1
|
Oh SJ, Kim YY, Ma R, Choi ST, Choi SM, Cho JH, Hur JY, Yoo Y, Han K, Park H, Yun J, Shin OS. Pharmacological targeting of mitophagy via ALT001 improves herpes simplex virus 1 (HSV1)-mediated microglial inflammation and promotes amyloid β phagocytosis by restricting HSV1 infection. Theranostics 2025; 15:4890-4908. [PMID: 40303347 PMCID: PMC12036882 DOI: 10.7150/thno.105953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/17/2025] [Indexed: 05/02/2025] Open
Abstract
Rationale: One of the hallmarks of Alzheimer's disease (AD) is the accumulation of dysfunctional mitochondria. Herpes simplex virus type 1 (HSV1) may be a risk factor for the neuropathology linked to amyloid β (Aβ) accumulation. However, the mechanisms underlying HSV1-associated mitochondrial dysfunction in AD remain unclear. ALT001 is a novel drug that ameliorates AD-related cognitive impairment via ULK1/Rab9-mediated alternative mitophagy. In this study, we investigated the effects of ALT001 on the neurodegeneration-related microglial signatures associated with HSV1 infection. Methods: Molecular mechanisms and physiological functions of mitophagy was investigated in HSV1-infected microglia, including primary murine and human embryonic stem cell (ESC)-derived microglia (ES-MG), as well as in a microglia-neuron co-culture system. Microglial gene signatures following HSV1 infection in the presence or absence of ALT001 were analyzed using bulk RNA sequencing, and the effects of ALT001 on microglial phagocytosis and microglia-mediated immune responses were further evaluated by flow cytometry and cytokine profiles. Results: HSV1 infection inhibited PINK1/Parkin-mediated mitophagy via HSV1-encoded protein kinase US3, resulting in mitochondrial dysfunction in both human and mouse microglia. Furthermore, transcriptomic analysis of HSV1-infected microglia revealed an upregulation of distinct microglial genes associated with disease-associated microglia (DAM)-like phenotype and pro-inflammatory activity. Pharmacological targeting of mitophagy using ALT001 prevents mitochondrial damage caused by HSV1 through ULK1/Rab9-mediated pathway. Furthermore, ALT001-induced ULK1/Rab9-dependent mitophagy restricts HSV1 infection by activating interferon-mediated antiviral immunity. Consequently, ALT001 reduces HSV1-triggered neuroinflammation, recovers HSV1-altered microglial phagocytosis for Aβ, and efficiently reverses morphological and molecular abnormalities in HSV1-infected microglia by triggering mitophagy in ES-MG. ALT001 also suppressed HSV1-mediated Aβ accumulation and neurodegeneration in the microglia-neuron co-culture and cerebral organoid model. Conclusions: In this study, we identified a critical molecular link between HSV1 and AD-related microglial dysfunction. Furthermore, our findings provide an evidence that therapeutic targeting of alternative mitophagy via ALT001 effectively interfere with HSV1-induced microglial dysfunction and alleviate neurodegeneration.
Collapse
Affiliation(s)
- Soo-Jin Oh
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Seoul, Republic of Korea
| | - Young Yeon Kim
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Ruiying Ma
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Seoul, Republic of Korea
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seok Tae Choi
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Se Myeong Choi
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Jong Hyun Cho
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Ji-Yeun Hur
- Department of Biological Sciences, Ajou University, Suwon, Republic of Korea
| | - Yongjin Yoo
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Seoul, Republic of Korea
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kihoon Han
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Seoul, Republic of Korea
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hosun Park
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Jeanho Yun
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Ok Sarah Shin
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Seoul, Republic of Korea
- Department of Convergence medicine, College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| |
Collapse
|
2
|
Qi Y, Yin J, Xia W, Yang S. Exploring the role of mitochondrial antiviral signaling protein in cardiac diseases. Front Immunol 2025; 16:1540774. [PMID: 40040697 PMCID: PMC11876050 DOI: 10.3389/fimmu.2025.1540774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/31/2025] [Indexed: 03/06/2025] Open
Abstract
Mitochondrial antiviral signaling (MAVS) was first discovered as an activator of NF-κB and IRF3 in response to viral infection in 2005. As a key innate immune adapter that acts as an 'on/off' switch in immune signaling against most RNA viruses. Upon interaction with RIG-I, MAVS aggregates to activate downstream signaling pathway. The MAVS gene, located on chromosome 20p13, encodes a 540-amino acid protein that located in the outer membrane of mitochondria. MAVS protein was ubiquitously expressed with higher levels in heart, skeletal muscle, liver, placenta and peripheral blood leukocytes. Recent studies have reported MAVS to be associated with various conditions including cancers, systemic lupus erythematosus, kidney disease, and cardiovascular disease. This article provides a comprehensive summary and description of MAVS research in cardiac disease, encompassing structure, expression, protein-protein interactions, modifications, as well as the role of MAVS in heart disease. It is aimed to establish a scientific foundation for the identification of potential therapeutic target.
