1
|
Akagi M, Ohta K, Sakuma M, Naruse T, Ishida Y, Niwata C, Yamakado N, Nakagawa T, Ono S, Nishi H, Shigeishi H, Aikawa T. TMPRSS2 expression in oral mucosal cells induced by transfected double-stranded RNA and IL-1β. J Oral Biosci 2025:100619. [PMID: 39965753 DOI: 10.1016/j.job.2025.100619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/20/2025]
Abstract
OBJECTIVES Transmembrane serine protease 2 (TMPRSS2) plays a key role in the entry of viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A into host cells, and its elevated expression is a risk factor for the spread of viral infection. However, TMPRSS2 expression and the factors related to its induction in oral keratinocytes and fibroblasts remain largely unknown. Here, we examined TMPRSS2 expression and factors related to its induction in oral mucosal cells. METHODS TMPRSS2 expression was examined in oral keratinocytes (RT7) and fibroblasts (GT1). Subsequently, TMPRSS2 induction in was analyzed in both cell types following transfection of nucleic acid and inflammatory cytokines, such as interleukin (IL)-1β. Finally, the effects of IL-1β on STAT1 activation related to double-stranded RNA (dsRNA)-induced TMPRSS2 expression were examined. RESULTS RT7 and GT1 cells exhibited constitutive TMPRSS2 mRNA and protein expression. Transfection with Poly(I:C) (as a dsRNA) and poly (dA:dT) (as a double-stranded DNA [dsDNA]) increased TMPRSS2 expression. TMPRSS2 expression was also increased by IL-1β, but not IFN-γ or TNF-α, while the combination of IL-1β and transfected Poly(I:C) caused a dramatic increase in TMPRSS2 expression as compared to each alone in both cell types. IL-1β also enhanced transfected Poly(I:C)-activated STAT1 related to TMPRSS2 expression. CONCLUSIONS TMPRSS2-expressing oral keratinocytes and fibroblasts are targets of SARS-CoV-2 and influenza A virus. TMPRSS2 expression, in cooperation with IL-1β, plays an important role in promoting infection during virus invasion in oral mucosal cells.
Collapse
Affiliation(s)
- Misaki Akagi
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Kouji Ohta
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan.
| | - Miyuki Sakuma
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Takako Naruse
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Yoko Ishida
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Chieko Niwata
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Nao Yamakado
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Takayuki Nakagawa
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Shigehiro Ono
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Hiromi Nishi
- Department of General Dentistry, Hiroshima University Hospital, Hiroshima, 734-8553, Japan
| | - Hideo Shigeishi
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Tomonao Aikawa
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| |
Collapse
|
2
|
Tsuda T, Suzuki M, Kato Y, Kidoguchi M, Kumai T, Fujieda S, Sakashita M. The current findings in eosinophilic chronic rhinosinusitis. Auris Nasus Larynx 2024; 51:51-60. [PMID: 37574421 DOI: 10.1016/j.anl.2023.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023]
Abstract
Chronic rhinosinusitis (CRS) is a persistent inflammatory disease of the nasal cavity and paranasal sinuses. Traditional classification is denoted by the presence (CRSwNP) or absence of nasal polyps (CRSsNP). Particularly, CRSwNP is distinguished by the presence of infiltrating cells and inflammatory markers in the nasal mucosa. Patients with CRSwNP in Western countries predominantly display a type 2 endotype, whereas those in Asian regions display a mixed type 2 endotype. Nevertheless, recent transcriptome analyses have revealed two types of nasal polyps - type 2 and non-type 2 polyps, suggesting that geographical differences in endotypes likely resulted from the different proportions of each endotype. Moreover, various endotypes of CRSsNP have been identified, making phenotype a crucial factor for predicting treatment efficacy. Type 2 endotypes, designated as eosinophilic CRS (ECRS) in Japan, are characterized by severe eosinophilic infiltration into the paranasal sinus tissue and are particularly refractory. In this review, we discuss the latest developments in ECRS. We also provide recent findings on the involvement of nasal epithelial cells in pathogenesis.
