1
|
Mamudu CO, Polidoro R, Gallego-Delgado J. Animal Models of Malaria-Associated Acute Kidney Injury. Semin Nephrol 2025:151616. [PMID: 40374463 DOI: 10.1016/j.semnephrol.2025.151616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Malaria-associated acute kidney injury (MAKI) is a critical complication of severe malaria, particularly in infections caused by Plasmodium falciparum, which is responsible for most malaria-related deaths. MAKI affects 40-60% ofs severe malaria cases, significantly increasing mortality, especially in pediatric patients. Its pathogenesis remains unclear, though mechanisms such as hemodynamic disturbances, oxidative stress, and immune responses are implicated. Animal models, particularly murine and nonhuman primates, provide valuable insights into MAKI's underlying processes. Murine models, though not fully replicative of human malaria, allow for the exploration of immune responses, kidney injury biomarkers, and therapeutic approaches. Nonhuman primate models, closer to human physiology, offer additional complexity for studying malaria's renal manifestations. This review critically examines the existing animal models, addressing their strengths and limitations in replicating human MAKI and highlighting the importance of advancing research in this field to develop targeted treatments. Semin Nephrol 36:x-xx © 20XX Elsevier Inc. All rights reserved.
Collapse
Affiliation(s)
- Collins Ojonugwa Mamudu
- Department of Biological Sciences, Lehman College, City University of New York. Bronx, New York, NY, USA; PhD Program in Biochemistry, The Graduate Center, City University of New York, New York, NY, USA
| | - Rafael Polidoro
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Diseases and Global Health, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Julio Gallego-Delgado
- Department of Biological Sciences, Lehman College, City University of New York. Bronx, New York, NY, USA; PhD Program in Biochemistry, The Graduate Center, City University of New York, New York, NY, USA; PhD Program in Biology, The Graduate Center, City University of New York, New York, NY, USA.
| |
Collapse
|
2
|
Li Y, Tang J, Tang W, Liu C, Li Z. Host factors influencing sexual differentiation and transmission of Plasmodium: A comprehensive review. Acta Trop 2025; 266:107634. [PMID: 40288552 DOI: 10.1016/j.actatropica.2025.107634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
Malaria, a severe parasitic disease caused by Plasmodium infections, remains a major global health challenge. Efforts to eradicate malaria are complicated by the parasite's intricate life cycle, which alternates between vertebrate hosts and mosquito vectors. Host-derived factors and parasite-sourced components exert crucial roles in regulating this biological process. This review explores the critical role of host-derived factors in shaping Plasmodium sexual differentiation and transmission. We examine how vertebrate and mosquito host-specific factors either promote or restrict parasite development, influencing the transition from vertebrates to mosquitoes. Understanding these host-mediated mechanisms is crucial for developing novel transmission-blocking strategies to reduce malaria prevalence. By highlighting key interactions between hosts and parasites, this review provides insights into potential interventions that could disrupt Plasmodium transmission and contribute to malaria control efforts.
Collapse
Affiliation(s)
- Yanlin Li
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jingjing Tang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Wei Tang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Cong Liu
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhenkui Li
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
3
|
Zeydabadinejad S, Kim JSA, Zheng A, Kandalgaonkar MR, Ababio PB, Vijay-Kumar M, Yeoh BS, Saha P. Targeting anemia-induced CD71 + reticulocytes protects mice from Plasmodium infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632761. [PMID: 39868225 PMCID: PMC11761513 DOI: 10.1101/2025.01.13.632761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Malaria, caused by Plasmodium spp., is a global health concern linked to anemia and increased mortality. Compensatory erythropoiesis seen during acute anemia results in an increased circulating reticulocyte count ( i.e. , immature RBC) a key factor in understanding the relationship between pre-existing anemia and Plasmodium burden. Reticulocytes in mice are marked by transferrin receptor (CD71 + ) and glycophorin A-associated protein (Ter119 + ). To model acute anemia with increased reticulocytes, C57BL/6 mice were either bled ( i.e. phlebotomized) or administered phenylhydrazine, before being infected with Plasmodium yoelii ( P. yoelii ), a mouse-specific strain with a preference for reticulocytes. In P. yoelii -infected anemic mice, we observed heightened parasitemia and significant body weight loss compared with non-anemic P. yoelii -infected mice. Additionally, serum inflammatory cytokines, erythropoietin, and liver injury markers, along with hemozoin deposition significantly increased in anemic P. yoelii -infected mice. RBC transfusion from healthy normal donors to P. yoelii -infected anemic recipient mice ameliorated anemia by reducing overall reticulocyte count and increasing mature RBC count. RBC transfusion rescued body weight loss, decreased parasitemia, and reduced serum erythropoietin levels. Finally, to confirm the role of reticulocytes in P. yoelii infection, reticulocytes were depleted using anti-CD71 monoclonal antibody in P. yoelii -infected mice. We observed improvement in hematologic parameters and stark reduction in parasitemia in both pre-existing anemic and non-anemic P. yoelii -infected mice. Collectively, our results suggest that pre-existing anemia may increase the risk of Plasmodium infection due to the greater reticulocytes population. Anti-CD71 treatment in Plasmodium infection may offer a novel therapeutic strategy to combat Plasmodium infection and malaria. Grant support This work was supported by grants from the Crohn's and Colitis Foundation (CCF) and American Heart Association (AHA) Career Development Award (854385 and 855256 respectively) to Piu Saha; grant from the National Institutes of Health (NIH) to Matam Vijay-Kumar (DK134053) and Liver Scholar Award from American liver Foundation to Beng San Yeoh.