Collapse
Affiliation(s)
- Yuying Qi
- Department of Cardiology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Yin
- Department of Cardiology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwei Xia
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Shiwei Yang
- Department of Cardiology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Sun Z, Ma Z, Cao W, Jiang C, Guo L, Liu K, Gao Y, Bai J, Pi J, Jiang P, Liu X. Calcium-mediated mitochondrial fission and mitophagy drive glycolysis to facilitate arterivirus proliferation. PLoS Pathog 2025; 21:e1012872. [PMID: 39804926 PMCID: PMC11761150 DOI: 10.1371/journal.ppat.1012872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 01/24/2025] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
Mitochondria, recognized as the "powerhouse" of cells, play a vital role in generating cellular energy through dynamic processes such as fission and fusion. Viruses have evolved mechanisms to hijack mitochondrial function for their survival and proliferation. Here, we report that infection with the swine arterivirus porcine reproductive and respiratory syndrome virus (PRRSV), manipulates mitochondria calcium ions (Ca2+) to induce mitochondrial fission and mitophagy, thereby reprogramming cellular energy metabolism to facilitate its own replication. Mechanistically, PRRSV-induced mitochondrial fission is caused by elevated levels of mitochondria Ca2+, derived from the endoplasmic reticulum (ER) through inositol 1,4,5-triphosphate receptor (IP3R)-voltage-dependent anion channel 1 (VDAC1)-mitochondrial calcium uniporter (MCU) channels. This process is associated with increased mitochondria-associated membranes (MAMs), mediated by the upregulated expression of sigma non-opioid intracellular receptor 1 (SIGMAR1). Elevated mitochondria Ca2+ further activates the Ca2+/CaM-dependent protein kinase kinase β (CaMKKβ)-AMP-activated protein kinase (AMPK)-dynamin-related protein 1 (DRP1) signaling pathway, which interacts with mitochondrial fission protein 1 (FIS1) and mitochondrial dynamics proteins of 49 kDa (MiD49) to promote mitochondrial fission. PRRSV infection, alongside mitochondrial fission, triggers mitophagy via the PTEN-induced putative kinase 1 (PINK1)-Parkin RBR E3 ubiquitin (Parkin) pathway, promoting cellular glycolysis and excessive lactate production to facilitate its own replication. This study reveals the mechanism by which mitochondrial Ca2+ regulates mitochondrial function during PRRSV infection, providing new insights into the interplay between the virus and host cell metabolism.
Collapse
Affiliation(s)
- Zhe Sun
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zicheng Ma
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wandi Cao
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chenlong Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lei Guo
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kesen Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yanni Gao
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jiang Pi
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xing Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
4
|
Wang C, Luo H. Crosstalk Between Innate Immunity and Autophagy in Viral Myocarditis Leading to Dilated Cardiomyopathy. Rev Med Virol 2024; 34:e2586. [PMID: 39349889 DOI: 10.1002/rmv.2586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 11/08/2024]
Abstract
Viral myocarditis, characterised by inflammation of the heart muscle, presents a significant challenge to global public health, particularly affecting younger individuals and often progressing to dilated cardiomyopathy (DCM), a leading cause of heart failure. Despite ongoing research efforts, viable treatments for this condition remain elusive. Recent studies have shed light on the complex interplay between the innate immune response and autophagy mechanisms, revealing their pivotal roles in the pathogenesis of viral myocarditis and subsequent DCM development. This review aims to delve into the recent advancements in understanding the molecular mechanisms and pathways that intersect innate immunity and autophagy in the context of viral myocarditis. Furthermore, it explores the potential therapeutic implications of these findings, offering insights into promising avenues for the management and treatment of this debilitating condition.
Collapse
Affiliation(s)
- Chen Wang
- Centre for Heart Lung Innovation, St. Paul's Hospital-University of British Columbia, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St. Paul's Hospital-University of British Columbia, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
5
|
Grach SL, Dudenkov DV, Pollack B, Fairweather D, Aakre CA, Munipalli B, Croghan IT, Mueller MR, Overgaard JD, Bruno KA, Collins NM, Li Z, Hurt RT, Tal MC, Ganesh R, Knight DTR. Overlapping conditions in Long COVID at a multisite academic center. Front Neurol 2024; 15:1482917. [PMID: 39524912 PMCID: PMC11543549 DOI: 10.3389/fneur.2024.1482917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Background Many patients experience persistent symptoms after COVID-19, a syndrome referred to as Long COVID (LC). The goal of this study was to identify novel new or worsening comorbidities self-reported in patients with LC. Methods Patients diagnosed with LC (n = 732) at the Mayo Long COVID Care Clinic in Rochester, Minnesota and Jacksonville, Florida were sent questionnaires to assess the development of new or worsening comorbidities following COVID-19 compared to patients with SARS-CoV-2 that did not develop LC (controls). Both groups were also asked questions screening for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), generalized joint hypermobility (GJH) and orthostatic intolerance. 247 people with LC (33.7%) and 40 controls (50%) responded to the surveys. Results In this study LC patients averaged 53 years of age and were predominantly White (95%) women (75%). The greatest prevalence of new or worsening comorbidities following SARS-CoV-2 infection in patients with LC vs. controls reported in this study were pain (94.4% vs. 0%, p < 0.001), neurological (92.4% vs. 15.4%, p < 0.001), sleep (82.8% vs. 5.3%, p < 0.001), skin (69.8% vs. 0%, p < 0.001), and genitourinary (60.6% vs. 25.0%, p = 0.029) issues. 58% of LC patients screened positive for ME/CFS vs. 0% of controls (p < 0.001), 27% positive for GJH compared to 10% of controls (p = 0.026), and a positive average score of 4.0 on orthostatic intolerance vs. 0 (p < 0.001). The majority of LC patients with ME/CFS were women (77%). Conclusion We found that comorbidities across 12 surveyed categories were increased in patients following SARS-CoV-2 infection. Our data also support the overlap of LC with ME/CFS, GJH, and orthostatic intolerance. We discuss the pathophysiologic, research, and clinical implications of identifying these conditions with LC.