Collapse
Affiliation(s)
- Takeshi Tsuda
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Masanobu Suzuki
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 14-jo nishi 5, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Yukinori Kato
- Division of Otorhinolaryngology and Head & Neck Surgery, Department of Sensory and Locomotor Medicine Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Yoshida, Eiheiji, Fukui 910-1193, Japan
| | - Masanori Kidoguchi
- Division of Otorhinolaryngology and Head & Neck Surgery, Department of Sensory and Locomotor Medicine Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Yoshida, Eiheiji, Fukui 910-1193, Japan
| | - Takumi Kumai
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan
| | - Shigeharu Fujieda
- Division of Otorhinolaryngology and Head & Neck Surgery, Department of Sensory and Locomotor Medicine Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Yoshida, Eiheiji, Fukui 910-1193, Japan
| | - Masafumi Sakashita
- Division of Otorhinolaryngology and Head & Neck Surgery, Department of Sensory and Locomotor Medicine Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Yoshida, Eiheiji, Fukui 910-1193, Japan.
| |
Collapse
|
3
|
Roozbehani M, Razizadeh MH, Keyvani H, Nejati F, Soleymani S, Mousavizadeh L. Expression Pattern of Cholesterol 25-Hydroxylase and Serum Level of 25-Hydroxycholesterol and Relevant Inflammatory Cytokines in Patients with Varying Disease Severity of COVID-19. Viral Immunol 2023; 36:610-616. [PMID: 37831916 DOI: 10.1089/vim.2023.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023] Open
Abstract
Cholesterol 25-hydroxylase (CH25H) and its product 25-hydroxycholesterol (25HC) showed antiviral effects against various viruses in vitro. CH25H expression is regulated in mice by pro-inflammatory cytokine interferons (IFNs) in mice but data on its possible correlation with IFNs in humans are still unclear. We examined gene expression of CH25H, IFN-α, and IFN-β and serum levels of 25HC in Iranian patients with mild and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Fifty intensive care unit (ICU) patients and outpatients with SARS-CoV-2 and 25 healthy controls were studied. Gene expression of CH25H and relevant inflammatory cytokines was quantified in peripheral blood mononuclear cells by real-time polymerase chain reaction. The expression of CH25H and serum levels of 25HC were significantly higher in ICU patients with SARS-CoV-2. Notably, IFN-α levels increased in healthy controls. However, compared to healthy controls, IFN-β was considerably higher in outpatients. Finally, statistical analysis shows that no correlation was found between CH25H and IFN-α expression; nevertheless, a lower correlation was found with IFN-β. The data revealed that CH25H and 25HC levels increase after SARS-CoV-2 infection. In other words, decreased levels of those factors in severe patients compared with mild patients may indicate the importance of their function in controlling the progression of the disease.
Collapse
Affiliation(s)
- Mona Roozbehani
- Vaccine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Hossein Keyvani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nejati
- Vaccine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sharareh Soleymani
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute, ACECR, Tehran, Iran
| | - Leila Mousavizadeh
- Vaccine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Meng M, Gao R, Liu Z, Liu F, Du S, Song Y, He J. Ginsenosides, potential TMPRSS2 inhibitors, a trade-off between the therapeutic combination for anti-PD-1 immunotherapy and the treatment of COVID-19 infection of LUAD patients. Front Pharmacol 2023; 14:1085509. [PMID: 36992839 PMCID: PMC10040610 DOI: 10.3389/fphar.2023.1085509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/09/2023] [Indexed: 03/14/2023] Open
Abstract
Background: Acting as a viral entry for coronavirus to invade human cells, TMPRSS2 has become a target for the prevention and treatment of COVID-19 infection. Before this, TMPRSS2 has presented biological functions in cancer, but the roles remain controversial and the mechanism remains unelucidated. Some chemicals have been reported to be inhibitors of TMPRSS2 and also demonstrated other pharmacological properties. At this stage, it is important to discover more new compounds targeting TMPRSS2, especially from natural products, for the prevention and treatment of COVID-19 infection.Methods: We analyzed the correlation between TMPRSS2 expression, methylation level, overall survival rate, clinical parameters, biological process, and determined the correlation between TMPRSS2 and tumor-infiltrating lymphocytes in the tumor and adjacent normal tissue of adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) respectively by using various types of bioinformatics approaches. Moreover, we determined the correlation between TMPRSS2 protein level and the prognosis of LUAD and LUSC cohorts by immunohistochemistry assay. Furthermore, the cancer immunome atlas (TCIA) database was used to predict the relationship between the expression of TMPRSS2 and response to programmed cell death protein 1 (PD-1) blocker immunotherapy in lung cancer patients. Finally, the putative binding site of