Collapse
|
4
|
Dao F, Niangaly A, Sogore F, Wague M, Dabitao D, Goita S, Hadara AS, Diakite O, Maiga M, Maiga FO, Cazevieille C, Cassan C, Talman AM, Djimde AA, Marin-Menendez A, Dembélé L. Malian field isolates provide insight into Plasmodium malariae intra-erythrocytic development and invasion. PLoS Negl Trop Dis 2025; 19:e0012790. [PMID: 39761327 PMCID: PMC11735006 DOI: 10.1371/journal.pntd.0012790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 01/15/2025] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Plasmodium malariae is the third most prevalent human malaria parasite species and contributes significantly to morbidity. Nevertheless, our comprehension of this parasite's biology remains limited, primarily due to its frequent co-infections with other species and the lack of a continuous in vitro culture system. To effectively combat and eliminate this overlooked parasite, it is imperative to acquire a better understanding of this species. In this study, we embarked on an investigation of P. malariae, including exploring its clinical disease characteristics, molecular aspects of red blood cell (RBC) invasion, and host-cell preferences. We conducted our research using parasites collected from infected individuals in Mali. Our findings revealed anaemia in most of P. malariae infected participants presented, in both symptomatic and asymptomatic cases. Regarding RBC invasion, quantified by an adapted flow cytometry based method, our study indicated that none of the seven antibodies tested, against receptors known for their role in P. falciparum invasion, had any impact on the ability of P. malariae to penetrate the host cells. However, when RBCs were pre-treated with various enzymes (neuraminidase, trypsin, and chymotrypsin), we observed a significant reduction in P. malariae invasion, albeit not a complete blockade. Furthermore, in a subset of P. malariae samples, we observed the parasite's capability to invade reticulocytes. These results suggest that P. malariae employs alternative pathways to enter RBCs of different maturities, which may differ from those used by P. falciparum.
Collapse
Affiliation(s)
- Francois Dao
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Amadou Niangaly
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Fanta Sogore
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Mamadou Wague
- Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University Clinical Research Center (UCRC), University of Sciences, Techniques, and Technologies of Bamako (USTTB), Bamako, Mali
| | - Djeneba Dabitao
- Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University Clinical Research Center (UCRC), University of Sciences, Techniques, and Technologies of Bamako (USTTB), Bamako, Mali
| | - Siaka Goita
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Aboubacrin S. Hadara
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Ousmaila Diakite
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Mohamed Maiga
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Fatoumata O. Maiga
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | | | - Cecile Cassan
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Arthur M. Talman
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Abdoulaye A. Djimde
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | | | - Laurent Dembélé
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| |
Collapse
|
5
|
Gozalo AS, Robinson CK, Holdridge J, Franco Mahecha OL, Elkins WR. Overview of Plasmodium spp. and Animal Models in Malaria Research. Comp Med 2024; 74:205-230. [PMID: 38902006 PMCID: PMC11373680 DOI: 10.30802/aalas-cm-24-000019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/08/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024]
Abstract
Malaria is a parasitic disease caused by protozoan species of the genus Plasmodium and transmitted by female mosquitos of the genus Anopheles and other Culicidae. Most of the parasites of the genus Plasmodium are highly species specific with more than 200 species described affecting different species of mammals, birds, and reptiles. Plasmodium species strictly affecting humans are P. falciparum, P. vivax, P. ovale, and P. malariae. More recently, P. knowlesi and other nonhuman primate plasmodia were found to naturally infect humans. Currently, malaria occurs mostly in poor tropical and subtropical areas of the world, and in many of these countries it is the leading cause of illness and death. For more than 100 y, animal models, have played a major role in our understanding of malaria biology. Avian Plasmodium species were the first to be used as models to study human malaria. Malaria parasite biology and immunity were first studied using mainly P. gallinaceum and P. relictum. Rodent malarias, particularly P. berghei and P. yoelii, have been used extensively as models to study malaria in mammals. Several species of Plasmodium from nonhuman primates have been used as surrogate models to study human malaria immunology, pathogenesis, candidate vaccines, and treatments. Plasmodium cynomolgi, P. simiovale, and P. fieldi are important models for studying malaria produced by P. vivax and P. ovale, while P. coatneyi is used as a model for study- ing severe malaria. Other nonhuman primate malarias used in research are P. fragile, P. inui, P. knowlesi, P. simium, and P. brasilianum. Very few nonhuman primate species can develop an infection with human malarias. Macaques in general are resistant to infection with P. falciparum, P. vivax, P. malariae, and P. ovale. Only apes and a few species of New World monkeys can support infection with human malarias. Herein we review the most common, and some less common, avian, reptile, and mammal plasmodia species used as models to study human malaria.