Collapse
Affiliation(s)
- Stephanie L. Grach
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Daniel V. Dudenkov
- Department of General Internal Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Beth Pollack
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - DeLisa Fairweather
- Department of General Internal Medicine, Mayo Clinic, Jacksonville, FL, United States
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Department of Immunology, Mayo Clinic, Jacksonville, FL, United States
| | - Chris A. Aakre
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Bala Munipalli
- Department of General Internal Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Ivana T. Croghan
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
- Division of Quantitative Health Sciences, Rochester, MN, United States
| | - Michael R. Mueller
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Joshua D. Overgaard
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Katelyn A. Bruno
- Department of General Internal Medicine, Mayo Clinic, Jacksonville, FL, United States
- Department of Cardiovascular Medicine, University of Florida, Gainesville, FL, United States
| | - Nerissa M. Collins
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Zhuo Li
- Department of Biostatistics, Mayo Clinic, Jacksonville, FL, United States
| | - Ryan T. Hurt
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Michal C. Tal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Ravindra Ganesh
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Dacre T. R. Knight
- Department of General Internal Medicine, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
6
|
Zhao Y, Ding C, Zhu Z, Wang W, Wen W, Favoreel HW, Li X. Pseudorabies virus infection triggers mitophagy to dampen the interferon response and promote viral replication. J Virol 2024; 98:e0104824. [PMID: 39212384 PMCID: PMC11494983 DOI: 10.1128/jvi.01048-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024] Open
Abstract
Pseudorabies virus (PRV) utilizes multiple strategies to inhibit type I interferon (IFN-I) production and signaling to achieve innate immune evasion. Among several other functions, mitochondria serve as a crucial immune hub in the initiation of innate antiviral responses. It is currently unknown whether PRV inhibits innate immune responses by manipulating mitochondria. In this study, we found that PRV infection damages mitochondrial structure and function, as shown by mitochondrial membrane potential depolarization, reduction in mitochondrial numbers, and an imbalance in mitochondrial dynamics. In addition, PRV infection triggered PINK1-Parkin-mediated mitophagy to eliminate the impaired mitochondria, which resulted in a suppression of IFN-I production, thereby promoting viral replication. Furthermore, we found that mitophagy resulted in the degradation of the mitochondrial antiviral signaling protein, which is located on the mitochondrial outer membrane. In conclusion, the data of the current study indicate that PRV-induced mitophagy represents a previously uncharacterized PRV evasion mechanism of the IFN-I response, thereby promoting virus replication.IMPORTANCEPseudorabies virus (PRV), a pathogen that induces different disease symptoms and is often fatal in domestic animals and wildlife, has caused great economic losses to the swine industry. Since 2011, different PRV variant strains have emerged in Asia, against which current commercial vaccines may not always provide optimal protection in pigs. In addition, there are indications that some of these PRV variant strains may sporadically infect people. In the current study, we found that PRV infection causes mitochondria injury. This is associated with the induction of mitophagy to eliminate the damaged mitochondria, which results in suppressed antiviral interferon production and signaling. Hence, our study reveals a novel mechanism that is used by PRV to antagonize the antiviral host immune response, providing a theoretical basis that may contribute to the research toward and development of new vaccines and antiviral drugs.
Collapse
Affiliation(s)
- Yuan Zhao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Chan Ding
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhenbang Zhu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wenqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wei Wen
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Herman W. Favoreel
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Xiangdong Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Qiu Y, Xu J, Chen Y, Wu Y, Lin YN, Liu W, Wang Z, Wu Y, Qian X, Li YC. Parkin plays a crucial role in acute viral myocarditis by regulating mitophagy activity. Theranostics 2024; 14:5303-5315. [PMID: 39267792 PMCID: PMC11388078 DOI: 10.7150/thno.97675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Rationale: Parkin (an E3 ubiquitin protein ligase) is an important regulator of mitophagy. However, the role of Parkin in viral myocarditis (VMC) remains unclear. Methods: Coxsackievirus B3 (CVB3) infection was induced in mice to create VMC. Cardiac function and inflammatory response were evaluated by echocardiography, histological assessment, and molecular analyses. AAV9 (adeno-associated virus 9), transmission electron microscopy (TEM) and western blotting were used to investigate the mechanisms by which Parkin regulates mitophagy and cardiac inflammation. Results: Our data indicated that Parkin- and BNIP3 (BCL2 interacting protein 3 like)-mediated mitophagy was activated in VMC mice and neonatal rat cardiac myocytes (NRCMs) infected with CVB3, which blocked autophagic flux by inhibiting autophagosome-lysosome fusion. Parkin silencing aggravated mortality and accelerated the development of cardiac dysfunction in CVB3-treated mice. While silencing of Parkin did not significantly increase inflammatory response through activating NF-κB pathway and production of inflammatory cytokines post-VMC, the mitophagy activity were reduced, which stimulated the accumulation of damaged mitochondria. Moreover, Parkin silencing exacerbated VMC-induced apoptosis. We consistently found that Parkin knockdown disrupted mitophagy activity and inflammatory response in NRCMs. Conclusion: This study elucidated the important role of Parkin in maintaining cardiac function and inflammatory response by regulating mitophagy activity and the NF-κB pathway during acute VMC. Although the functional impact of mitophagy remains unclear, our findings suggest that Parkin silencing may accelerate VMC development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yue-Chun Li
- From the Department of Cardiology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Callon D, Glenet M, Lebreil AL, Heng L, Bouland N, Fichel C, Fornes P, Andreoletti L, Berri F. Major Group-B Enterovirus populations deleted in the noncoding 5' region of genomic RNA modulate activation of the type I interferon pathway in cardiomyocytes and induce myocarditis. PLoS Pathog 2024; 20:e1012125. [PMID: 38696536 PMCID: PMC11093299 DOI: 10.1371/journal.ppat.1012125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/14/2024] [Accepted: 03/14/2024] [Indexed: 05/04/2024] Open
Abstract
Major 5'-terminally deleted (5'TD) RNA forms of group-B coxsackievirus (CVB-5'TD) has been associated with myocarditis in both mice and humans. Although it is known that interferon-β (IFN-β) signaling is critical for an efficient innate immune response against CVB-induced myocarditis, the link between CVB-5'TD RNA forms and type I IFN signaling in cardiomyocytes remains to be explored. In a mouse model of CVB3/28-induced myocarditis, major early-emerging forms of CVB-5'TD RNA have been characterized as replicative viral populations that impair IFN-β production in the heart. Synthetic CVB3/28 RNA forms mimicking each of these major 5'TD virus populations were transfected in mice and have been shown to modulate innate immune responses in the heart and to induce myocarditis in mice. Remarkably, transfection of synthetic viral RNA with deletions in the secondary structures of the 5'-terminal CVB3 RNA domain I, modifying stem-loops "b", "c" or "d", were found to impair IFN-β production in human cardiomyocytes. In addition, the activation of innate immune response by Poly(I:C), was found to restore IFN-β production and to reduce the burden of CVB-5'TD RNA-forms in cardiac tissues, thereby reducing the mortality rate of infected mice. Overall, our results indicate that major early-emerging CVB3 populations deleted in the domain I of genomic RNA, in the 5' noncoding region, modulate the activation of the type I IFN pathway in cardiomyocytes and induce myocarditis in mice. These findings shed new light on the role of replicative CVB-5'TD RNA forms as key pathophysiological factors in CVB-induced human myocarditis.
