research, National Research Center, Cairo, Egypt
| | - Mahmoud Mohamed Bahgat
- Department of Therapeutic Chemistry, Institute of Pharmaceutical and Drug Industries Research, National Research Center, Cairo, Egypt
- Research Group Immune- and Bio-Markers for Infection, the Center of Excellence for Advanced Sciences, National Research Center, Cairo, Egypt
- *Correspondence: Kareem Awad, ; Mahmoud Mohamed Bahgat, ,
| |
Collapse
|
19
|
The Role of Ancestral Duplicated Genes in Adaptation to Growth on Lactate, a Non-Fermentable Carbon Source for the Yeast Saccharomyces cerevisiae. Int J Mol Sci 2021; 22:ijms222212293. [PMID: 34830177 PMCID: PMC8622941 DOI: 10.3390/ijms222212293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022] Open
Abstract
The cell central metabolism has been shaped throughout evolutionary times when facing challenges from the availability of resources. In the budding yeast, Saccharomyces cerevisiae, a set of duplicated genes originating from an ancestral whole-genome and several coetaneous small-scale duplication events drive energy transfer through glucose metabolism as the main carbon source either by fermentation or respiration. These duplicates (~a third of the genome) have been dated back to approximately 100 MY, allowing for enough evolutionary time to diverge in both sequence and function. Gene duplication has been proposed as a molecular mechanism of biological innovation, maintaining balance between mutational robustness and evolvability of the system. However, some questions concerning the molecular mechanisms behind duplicated genes transcriptional plasticity and functional divergence remain unresolved. In this work we challenged S. cerevisiae to the use of lactic acid/lactate as the sole carbon source and performed a small adaptive laboratory evolution to this non-fermentative carbon source, determining phenotypic and transcriptomic changes. We observed growth adaptation to acidic stress, by reduction of growth rate and increase in biomass production, while the transcriptomic response was mainly driven by repression of the whole-genome duplicates, those implied in glycolysis and overexpression of ROS response. The contribution of several duplicated pairs to this carbon source switch and acidic stress is also discussed.
Collapse
|
20
|
You HJ, You BC, Kim JK, Park JM, Song BS, Myung JK. Characterization of Proteins Regulated by Androgen and Protein Kinase a Signaling in VCaP Prostate Cancer Cells. Biomedicines 2021; 9:biomedicines9101404. [PMID: 34680521 PMCID: PMC8533394 DOI: 10.3390/biomedicines9101404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/25/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
Androgen signaling via the androgen receptor (AR) is involved in normal prostate development and prostate cancer progression. In addition to androgen binding, a variety of protein kinases, including cyclic AMP-dependent protein kinase A (PKA), can activate the AR. Although hormone deprivation, especially that of androgen, continues to be an important strategy for treating prostate cancer patients, the disease ultimately progresses to castration-resistant prostate cancer (CRPC), despite a continuous hormone-deprived environment. To date, it remains unclear which pathways in this progression are active and targetable. Here, we performed a proteomic analysis of VCaP cells stimulated with androgen or forskolin to identify proteins specific for androgen-induced and androgen-bypassing signaling, respectively. Patterns of differentially expressed proteins were quantified, and eight proteins showing significant changes in expression were identified. Functional information, including a Gene Ontology analysis, revealed that most of these proteins are involved in metabolic processes and are associated with cancer. The mRNA and protein expression of selected proteins was validated, and functional correlations of identified proteins with signaling in VCaP cells were assessed by measuring metabolites related to each enzyme. These analyses offered new clues regarding effector molecules involved in prostate cancer development, insights that are supported by the demonstration of increased expression levels of the eight identified proteins in prostate cancer patients and assessments of the progression-free interval. Taken together, our findings show that aberrant levels of eight proteins reflect molecular changes that are significantly regulated by androgen and/or PKA signaling pathways, suggesting possible molecular mechanisms of CRPC.
Collapse
Affiliation(s)
- Hye-Jin You
- Division of Translational Science, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Korea; (H.-J.Y.); (B.-C.Y.)
- Department of Cancer Biomedical Science, National Cancer Center-Graduate School of Cancer Science and Policy, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Korea; (J.-M.P.); (B.-S.S.)
| | - Byong-Chul You
- Division of Translational Science, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Korea; (H.-J.Y.); (B.-C.Y.)
- Department of Cancer Biomedical Science, National Cancer Center-Graduate School of Cancer Science and Policy, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Korea; (J.-M.P.); (B.-S.S.)
| | - Jong-Kwang Kim
- Research Core Center, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Korea;
| | - Jae-Min Park
- Department of Cancer Biomedical Science, National Cancer Center-Graduate School of Cancer Science and Policy, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Korea; (J.-M.P.); (B.-S.S.)
| | - Bo-Seul Song
- Department of Cancer Biomedical Science, National Cancer Center-Graduate School of Cancer Science and Policy, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Korea; (J.-M.P.); (B.-S.S.)
| | - Jae-Kyung Myung
- Department of Cancer Biomedical Science, National Cancer Center-Graduate School of Cancer Science and Policy, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Korea; (J.-M.P.); (B.-S.S.)