Collapse
Affiliation(s)
- Alfonso S Gozalo
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Christen K Robinson
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Julie Holdridge
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Olga L Franco Mahecha
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - William R Elkins
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
6
|
Habtamu K, Petros B, Yan G. Plasmodium vivax: the potential obstacles it presents to malaria elimination and eradication. Trop Dis Travel Med Vaccines 2022; 8:27. [PMID: 36522671 PMCID: PMC9753897 DOI: 10.1186/s40794-022-00185-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Initiatives to eradicate malaria have a good impact on P. falciparum malaria worldwide. P. vivax, however, still presents significant difficulties. This is due to its unique biological traits, which, in comparison to P. falciparum, pose serious challenges for malaria elimination approaches. P. vivax's numerous distinctive characteristics and its ability to live for weeks to years in liver cells in its hypnozoite form, which may elude the human immune system and blood-stage therapy and offer protection during mosquito-free seasons. Many malaria patients are not fully treated because of contraindications to primaquine use in pregnant and nursing women and are still vulnerable to P. vivax relapses, although there are medications that could radical cure P. vivax. Additionally, due to CYP2D6's highly variable genetic polymorphism, the pharmacokinetics of primaquine may be impacted. Due to their inability to metabolize PQ, some CYP2D6 polymorphism alleles can cause patients to not respond to treatment. Tafenoquine offers a radical treatment in a single dose that overcomes the potentially serious problem of poor adherence to daily primaquine. Despite this benefit, hemolysis of the early erythrocytes continues in individuals with G6PD deficiency until all susceptible cells have been eliminated. Field techniques such as microscopy or rapid diagnostic tests (RDTs) miss the large number of submicroscopic and/or asymptomatic infections brought on by reticulocyte tropism and the low parasitemia levels that accompany it. Moreover, P. vivax gametocytes grow more quickly and are much more prevalent in the bloodstream. P. vivax populations also have a great deal of genetic variation throughout their genome, which ensures evolutionary fitness and boosts adaptation potential. Furthermore, P. vivax fully develops in the mosquito faster than P. falciparum. These characteristics contribute to parasite reservoirs in the human population and facilitate faster transmission. Overall, no genuine chance of eradication is predicted in the next few years unless new tools for lowering malaria transmission are developed (i.e., malaria elimination and eradication). The challenging characteristics of P. vivax that impede the elimination and eradication of malaria are thus discussed in this article.
Collapse
Affiliation(s)
- Kassahun Habtamu
- Department of Microbial, Cellular & Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
- Menelik II Medical & Health Science College, Addis Ababa, Ethiopia
| | - Beyene Petros
- Department of Microbial, Cellular & Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, Irvine, CA 92697 USA
| |
Collapse
|
7
|
Leong YW, Russell B, Malleret B, Rénia L. Erythrocyte tropism of malarial parasites: The reticulocyte appeal. Front Microbiol 2022; 13:1022828. [PMID: 36386653 PMCID: PMC9643692 DOI: 10.3389/fmicb.2022.1022828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/07/2022] [Indexed: 10/28/2023] Open
Abstract
Erythrocytes are formed from the enucleation of erythroblasts in the bone marrow, and as erythrocytes develop from immature reticulocytes into mature normocytes, they undergo extensive cellular changes through their passage in the blood. During the blood stage of the malarial parasite life cycle, the parasite sense and invade susceptible erythrocytes. However, different parasite species display varying erythrocyte tropisms (i.e., preference for either reticulocytes or normocytes). In this review, we explore the erythrocyte tropism of malarial parasites, especially their predilection to invade reticulocytes, as shown from recent studies. We also discuss possible mechanisms mediating erythrocyte tropism and the implications of specific tropisms to disease pathophysiology. Understanding these allows better insight into the role of reticulocytes in malaria and provides opportunities for targeted interventions.