Collapse
Affiliation(s)
- Domitille Callon
- University of Reims Champagne Ardennes, Inserm, UMR-S1320 CardioVir, Reims, France
- Academic Hospital of Reims, Robert Debré, Pathology Department, Reims, France
| | - Marie Glenet
- University of Reims Champagne Ardennes, Inserm, UMR-S1320 CardioVir, Reims, France
| | - Anne-Laure Lebreil
- University of Reims Champagne Ardennes, Inserm, UMR-S1320 CardioVir, Reims, France
| | - Laetitia Heng
- University of Reims Champagne Ardennes, Inserm, UMR-S1320 CardioVir, Reims, France
| | - Nicole Bouland
- Academic Hospital of Reims, Robert Debré, Pathology Department, Reims, France
| | - Caroline Fichel
- Academic Hospital of Reims, Robert Debré, Pathology Department, Reims, France
| | - Paul Fornes
- University of Reims Champagne Ardennes, Inserm, UMR-S1320 CardioVir, Reims, France
- Academic Hospital of Reims, Robert Debré, Pathology Department, Reims, France
| | - Laurent Andreoletti
- University of Reims Champagne Ardennes, Inserm, UMR-S1320 CardioVir, Reims, France
- Academic Hospital of Reims, Robert Debré, Virology Department, Reims, France
| | - Fatma Berri
- University of Reims Champagne Ardennes, Inserm, UMR-S1320 CardioVir, Reims, France
| |
Collapse
|
9
|
Di Florio DN, Beetler DJ, McCabe EJ, Sin J, Ikezu T, Fairweather D. Mitochondrial extracellular vesicles, autoimmunity and myocarditis. Front Immunol 2024; 15:1374796. [PMID: 38550582 PMCID: PMC10972887 DOI: 10.3389/fimmu.2024.1374796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/28/2024] [Indexed: 04/02/2024] Open
Abstract
For many decades viral infections have been suspected as 'triggers' of autoimmune disease, but mechanisms for how this could occur have been difficult to establish. Recent studies have shown that viral infections that are commonly associated with viral myocarditis and other autoimmune diseases such as coxsackievirus B3 (CVB3) and SARS-CoV-2 target mitochondria and are released from cells in mitochondrial vesicles that are able to activate the innate immune response. Studies have shown that Toll-like receptor (TLR)4 and the inflammasome pathway are activated by mitochondrial components. Autoreactivity against cardiac myosin and heart-specific immune responses that occur after infection with viruses where the heart is not the primary site of infection (e.g., CVB3, SARS-CoV-2) may occur because the heart has the highest density of mitochondria in the body. Evidence exists for autoantibodies against mitochondrial antigens in patients with myocarditis and dilated cardiomyopathy. Defects in tolerance mechanisms like autoimmune regulator gene (AIRE) may further increase the likelihood of autoreactivity against mitochondrial antigens leading to autoimmune disease. The focus of this review is to summarize current literature regarding the role of viral infection in the production of extracellular vesicles containing mitochondria and virus and the development of myocarditis.
Collapse
Affiliation(s)
- Damian N. Di Florio
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Danielle J. Beetler
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Elizabeth J. McCabe
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Jon Sin
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Tsuneya Ikezu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Department of Immunology, Mayo Clinic, Jacksonville, FL, United States
- Department of Medicine, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
10
|
Zhou L, Liu R, Pathak H, Wang X, Jeong GH, Kumari P, Kumar M, Yin J. Ubiquitin Ligase Parkin Regulates the Stability of SARS-CoV-2 Main Protease and Suppresses Viral Replication. ACS Infect Dis 2024; 10:879-889. [PMID: 38386664 PMCID: PMC10928718 DOI: 10.1021/acsinfecdis.3c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
The highly infectious coronavirus SARS-CoV-2 relies on the viral main protease (Mpro, also known as 3CLpro or Nsp5) to proteolytically process the polyproteins encoded by the viral genome for the release of functional units in the host cells to initiate viral replication. Mpro also interacts with host proteins of the innate immune pathways, such as IRF3 and STAT1, to suppress their activities and facilitate virus survival and proliferation. To identify the host mechanism for regulating Mpro, we screened various classes of E3 ubiquitin ligases and found that Parkin of the RING-between-RING family can induce the ubiquitination and degradation of Mpro in the cell. Furthermore, when the cells undergo mitophagy, the PINK1 kinase activates Parkin and enhances the ubiquitination of Mpro. We also found that elevated expression of Parkin in the cells significantly decreased the replication of SARS-CoV-2 virus. Interestingly, SARS-CoV-2 infection downregulates Parkin expression in the mouse lung tissues compared to healthy controls. These results suggest an antiviral role of Parkin as a ubiquitin ligase targeting Mpro and the potential for exploiting the virus-host interaction mediated by Parkin to treat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Li Zhou
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Ruochuan Liu
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Heather Pathak
- Department
of Biology and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Xiaoyu Wang
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Geon H. Jeong
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Pratima Kumari
- Department
of Biology and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Mukesh Kumar
- Department
of Biology and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jun Yin
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
11
|
Li Z, Zhang Y, Zhao B, Xue Q, Wang C, Wan S, Wang J, Chen X, Qi X. Non-cytopathic bovine viral diarrhea virus (BVDV) inhibits innate immune responses via induction of mitophagy. Vet Res 2024; 55:27. [PMID: 38443986 PMCID: PMC10916263 DOI: 10.1186/s13567-024-01284-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024] Open
Abstract
Bovine viral diarrhea virus (BVDV) belongs to the genus Pestivirus within the family Flaviviridae. Mitophagy plays important roles in virus-host interactions. Here, we provide evidence that non-cytopathic (NCP) BVDV shifts the balance of mitochondrial dynamics toward fission and induces mitophagy to inhibit innate immune responses. Mechanistically, NCP BVDV triggers the translocation of dynamin-related protein (Drp1) to mitochondria and stimulates its phosphorylation at Ser616, leading to mitochondrial fission. In parallel, NCP BVDV-induced complete mitophagy via Parkin-dependent pathway contributes to eliminating damaged mitochondria to inhibit MAVS- and mtDNA-cGAS-mediated innate immunity responses, mtROS-mediated inflammatory responses and apoptosis initiation. Importantly, we demonstrate that the LIR motif of ERNS is essential for mitophagy induction. In conclusion, this study is the first to show that NCP BVDV-induced mitophagy plays a central role in promoting cell survival and inhibiting innate immune responses in vitro.