- Correspondence: ; Tel.: +82-31-920-2746
| |
Collapse
|
21
|
Llibre A, Dedicoat M, Burel JG, Demangel C, O’Shea MK, Mauro C. Host Immune-Metabolic Adaptations Upon Mycobacterial Infections and Associated Co-Morbidities. Front Immunol 2021; 12:747387. [PMID: 34630426 PMCID: PMC8495197 DOI: 10.3389/fimmu.2021.747387] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022] Open
Abstract
Mycobacterial diseases are a major public health challenge. Their causative agents include, in order of impact, members of the Mycobacterium tuberculosis complex (causing tuberculosis), Mycobacterium leprae (causing leprosy), and non-tuberculous mycobacterial pathogens including Mycobacterium ulcerans. Macrophages are mycobacterial targets and they play an essential role in the host immune response to mycobacteria. This review aims to provide a comprehensive understanding of the immune-metabolic adaptations of the macrophage to mycobacterial infections. This metabolic rewiring involves changes in glycolysis and oxidative metabolism, as well as in the use of fatty acids and that of metals such as iron, zinc and copper. The macrophage metabolic adaptations result in changes in intracellular metabolites, which can post-translationally modify proteins including histones, with potential for shaping the epigenetic landscape. This review will also cover how critical tuberculosis co-morbidities such as smoking, diabetes and HIV infection shape host metabolic responses and impact disease outcome. Finally, we will explore how the immune-metabolic knowledge gained in the last decades can be harnessed towards the design of novel diagnostic and therapeutic tools, as well as vaccines.
Collapse
Affiliation(s)
- Alba Llibre
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Martin Dedicoat
- Department of Infectious Diseases, Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Julie G. Burel
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Caroline Demangel
- Immunobiology of Infection Unit, Institut Pasteur, INSERM U1224, Paris, France
| | - Matthew K. O’Shea
- Department of Infectious Diseases, Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
22
|
Llibre A, Grudzinska FS, O'Shea MK, Duffy D, Thickett DR, Mauro C, Scott A. Lactate cross-talk in host-pathogen interactions. Biochem J 2021; 478:3157-3178. [PMID: 34492096 PMCID: PMC8454702 DOI: 10.1042/bcj20210263] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
Lactate is the main product generated at the end of anaerobic glycolysis or during the Warburg effect and its role as an active signalling molecule is increasingly recognised. Lactate can be released and used by host cells, by pathogens and commensal organisms, thus being essential for the homeostasis of host-microbe interactions. Infection can alter this intricate balance, and the presence of lactate transporters in most human cells including immune cells, as well as in a variety of pathogens (including bacteria, fungi and complex parasites) demonstrates the importance of this metabolite in regulating host-pathogen interactions. This review will cover lactate secretion and sensing in humans and microbes, and will discuss the existing evidence supporting a role for lactate in pathogen growth and persistence, together with lactate's ability to impact the orchestration of effective immune responses. The ubiquitous presence of lactate in the context of infection and the ability of both host cells and pathogens to sense and respond to it, makes manipulation of lactate a potential novel therapeutic strategy. Here, we will discuss the preliminary research that has been carried out in the context of cancer, autoimmunity and inflammation.
Collapse
Affiliation(s)
- Alba Llibre
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
- Translational Immunology Laboratory, Institut Pasteur, Paris, France
| | - Frances S Grudzinska
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Matthew K O'Shea
- Department of Infection, University Hospitals Birmingham NHS Foundation Trust, Birmingham, U.K
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, U.K
| | - Darragh Duffy
- Translational Immunology Laboratory, Institut Pasteur, Paris, France
| | - David R Thickett
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Aaron Scott
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| |
Collapse
|
23
|
Manoharan I, Prasad PD, Thangaraju M, Manicassamy S. Lactate-Dependent Regulation of Immune Responses by Dendritic Cells and Macrophages. Front Immunol 2021; 12:691134. [PMID: 34394085 PMCID: PMC8358770 DOI: 10.3389/fimmu.2021.691134] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/14/2021] [Indexed: 12/28/2022] Open
Abstract
For decades, lactate has been considered an innocuous bystander metabolite of cellular metabolism. However, emerging studies show that lactate acts as a complex immunomodulatory molecule that controls innate and adaptive immune cells’ effector functions. Thus, recent advances point to lactate as an essential and novel signaling molecule that shapes innate and adaptive immune responses in the intestine and systemic sites. Here, we review these recent advances in the context of the pleiotropic effects of lactate in regulating diverse functions of immune cells in the tissue microenvironment and under pathological conditions.
Collapse
Affiliation(s)
- Indumathi Manoharan
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Puttur D Prasad
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Muthusamy Thangaraju
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Santhakumar Manicassamy
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
24
|
Immunometabolism Modulation in Therapy. Biomedicines 2021; 9:biomedicines9070798. [PMID: 34356862 PMCID: PMC8301471 DOI: 10.3390/biomedicines9070798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023] Open
Abstract
The study of cancer biology should be based around a comprehensive vision of the entire tumor ecosystem, considering the functional, bioenergetic and metabolic state of tumor cells and those of their microenvironment, and placing particular importance on immune system cells. Enhanced understanding of the molecular bases that give rise to alterations of pathways related to tumor development can open up new therapeutic intervention opportunities, such as metabolic regulation applied to immunotherapy. This review outlines the role of various oncometabolites and immunometabolites, such as TCA intermediates, in shaping pro/anti-inflammatory activity of immune cells such as MDSCs, T lymphocytes, TAMs and DCs in cancer. We also discuss the extraordinary plasticity of the immune response and its implication in immunotherapy efficacy, and highlight different therapeutic intervention possibilities based on controlling the balanced systems of specific metabolites with antagonistic functions.
Collapse
|