ginsenosides bound to TMPRSS2 protein was built from homology modeling to screen high-potency TMPRSS2 inhibitors.Results: We found that TMPRSS2 recruits various types of immunocytes, including CD8+, CD4+ T cells, B cells and DCs both in LUAD and LUSC patients, and the correlation between TMPRSS2 expression and CD8+ and CD4+ T cells are stronger in LUAD rather than in LUSC, but excludes macrophages and neutrophils in LUAD patient cohorts. These might be the reason that higher mRNA and protein levels of TMPRSS2 are associated with better prognosis in LUAD cohorts rather than in LUSC cohorts. Furthermore, we found that TMPRSS2 was positively correlated with the prognosis in patient nonresponse to anti-PD-1 therapy. Therefore, we made an inference that increasing the expression level of TMPRSS2 may improve the anti-PD-1 immunotherapy efficacy. Finally, five ginsenosides candidates with high inhibition potency were screened from the natural chemical library to be used as TMPRSS2 inhibitors.Conclusion: All these may imply that TMPRSS2 might be a novel prognostic biomarker and serve as a potential immunomodulator target of immunotherapy combination therapies in LUAD patients nonresponse to anti-PD-1 therapy. Also, these findings may suggest we should pay more attention to LUAD patients, especially those infected with COVID-19, who should avoid medicating TMPRSS2 inhibitors, such as ginsenosides to gain prophylactic and therapeutic benefits against COVID-19.
Collapse
Affiliation(s)
- Mei Meng
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Gao
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zixue Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengxiang Liu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Shiyu Du
- Engineering Laboratory of Nuclear Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, China
- School of Computer Science, China University of Petroleum (East China), Qingdao, China
- *Correspondence: Jian He, ; Yizhi Song, ; Shiyu Du,
| | - Yizhi Song
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- *Correspondence: Jian He, ; Yizhi Song, ; Shiyu Du,
| | - Jian He
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Jian He, ; Yizhi Song, ; Shiyu Du,
| |
Collapse
|
5
|
Verma R, Raj S, Berry U, Ranjith-Kumar CT, Surjit M. Drug Repurposing for COVID-19 Therapy: Pipeline, Current Status and Challenges. DRUG REPURPOSING FOR EMERGING INFECTIOUS DISEASES AND CANCER 2023:451-478. [DOI: 10.1007/978-981-19-5399-6_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Bafadhel M, Faner R, Taillé C, Russell REK, Welte T, Barnes PJ, Agustí A. Inhaled corticosteroids for the treatment of COVID-19. Eur Respir Rev 2022; 31:220099. [PMID: 36450371 PMCID: PMC9724831 DOI: 10.1183/16000617.0099-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/09/2022] [Indexed: 12/02/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused severe illness and mortality for millions worldwide. Despite the development, approval and rollout of vaccination programmes globally to prevent infection by SARS-CoV-2 and the development of coronavirus disease 2019 (COVID-19), treatments are still urgently needed to improve outcomes. Early in the pandemic it was observed that patients with pre-existing asthma or COPD were underrepresented among those with COVID-19. Evidence from clinical studies indicates that the inhaled corticosteroids (ICS) routinely taken for asthma and COPD could have had a protective role in preventing severe COVID-19 and, therefore, may be a promising treatment for COVID-19. This review summarises the evidence supporting the beneficial effects of ICS on outcomes in patients with COVID-19 and explores the potential protective mechanisms.
Collapse
Affiliation(s)
- Mona Bafadhel
- King's Centre for Lung Health, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Rosa Faner
- CIBER Enfermedades Respiratorias, IDIBAPS, Barcelona, Spain
| | - Camille Taillé
- Department of Pulmonary Diseases, University Hospital Bichat-Claude Bernard, AP-HP Nord, University of Paris, Paris, France
| | - Richard E K Russell
- King's Centre for Lung Health, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Tobias Welte
- Department of Pulmonary and Infectious Diseases, Hannover University School of Medicine, Hannover, Germany
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Alvar Agustí
- Cátedra de Salud Respiratoria (University of Barcelona), Respiratory Institute (Hospital Clinic Barcelona), IDIBAPS and CIBERES, Barcelona, Spain
| |
Collapse
|
7
|
Boast A, Curtis N, Holschier J, Purcell R, Bannister S, Plover C, Chinnapan M, Burgner D, Boyce SL, McNab S, Gwee A. An Approach to the Treatment of Children With COVID-19. Pediatr Infect Dis J 2022; 41:654-662. [PMID: 35622429 PMCID: PMC9281416 DOI: 10.1097/inf.0000000000003576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 12/15/2022]
Abstract
There are limited data to guide treatment recommendations for children with acute, symptomatic coronavirus disease 2019 (COVID-19). This review outlines a proposed management approach for children based on the published evidence to date and the approval of medications through drug regulatory agencies, as well as the known safety profile of the recommended drugs in this age group.