Collapse
Affiliation(s)
- Zhijun Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, China
| | - Ying Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, China
| | - Bao Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Shaanxi Animal Disease Control Center, Xi'an, China
| | - Qinghong Xue
- China Institute of Veterinary Drug Control, Beijing, China
| | - Chunjiang Wang
- Hebei Veyong Pharmaceutical Co., Ltd, Shijiazhuang, China
| | - Siyu Wan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, China
| | - Xiwen Chen
- Animal Disease Prevention and Control & Healthy Breeding Engineering Technology Research Center, Mianyang Normal University, Mianyang, Sichuan, China.
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, China.
| |
Collapse
|
12
|
Oh SJ, Yu JW, Ahn JH, Choi ST, Park H, Yun J, Shin OS. Varicella zoster virus glycoprotein E facilitates PINK1/Parkin-mediated mitophagy to evade STING and MAVS-mediated antiviral innate immunity. Cell Death Dis 2024; 15:16. [PMID: 38184594 PMCID: PMC10771418 DOI: 10.1038/s41419-023-06400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/03/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024]
Abstract
Viruses have evolved to control mitochondrial quality and content to facilitate viral replication. Mitophagy is a selective autophagy, in which the damaged or unnecessary mitochondria are removed, and thus considered an essential mechanism for mitochondrial quality control. Although mitophagy manipulation by several RNA viruses has recently been reported, the effect of mitophagy regulation by varicella zoster virus (VZV) remains to be fully determined. In this study, we showed that dynamin-related protein-1 (DRP1)-mediated mitochondrial fission and subsequent PINK1/Parkin-dependent mitophagy were triggered during VZV infection, facilitating VZV replication. In addition, VZV glycoprotein E (gE) promoted PINK1/Parkin-mediated mitophagy by interacting with LC3 and upregulating mitochondrial reactive oxygen species. Importantly, VZV gE inhibited MAVS oligomerization and STING translocation to disrupt MAVS- and STING-mediated interferon (IFN) responses, and PINK1/Parkin-mediated mitophagy was required for VZV gE-mediated inhibition of IFN production. Similarly, carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-mediated mitophagy induction led to increased VZV replication but attenuated IFN production in a three-dimensional human skin organ culture model. Our results provide new insights into the immune evasion mechanism of VZV gE via PINK1/Parkin-dependent mitophagy.
Collapse
Affiliation(s)
- Soo-Jin Oh
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Je-Wook Yu
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin-Hyun Ahn
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Seok Tae Choi
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Hosun Park
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Jeanho Yun
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea.
| | - Ok Sarah Shin
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Lee JK, Shin OS. Zika virus modulates mitochondrial dynamics, mitophagy, and mitochondria-derived vesicles to facilitate viral replication in trophoblast cells. Front Immunol 2023; 14:1203645. [PMID: 37781396 PMCID: PMC10539660 DOI: 10.3389/fimmu.2023.1203645] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023] Open
Abstract
Zika virus (ZIKV) remains a global public health threat with the potential risk of a future outbreak. Since viral infections are known to exploit mitochondria-mediated cellular processes, we investigated the effects of ZIKV infection in trophoblast cells in terms of the different mitochondrial quality control pathways that govern mitochondrial integrity and function. Here we demonstrate that ZIKV (PRVABC59) infection of JEG-3 trophoblast cells manipulates mitochondrial dynamics, mitophagy, and formation of mitochondria-derived vesicles (MDVs). Specifically, ZIKV nonstructural protein 4A (NS4A) translocates to the mitochondria, triggers mitochondrial fission and mitophagy, and suppresses mitochondrial associated antiviral protein (MAVS)-mediated type I interferon (IFN) response. Furthermore, proteomics profiling of small extracellular vesicles (sEVs) revealed an enrichment of mitochondrial proteins in sEVs secreted by ZIKV-infected JEG-3 cells, suggesting that MDV formation may also be another mitochondrial quality control mechanism manipulated during placental ZIKV infection. Altogether, our findings highlight the different mitochondrial quality control mechanisms manipulated by ZIKV during infection of placental cells as host immune evasion mechanisms utilized by ZIKV at the placenta to suppress the host antiviral response and facilitate viral infection.
Collapse
Affiliation(s)
| | - Ok Sarah Shin
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| |
Collapse
|
14
|
Lin L, Wei J, Zhu C, Hao G, Xue J, Zhu Y, Wu R. Sema3A alleviates viral myocarditis by modulating SIRT1 to regulate cardiomyocyte mitophagy. ENVIRONMENTAL TOXICOLOGY 2023; 38:1305-1317. [PMID: 36880403 DOI: 10.1002/tox.23765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/25/2022] [Accepted: 02/20/2023] [Indexed: 05/18/2023]
Abstract
Viral myocarditis (VMC) is a common myocardial inflammatory disease characterized by inflammatory cell infiltration and cardiomyocyte necrosis. Sema3A was reported to reduce cardiac inflammation and improve cardiac function after myocardial infarction, but its role in VMC remains to be explored. Here, a VMC mouse model was established by infection with CVB3, and Sema3A was overexpressed in vivo by intraventricular injection of an adenovirus-mediated Sema3A expression vector (Ad-Sema3A). We found that Sema3A overexpression attenuated CVB3-induced cardiac dysfunction and tissue inflammation. And Sema3A also reduced macrophage accumulation and NLRP3 inflammasome activation in the myocardium of VMC mice. In vitro, LPS was used to stimulate primary splenic macrophages to mimic the macrophage activation state in vivo. Activated macrophages were co-cultured with primary mouse cardiomyocytes to evaluate macrophage infiltration-induced cardiomyocyte damage. Ectopic expression of Sema3A in cardiomyocytes effectively protected cardiomyocytes from activated macrophage-induced inflammation, apoptosis, and ROS accumulation. Mechanistically, cardiomyocyte-expressed Sema3A mitigated macrophage infiltration-caused cardiomyocyte dysfunction by promoting cardiomyocyte mitophagy and hindering NLRP3 inflammasome activation. Furthermore, NAM (a SIRT1 inhibitor) reversed the protective effect of Sema3A against activated macrophage-induced cardiomyocyte dysfunction by suppressing cardiomyocyte mitophagy. In conclusion, Sema3A promoted cardiomyocyte mitophagy and suppressed inflammasome activation by regulating SIRT1, thereby attenuating macrophage infiltration-induced cardiomyocyte injury in VMC.