Collapse
Affiliation(s)
- Yew Wai Leong
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Benoit Malleret
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Laurent Rénia
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
8
|
Günther A, Hose M, Abberger H, Schumacher F, Veith Y, Kleuser B, Matuschewski K, Lang KS, Gulbins E, Buer J, Westendorf A, Hansen W. The acid ceramidase/ceramide axis controls parasitemia in Plasmodium yoelii-infected mice by regulating erythropoiesis. eLife 2022; 11:77975. [PMID: 36094170 PMCID: PMC9499531 DOI: 10.7554/elife.77975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Acid ceramidase (Ac) is part of the sphingolipid metabolism and responsible for the degradation of ceramide. As bioactive molecule, ceramide is involved in the regulation of many cellular processes. However, the impact of cell-intrinsic Ac activity and ceramide on the course of Plasmodium infection remains elusive. Here, we use Ac-deficient mice with ubiquitously increased ceramide levels to elucidate the role of endogenous Ac activity in a murine malaria model. Interestingly, ablation of Ac leads to alleviated parasitemia associated with decreased T cell responses in the early phase of Plasmodium yoelii infection. Mechanistically, we identified dysregulated erythropoiesis with reduced numbers of reticulocytes, the preferred host cells of P. yoelii, in Ac-deficient mice. Furthermore, we demonstrate that administration of the Ac inhibitor carmofur to wildtype mice has similar effects on P. yoelii infection and erythropoiesis. Notably, therapeutic carmofur treatment after manifestation of P. yoelii infection is efficient in reducing parasitemia. Hence, our results provide evidence for the involvement of Ac and ceramide in controlling P. yoelii infection by regulating red blood cell development.
Collapse
Affiliation(s)
- Anne Günther
- Institute of Medical Microbiology, University of Duisburg-Essen, Essen, Germany
| | - Matthias Hose
- Institute of Medical Microbiology, University of Duisburg-Essen, Essen, Germany
| | - Hanna Abberger
- Institute of Medical Microbiology, University of Duisburg-Essen, Essen, Germany
| | | | - Ylva Veith
- Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Kai Matuschewski
- Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Erich Gulbins
- Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University of Duisburg-Essen, Essen, Germany
| | - Astrid Westendorf
- Institute of Medical Microbiology, University of Duisburg-Essen, Duisburg, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
9
|
Hentzschel F, Gibbins MP, Attipa C, Beraldi D, Moxon CA, Otto TD, Marti M. Host cell maturation modulates parasite invasion and sexual differentiation in Plasmodium berghei. SCIENCE ADVANCES 2022; 8:eabm7348. [PMID: 35476438 PMCID: PMC9045723 DOI: 10.1126/sciadv.abm7348] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/11/2022] [Indexed: 05/04/2023]
Abstract
Malaria remains a global health problem causing more than 400,000 deaths annually. Plasmodium parasites, the causative agents of malaria, replicate asexually in red blood cells (RBCs) of their vertebrate host, while a subset differentiates into sexual stages (gametocytes) for mosquito transmission. Parasite replication and gametocyte maturation in the erythropoietic niches of the bone marrow and spleen contribute to pathogenesis and drive transmission, but the mechanisms underlying this organ enrichment remain unknown. Here, we performed a comprehensive analysis of rodent P. berghei infection by flow cytometry and single-cell RNA sequencing. We identified CD71 as a host receptor for reticulocyte invasion and found that parasites metabolically adapt to the host cell environment. Transcriptional analysis and functional assays further revealed a nutrient-dependent tropism for gametocyte formation in reticulocytes. Together, we provide a thorough characterization of host-parasite interactions in erythropoietic niches and define host cell maturation state as the key driver of parasite adaptation.
Collapse
Affiliation(s)
- Franziska Hentzschel
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Matthew P. Gibbins
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Charalampos Attipa
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
- Department of Pathology, Kamuzu University of Health Sciences, Blantyre, Malawi
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Dario Beraldi
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Christopher A. Moxon
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Paediatrics and Child Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Thomas D. Otto
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|