Collapse
Affiliation(s)
- Alison Boast
- Infectious Diseases and General Medicine, The Royal Children’s Hospital Melbourne
- Department of Paediatrics, The University of Melbourne
- Infectious Diseases, Inflammatory Origins and Clinical Paediatrics Research Groups, Murdoch Children’s Research Institute
| | - Nigel Curtis
- Infectious Diseases and General Medicine, The Royal Children’s Hospital Melbourne
- Department of Paediatrics, The University of Melbourne
- Infectious Diseases, Inflammatory Origins and Clinical Paediatrics Research Groups, Murdoch Children’s Research Institute
| | - Johanna Holschier
- Pharmacy and Medicines Information Centre, The Royal Children’s Hospital Melbourne, Parkville, Australia
| | - Rachael Purcell
- Infectious Diseases and General Medicine, The Royal Children’s Hospital Melbourne
- Department of Paediatrics, The University of Melbourne
| | - Samantha Bannister
- Infectious Diseases and General Medicine, The Royal Children’s Hospital Melbourne
- Department of Paediatrics, The University of Melbourne
- Infectious Diseases, Inflammatory Origins and Clinical Paediatrics Research Groups, Murdoch Children’s Research Institute
| | - Christine Plover
- Pharmacy and Medicines Information Centre, The Royal Children’s Hospital Melbourne, Parkville, Australia
| | - Maidhili Chinnapan
- Infectious Diseases and General Medicine, The Royal Children’s Hospital Melbourne
| | - David Burgner
- Infectious Diseases and General Medicine, The Royal Children’s Hospital Melbourne
- Department of Paediatrics, The University of Melbourne
- Infectious Diseases, Inflammatory Origins and Clinical Paediatrics Research Groups, Murdoch Children’s Research Institute
| | - Suzanne L. Boyce
- Infectious Diseases and General Medicine, The Royal Children’s Hospital Melbourne
- Infectious Diseases, Inflammatory Origins and Clinical Paediatrics Research Groups, Murdoch Children’s Research Institute
| | - Sarah McNab
- Infectious Diseases and General Medicine, The Royal Children’s Hospital Melbourne
- Department of Paediatrics, The University of Melbourne
- Infectious Diseases, Inflammatory Origins and Clinical Paediatrics Research Groups, Murdoch Children’s Research Institute
| | - Amanda Gwee
- Infectious Diseases and General Medicine, The Royal Children’s Hospital Melbourne
- Department of Paediatrics, The University of Melbourne
- Infectious Diseases, Inflammatory Origins and Clinical Paediatrics Research Groups, Murdoch Children’s Research Institute
| |
Collapse
|
8
|
Bioactive components of different nasal spray solutions may defeat SARS-Cov2: repurposing and in silico studies. J Mol Model 2022; 28:212. [PMID: 35794497 DOI: 10.1007/s00894-022-05213-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/01/2022] [Indexed: 12/15/2022]
Abstract
The recent outbreak "Coronavirus Disease 2019 (COVID-19)" is caused by fast-spreading and highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV2). This virus enters into the human respiratory system by binding of the viral surface spike glycoprotein (S-protein) to an angiotensin-converting enzyme2 (ACE2) receptor that is found in the nasal passage and oral cavity of a human. Both spike protein and the ACE2 receptor have been identified as promising therapeutic targets to develop anti-SARS-CoV2 drugs. No therapeutic drugs have been developed as of today except for some vaccines. Therefore, potent therapeutic agents are urgently needed to combat the COVID-19 infections. This goal would be achieved only by applying drug repurposing and computational approaches. Thus, based on drug repurposing approach, we have investigated 16 bioactive components (1-16) from different nasal spray solutions to check their efficacies against human ACE2 and SARS-CoV2 spike proteins by performing molecular docking and molecular dynamic (MD) simulation studies. In this study, three bioactive components namely ciclesonide (8), levocabastine (13), and triamcinolone acetonide (16) have been found as promising inhibitory agents against SARS-CoV2 spike and human ACE2 receptor proteins with excellent binding affinities, comparing to reference drugs such as nafamostat, arbidol, losartan, and benazepril. Furthermore, MD simulations were performed (triplicate) for 100 ns to confirm the stability of 8, 13, and 16 with said protein targets and to compute MM-PBSA-based binding-free energy calculations. Thus, bioactive components 8, 13, and 16 open the door for researchers and scientist globally to investigate them against SARS-CoV2 through in vitro and in vivo analysis.