Collapse
Affiliation(s)
- Lin Lin
- Cardiovascular Hospital of the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jin Wei
- Cardiovascular Hospital of the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Canzhan Zhu
- Cardiovascular Hospital of the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guanghua Hao
- Cardiovascular Hospital of the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiahong Xue
- Cardiovascular Hospital of the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yanhe Zhu
- Department of Medicine, School of Public Health, Institute of Endemic Diseases, Xi'an Jiaotong University, Xi'an, China
| | - Ruiyun Wu
- Department of Medicine, School of Public Health, Institute of Endemic Diseases, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
15
|
Yip F, Lai B, Yang D. Role of Coxsackievirus B3-Induced Immune Responses in the Transition from Myocarditis to Dilated Cardiomyopathy and Heart Failure. Int J Mol Sci 2023; 24:ijms24097717. [PMID: 37175422 PMCID: PMC10178405 DOI: 10.3390/ijms24097717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a cardiac disease marked by the stretching and thinning of the heart muscle and impaired left ventricular contractile function. While most patients do not develop significant cardiac diseases from myocarditis, disparate immune responses can affect pathological outcomes, including DCM progression. These altered immune responses, which may be caused by genetic variance, can prolong cytotoxicity, induce direct cleavage of host protein, or encourage atypical wound healing responses that result in tissue scarring and impaired mechanical and electrical heart function. However, it is unclear which alterations within host immune profiles are crucial to dictating the outcomes of myocarditis. Coxsackievirus B3 (CVB3) is a well-studied virus that has been identified as a causal agent of myocarditis in various models, along with other viruses such as adenovirus, parvovirus B19, and SARS-CoV-2. This paper takes CVB3 as a pathogenic example to review the recent advances in understanding virus-induced immune responses and differential gene expression that regulates iron, lipid, and glucose metabolic remodeling, the severity of cardiac tissue damage, and the development of DCM and heart failure.
Collapse
Affiliation(s)
- Fione Yip
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
- The Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Brian Lai
- The Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Decheng Yang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
- The Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|
16
|
Small RNA sequencing of small extracellular vesicles secreted by umbilical cord mesenchymal stem cells following replicative senescence. Genes Genomics 2023; 45:347-358. [PMID: 35917089 DOI: 10.1007/s13258-022-01297-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/20/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Umbilical cord mesenchymal stem cells (UCMSC) are subsets of multipotent stem cells involved in immune modulation, tissue regeneration, and antimicrobial defense. Cellular senescence is associated with the onset of aging-related diseases and small extracellular vesicles (sEVs) are important mediators of senescence and aging. OBJECTIVE However, little is known about the role and function of microRNAs (miRNAs) carried by UCMSC-derived sEVs. To analyze the expression profiles of miRNAs secreted by senescent UCMSC, small RNA sequencing of the miRNAs within the sEVs was performed in this study. METHODS UCMSC cultures underwent serial passaging beyond passage number 20 to achieve replicative senescence, which was confirmed by various methods, including increased senescence-associated β-gal staining and cytokine secretion levels. sEVs derived from non-senescent and senescent UCMSC were isolated and characterized by nanoparticle tracking analysis, transmission electron microscopy, and immunoblot analysis. RESULTS Small RNA sequencing of the miRNAs within the sEVs revealed senescence-associated differences in the miRNA composition, as shown by the upregulation of miR-122-5p and miR-146a-5p, and downregulation of miR-125b-5p and miR-29-3p. In addition, total RNA sequencing analysis showed that PENK, ITGA8, and TSIX were upregulated, whereas AKR1B10, UNC13D, and IL21R were downregulated by replicative senescence in UCMSC. In sEVs, upregulated genes were linked to downregulated miRNAs, and vice versa. In the gene-concept network analysis, five gynecologic terms were retrieved. CONCLUSIONS The study provides an insight into the cellular characteristics of UCMSC following replicative senescence and emphasizes the importance of monitoring passage numbers of UCMSC for further therapeutic use.
Collapse
|
17
|
Wang L, Chen R, Han G, Liu X, Huang T, Diao J, Sun Y. Super-resolution analyzing spatial organization of lysosomes with an organic fluorescent probe. EXPLORATION (BEIJING, CHINA) 2022; 2:20210215. [PMID: 35844970 PMCID: PMC9282722 DOI: 10.1002/exp.20210215] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/21/2022] [Indexed: 05/13/2023]
Abstract
Lysosomes are multifunctional organelles involved in macromolecule degradation, nutrient sensing and autophagy. Live imaging has revealed lysosome subpopulations with dynamics and characteristic cellular localization. An as-yet unanswered question is whether lysosomes are spatially organized to coordinate and integrate their functions. Combined with super-resolution microscopy, we designed a small organic fluorescent probe, TPAE, that targeted lysosomes with a large Stokes shift. When we analyzed the spatial organization of lysosomes against mitochondria in different cell lines with this probe, we discovered different distance distribution patterns between lysosomes and mitochondria during increased autophagy flux. By using SLC25A46 mutation fibroblasts derived from patients containing highly fused mitochondria with low oxidative phosphorylation, we concluded that unhealthy mitochondria redistributed the subcellular localization of lysosomes, which implies a strong connection between mitochondria and lysosomes.