Collapse
|
9
|
Suzuki M, Cooksley C, Suzuki T, Ramezanpour M, Nakazono A, Nakamaru Y, Homma A, Vreugde S. TLR Signals in Epithelial Cells in the Nasal Cavity and Paranasal Sinuses. FRONTIERS IN ALLERGY 2022; 2:780425. [PMID: 35387020 PMCID: PMC8974762 DOI: 10.3389/falgy.2021.780425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
The respiratory tract is constantly at risk of invasion by microorganisms such as bacteria, viruses, and fungi. In particular, the mucosal epithelium of the nasal cavity and paranasal sinuses is at the very forefront of the battles between the host and the invading pathogens. Recent studies have revealed that the epithelium not only constitutes a physical barrier but also takes an essential role in the activation of the immune system. One of the mechanisms equipped in the epithelium to fight against microorganisms is the Toll-like receptor (TLR) response. TLRs recognize common structural components of microorganisms and activate the innate immune system, resulting in the production of a plethora of cytokines and chemokines in the response against microbes. As the epithelia-derived cytokines are deeply involved in the pathogenesis of inflammatory conditions in the nasal cavity and paranasal sinuses, such as chronic rhinosinusitis (CRS) and allergic rhinitis (AR), the molecules involved in the TLR response may be utilized as therapeutic targets for these diseases. There are several differences in the TLR response between nasal and bronchial epithelial cells, and knowledge of the TLR signals in the upper airway is sparse compared to that in the lower airway. In this review, we provide recent evidence on TLR signaling in the upper airway, focusing on the expression, regulation, and responsiveness of TLRs in human nasal epithelial cells (HNECs). We also discuss how TLRs in the epithelium are involved in the pathogenesis of, and possible therapeutic targeting, for CRS and AR.
Collapse
Affiliation(s)
- Masanobu Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Clare Cooksley
- Department of Surgery-Otorhinolaryngology Head and Neck Surgery, Central Adelaide Local Health Network and the University of Adelaide, Adelaide, SA, Australia
| | - Takayoshi Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mahnaz Ramezanpour
- Department of Surgery-Otorhinolaryngology Head and Neck Surgery, Central Adelaide Local Health Network and the University of Adelaide, Adelaide, SA, Australia
| | - Akira Nakazono
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuji Nakamaru
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akihiro Homma
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Sarah Vreugde
- Department of Surgery-Otorhinolaryngology Head and Neck Surgery, Central Adelaide Local Health Network and the University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
10
|
Strauss R, Attaway AH, Zein JG. Reply to "A limitation regarding the association between intranasal corticosteroid use and better COVID-19 outcomes: Nasal symptoms matter". THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:355-356. [PMID: 35000738 PMCID: PMC8733312 DOI: 10.1016/j.jaip.2021.10.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/01/2022]
Affiliation(s)
| | - Amy H Attaway
- Respiratory Institute, Cleveland Clinic, Cleveland, Ohio; Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Joe G Zein
- Respiratory Institute, Cleveland Clinic, Cleveland, Ohio; Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
11
|
Gao YD, Agache I, Akdis M, Nadeau K, Klimek L, Jutel M, Akdis CA. The effect of allergy and asthma as a comorbidity on the susceptibility and outcomes of COVID-19. Int Immunol 2021; 34:177-188. [PMID: 34788827 PMCID: PMC8689956 DOI: 10.1093/intimm/dxab107] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic causes an overwhelming number of hospitalization and deaths with a significant socioeconomic impact. The vast majority of studies indicate that asthma and allergic diseases do not represent a risk factor for COVID-19 susceptibility nor cause a more severe course of disease. This raises the opportunity to investigate the underlying mechanisms of the interaction between an allergic background and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The majority of patients with asthma, atopic dermatitis, allergic