Collapse
Affiliation(s)
- Lei Wang
- Department of Cancer Biology, College of MedicineUniversity of CincinnatiCincinnatiOhioUSA
| | - Rui Chen
- Department of ChemistryUniversity of CincinnatiCincinnatiOhioUSA
| | - Guanqun Han
- Department of ChemistryUniversity of CincinnatiCincinnatiOhioUSA
| | - Xuan Liu
- Department of ChemistryUniversity of CincinnatiCincinnatiOhioUSA
| | - Taosheng Huang
- Department of Pediatrics, Jacobs School of Medicine and Biomedical SciencesUniversity at BuffaloBuffaloNew YorkUSA
| | - Jiajie Diao
- Department of Cancer Biology, College of MedicineUniversity of CincinnatiCincinnatiOhioUSA
| | - Yujie Sun
- Department of ChemistryUniversity of CincinnatiCincinnatiOhioUSA
| |
Collapse
|
18
|
Sun J, Lv X, Leng J, Wang L, Song L. LC3-Mediated Mitophagy After CCCP or Vibrio splendidus Exposure in the Pacific Oyster Crassostrea gigas. Front Cell Dev Biol 2022; 10:885478. [PMID: 35669507 PMCID: PMC9163569 DOI: 10.3389/fcell.2022.885478] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial selective autophagy, known as mitophagy, surveils the mitochondrial population by eliminating superfluous and/or impaired organelles to mediate cellular survival and viability in response to injury/trauma and infection. In this study, the components of the mitophagy pathway in the Pacific oyster Crassostrea gigas were screened from NCBI with reference to the protein sequences of the human mitophagy process. A total of 10 mitophagy process–related genes were identified from C. gigas, including NIX, FUNDC1, PHB2, Cardiolipin, P62, VDAC2, MFN2, PARL, MPP, and OPTN. They shared high similarities with their homologs in the human mitophagy pathway and were expressed in various tissues of C. gigas. After CCCP exposure, the fluorescence intensity of the mitochondrial probe JC-1 monomers increased significantly in hemocytes, while the fluorescence intensity of JC-1 aggregates decreased significantly. Meanwhile, the fluorescence of lysosomes was found to be co-localized with that of CgLC3 and mitochondria in CCCP-treated hemocytes. Double- and single-membrane-bound vacuoles resembling autophagic structures were observed in the hemocytes after CCCP exposure. The fluorescence intensity of JC-1 monomers and the abundance of CgLC3Ⅱ in hemocytes both increased after Vibrio splendidus exposure. At the same time, the green signals of CgLC3 were co-localized with red signals of the mitochondria, and the fluorescence intensity of autophagy increased significantly in hemocytes after V. splendidus exposure. The results confirmed the existence of a complete mitophagy pathway in mollusks for the first time, which was helpful for further study on the function of mitochondrial autophagy in mollusks.
Collapse
Affiliation(s)
- Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
| | - Xiaoqian Lv
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
| | - Jinyuan Leng
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
- Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, China
- *Correspondence: Lingling Wang, ; Linsheng Song,
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
- *Correspondence: Lingling Wang, ; Linsheng Song,
| |
Collapse
|
19
|
Lee JK, Oh SJ, Gim JA, Shin OS. miR-10a, miR-30c, and miR-451a encapsulated in small extracellular vesicles are pro-senescence factors in human dermal fibroblasts. J Invest Dermatol 2022; 142:2570-2579.e6. [PMID: 35483653 DOI: 10.1016/j.jid.2022.03.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 12/01/2022]
Abstract
Although small extracellular vesicles (sEV) have been reported to play an important role in cellular senescence and aging, little is known about the potential role and function of microRNAs (miRNAs) contained within the sEV. To determine senescence-associated factors secreted from sEV of human dermal fibroblasts (HDF), we isolated and characterized sEV from non-senescent vs. senescent HDF. Small RNA sequencing analysis identified many enriched miRNAs in sEV of senescent HDF, as shown by the upregulation of miR-10a, miR-30c, and miR-451a, and downregulation of miR-128, miR-184, miR-200c, and miR-125a. Overexpression of miR-10a, miR-30c, and miR-451a induced an aging phenotype in HDF, whereas inhibition of these miRNAs reduced senescent-like phenotypes in senescent HDF. Moreover, treatment with sEV or sEV-containing conditioned medium promoted cellular senescence in HDF, whereas sEV depletion abrogated pro-senescence effects of the senescent HDF secretome. Interestingly, pro-senescence sEV miRNAs were found to have an essential role in regulating reactive oxygen species production and mitophagy activation. Taken together, our results revealed miR-10a, miR-30c, and miR-451a as pro-senescence factors that are differentially expressed in sEV of senescent HDF, demonstrating the essential role of sEV miRNAs in the biological processes of aging.
Collapse
Affiliation(s)
- Jae Kyung Lee
- BK21 Graduate program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, 08308, Republic of Korea
| | - Soo-Jin Oh
- BK21 Graduate program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, 08308, Republic of Korea
| | - Jeong-An Gim
- Medical Science Research Center, College of Medicine, Korea University Guro Hospital, Seoul, 08308, Republic of Korea
| | - Ok Sarah Shin
- BK21 Graduate program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, 08308, Republic of Korea;.