rhinitis, chronic rhinosinusitis, food allergies and drug allergies exhibit an over-expression of type 2 immune and inflammatory pathways with the contribution of epithelial cells, innate lymphoid cells, dendritic cells, T cells, eosinophils, mast cells, basophils, and the type 2 cytokines interleukin (IL)-4, IL-5, IL-9, IL-13, and IL-31. The potential impact of type 2 inflammation-related allergic diseases on susceptibility to COVID-19 and severity of its course have been reported. In this review, the prevalence of asthma and other common allergic diseases in COVID-19 patients is addressed. Moreover, the impact of allergic and non-allergic asthma with different severity and control status, currently available asthma treatments such as inhaled and oral corticosteroids, short- and long-acting β2 agonists, leukotriene receptor antagonists and biologicals on the outcome of COVID-19 patients is reviewed. In addition, possible protective mechanisms of asthma and type 2 inflammation on COVID-19 infection, such as the expression of SARS-CoV-2 entry receptors, antiviral activity of eosinophils and cross-reactive T-cell epitopes, are discussed. Potential interactions of other allergic diseases with COVID-19 are postulated, including recommendations for their management.
Collapse
Affiliation(s)
- Ya-Dong Gao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.,Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
| | - Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard Strasse, Davos, Switzerland
| | - Kari Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford University, Palo Alto, California, USA
| | - Ludger Klimek
- Center for Rhinology and Allergology, An den Quellen, Wiesbaden, Germany
| | - Marek Jutel
- Department of Clinical Immunology, Wrocław Medical University.,All-MED Medical Research Institute, Wrocław, Poland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard Strasse, Davos, Switzerland
| |
Collapse
|
12
|
Qu L, Chen C, Yin T, Fang Q, Hong Z, Zhou R, Tang H, Dong H. ACE2 and Innate Immunity in the Regulation of SARS-CoV-2-Induced Acute Lung Injury: A Review. Int J Mol Sci 2021; 22:11483. [PMID: 34768911 PMCID: PMC8583933 DOI: 10.3390/ijms222111483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 01/08/2023] Open
Abstract
Despite the protracted battle against coronavirus acute respiratory infection (COVID-19) and the rapid evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), no specific and effective drugs have to date been reported. Angiotensin-converting enzyme 2 (ACE2) is a zinc metalloproteinase and a critical modulator of the renin-angiotensin system (RAS). In addition, ACE2 has anti-inflammatory and antifibrosis functions. ACE has become widely known in the past decade as it has been identified as the primary receptor for SARS-CoV and SARS-CoV-2, being closely associated with their infection. SARS-CoV-2 primarily targets the lung, which induces a cytokine storm by infecting alveolar cells, resulting in tissue damage and eventually severe acute respiratory syndrome. In the lung, innate immunity acts as a critical line of defense against pathogens, including SARS-CoV-2. This review aims to summarize the regulation of ACE2, and lung host cells resist SARS-CoV-2 invasion by activating innate immunity response. Finally, we discuss ACE2 as a therapeutic target, providing reference and enlightenment for the clinical treatment of COVID-19.
Collapse
Affiliation(s)
- Lihua Qu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (L.Q.); (T.Y.); (Q.F.); (Z.H.); (R.Z.)
| | - Chao Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210013, China;
| | - Tong Yin
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (L.Q.); (T.Y.); (Q.F.); (Z.H.); (R.Z.)
| | - Qian Fang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (L.Q.); (T.Y.); (Q.F.); (Z.H.); (R.Z.)
| | - Zizhan Hong
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (L.Q.); (T.Y.); (Q.F.); (Z.H.); (R.Z.)
| | - Rui Zhou
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (L.Q.); (T.Y.); (Q.F.); (Z.H.); (R.Z.)
| | - Hongbin Tang
- Center for Animal Experiment, State Key Laboratory of Virology, Wuhan University, Wuhan 430071, China
| | - Huifen Dong
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (L.Q.); (T.Y.); (Q.F.); (Z.H.); (R.Z.)
| |
Collapse
|