| |
Collapse
|
20
|
Oh SJ, Lee EN, Park JH, Lee JK, Cho GJ, Park IH, Shin OS. Anti-Viral Activities of Umbilical Cord Mesenchymal Stem Cell-Derived Small Extracellular Vesicles Against Human Respiratory Viruses. Front Cell Infect Microbiol 2022; 12:850744. [PMID: 35558099 PMCID: PMC9085650 DOI: 10.3389/fcimb.2022.850744] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
The endemic and pandemic caused by respiratory virus infection are a major cause of mortality and morbidity globally. Thus, broadly effective antiviral drugs are needed to treat respiratory viral diseases. Small extracellular vesicles derived from human umbilical cord mesenchymal stem cells (U-exo) have recently gained attention as a cell-free therapeutic strategy due to their potential for safety and efficacy. Anti-viral activities of U-exo to countermeasure respiratory virus-associated diseases are currently unknown. Here, we tested the antiviral activities of U-exo following influenza A/B virus (IFV) and human seasonal coronavirus (HCoV) infections in vitro. Cells were subject to IFV or HCoV infection followed by U-exo treatment. U-exo treatment significantly reduced IFV or HCoV replication and combined treatment with recombinant human interferon-alpha protein (IFN-α) exerted synergistically enhanced antiviral effects against IFV or HCoV. Interestingly, microRNA (miR)-125b, which is one of the most abundantly expressed small RNAs in U-exo, was found to suppress IFV replication possibly via the induction of IFN-stimulated genes (ISGs). Furthermore, U-exo markedly enhanced RNA virus-triggered IFN signaling and ISGs production. Similarly, human nasal epithelial cells cultured at the air-liquid interface (ALI) studies broadly effective anti-viral and anti-inflammatory activities of U-exo against IFV and HCoV, suggesting the potential role of U-exo as a promising intervention for respiratory virus-associated diseases.
Collapse
Affiliation(s)
- Soo-Jin Oh
- BK21 Graduate program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - Eun-Na Lee
- Department of Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Joo-Hoo Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University, Seoul, South Korea
| | - Jae Kyung Lee
- BK21 Graduate program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - Geum Joon Cho
- Department of Obstetrics and Gynecology, College of Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - Il-Ho Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University, Seoul, South Korea
- *Correspondence: Il-Ho Park, ; Ok Sarah Shin,
| | - Ok Sarah Shin
- BK21 Graduate program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, South Korea
- Department of Medicine, Korea University College of Medicine, Seoul, South Korea
- *Correspondence: Il-Ho Park, ; Ok Sarah Shin,
| |
Collapse
|
21
|
Yu K, Zhou L, Wang Y, Yu C, Wang Z, Liu H, Wei H, Han L, Cheng J, Wang F, Wang DW, Zhao C. Mechanisms and Therapeutic Strategies of Viral Myocarditis Targeting Autophagy. Front Pharmacol 2022; 13:843103. [PMID: 35479306 PMCID: PMC9035591 DOI: 10.3389/fphar.2022.843103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Viral myocarditis is caused by infection with viruses or bacteria, including coxsackievirus B3 (CVB3), and is characterized by acute or chronic inflammatory responses in the heart. The mortality associated with severe viral myocarditis is considerable. In some patients, viral myocarditis may develop into dilated cardiomyopathy or heart failure. Autophagy is involved in a wide range of physiological processes, including viral infection and replication. In the present review, we focus on the responses of cardiac tissues, cardiomyocytes, and cardiac fibroblasts to CVB3 infection. Subsequently, the effects of altered autophagy on the development of viral myocarditis are discussed. Finally, this review also examined and assessed the use of several popular autophagy modulating drugs, such as metformin, resveratrol, rapamycin, wortmannin, and 3-methyladenine, as alternative treatment strategies for viral myocarditis.
Collapse
Affiliation(s)
- Kun Yu
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Zhou
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yinhui Wang
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengxin Yu
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyi Wang
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Liu
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Wei
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Han
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Jia Cheng
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wang
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunxia Zhao
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Chunxia Zhao,
| |
Collapse
|
22
|
Lee JH, Oh SJ, Yun J, Shin OS. Nonstructural Protein NS1 of Influenza Virus Disrupts Mitochondrial Dynamics and Enhances Mitophagy via ULK1 and BNIP3. Viruses 2021; 13:v13091845. [PMID: 34578425 PMCID: PMC8473137 DOI: 10.3390/v13091845] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/03/2021] [Indexed: 01/18/2023] Open
Abstract
Nonstructural protein 1 (NS1) of influenza virus (IFV) is essential for evading interferon (IFN)-mediated antiviral responses, thereby contributing to the pathogenesis of influenza. Mitophagy is a type of autophagy that selectively removes damaged mitochondria. The role of NS1 in IFV-mediated mitophagy is currently unknown. Herein, we showed that overexpression of NS1 protein led to enhancement of mitophagy. Mitophagy induction via carbonyl cyanide 3-chlorophenylhydrazone treatment in IFV-infected A549 cells led to increased viral replication efficiency, whereas the knockdown of PTEN-induced kinase 1 (PINK1) led to the opposite effect on viral replication. Overexpression of NS1 protein led to changes in mitochondrial dynamics, including depolarization of mitochondrial membrane potential. In contrast, infection with NS1-deficient virus resulted in impaired mitochondrial fragmentation, subsequent mitolysosomal formation, and mitophagy induction, suggesting an important role of NS1 in mitophagy. Meanwhile, NS1 protein increased the phosphorylation of Unc-51-like autophagy activating kinase 1 (ULK1) and the mitochondrial expression of BCL2- interacting protein 3 (BNIP3), both of which were found to be important for IFV-mediated mitophagy. Overall, these data highlight the importance of IFV NS1, ULK1, and BNIP3 during mitophagy activation.
Collapse
Affiliation(s)
- Jae-Hwan Lee
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea; (J.-H.L.); (S.-J.O.)
| | - Soo-Jin Oh
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea; (J.-H.L.); (S.-J.O.)
| | - Jeanho Yun
- Peripheral Neuropathy Research Center, Department of Translational Biomedical Sciences, College of Medicine, Dong-A University, Busan 49201, Korea
- Correspondence: (J.Y.); (O.S.S.); Tel.: +82-51-240-2919 (J.Y.); +82-2-2626-3280 (O.S.S.)
| | - Ok Sarah Shin
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea; (J.-H.L.); (S.-J.O.)
- Correspondence: (J.Y.); (O.S.S.); Tel.: +82-51-240-2919 (J.Y.); +82-2-2626-3280 (O.S.S.)
| |
Collapse
|