1
|
Alam F, Li Y, Vogt MR. Parechovirus: neglected for too long? J Virol 2025; 99:e0184624. [PMID: 40130875 PMCID: PMC11998499 DOI: 10.1128/jvi.01846-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
Parechoviruses are non-enveloped, positive-sense, single-stranded RNA viruses that have been isolated from multiple vertebrate species. Infection with these etiologic agents of typically mild childhood respiratory and gastrointestinal illness in humans is nearly universal, and a subset of infected neonates and infants develop severe neurologic diseases. Rodent parechoviruses cause myocarditis, encephalitis, and perinatal death in multiple rodent species. The key steps of the viral life cycle, clinical characteristics, and global burden of these viruses are not well characterized yet, particularly for nonhuman parechoviruses. Here, we review the history of human and nonhuman parechovirus isolation, global seroprevalence and distribution, viral biology, and evolution, considering these factors might contribute to host specificity, virulence, tissue tropism, pathogenesis, host immunity, and population dynamics.
Collapse
Affiliation(s)
- Fahmida Alam
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - You Li
- Department of Pediatrics, Division of Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Matthew R. Vogt
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pediatrics, Division of Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Lulla V, Sridhar A. Understanding neurotropic enteric viruses: routes of infection and mechanisms of attenuation. Cell Mol Life Sci 2024; 81:413. [PMID: 39365457 PMCID: PMC11452578 DOI: 10.1007/s00018-024-05450-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024]
Abstract
The intricate connection between the gut and the brain involves multiple routes. Several viral families begin their infection cycle in the intestinal tract. However, amongst the long list of viral intestinal pathogens, picornaviruses, and astroviruses stand out for their ability to transition from the intestinal epithelia to central or peripheral nervous system cells. In immunocompromised, neonates and young children, these viral infections can manifest as severe diseases, such as encephalitis, meningitis, and acute flaccid paralysis. What confers this remarkable plasticity and makes them efficient in infecting cells of the gut and the brain axes? Here, we review the current understanding of the virus infection along the gut-brain axis for some enteric viruses and discuss the molecular mechanisms of their attenuation.
Collapse
Affiliation(s)
- Valeria Lulla
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Adithya Sridhar
- OrganoVIR Labs, Department of Pediatric Infectious Diseases, Amsterdam UMC, location Academic Medical Center, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100 AZ, Amsterdam, The Netherlands
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100 AZ, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Adeniyi-Ipadeola GO, Hankins JD, Kambal A, Zeng XL, Patil K, Poplaski V, Bomidi C, Nguyen-Phuc H, Grimm SL, Coarfa C, Stossi F, Crawford SE, Blutt SE, Speer AL, Estes MK, Ramani S. Infant and adult human intestinal enteroids are morphologically and functionally distinct. mBio 2024; 15:e0131624. [PMID: 38953637 PMCID: PMC11323560 DOI: 10.1128/mbio.01316-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
Human intestinal enteroids (HIEs) are gaining recognition as physiologically relevant models of the intestinal epithelium. While HIEs from adults are used extensively in biomedical research, few studies have used HIEs from infants. Considering the dramatic developmental changes that occur during infancy, it is important to establish models that represent infant intestinal characteristics and physiological responses. We established jejunal HIEs from infant surgical samples and performed comparisons to jejunal HIEs from adults using RNA sequencing (RNA-Seq) and morphologic analyses. We then validated differences in key pathways through functional studies and determined whether these cultures recapitulate known features of the infant intestinal epithelium. RNA-Seq analysis showed significant differences in the transcriptome of infant and adult HIEs, including differences in genes and pathways associated with cell differentiation and proliferation, tissue development, lipid metabolism, innate immunity, and biological adhesion. Validating these results, we observed a higher abundance of cells expressing specific enterocyte, goblet cell, and enteroendocrine cell markers in differentiated infant HIE monolayers, and greater numbers of proliferative cells in undifferentiated 3D cultures. Compared to adult HIEs, infant HIEs portray characteristics of an immature gastrointestinal epithelium including significantly shorter cell height, lower epithelial barrier integrity, and lower innate immune responses to infection with an oral poliovirus vaccine. HIEs established from infant intestinal tissues reflect characteristics of the infant gut and are distinct from adult cultures. Our data support the use of infant HIEs as an ex vivo model to advance studies of infant-specific diseases and drug discovery for this population. IMPORTANCE Tissue or biopsy stem cell-derived human intestinal enteroids are increasingly recognized as physiologically relevant models of the human gastrointestinal epithelium. While enteroids from adults and fetal tissues have been extensively used for studying many infectious and non-infectious diseases, there are few reports on enteroids from infants. We show that infant enteroids exhibit both transcriptomic and morphological differences compared to adult cultures. They also differ in functional responses to barrier disruption and innate immune responses to infection, suggesting that infant and adult enteroids are distinct model systems. Considering the dramatic changes in body composition and physiology that begin during infancy, tools that appropriately reflect intestinal development and diseases are critical. Infant enteroids exhibit key features of the infant gastrointestinal epithelium. This study is significant in establishing infant enteroids as age-appropriate models for infant intestinal physiology, infant-specific diseases, and responses to pathogens.
Collapse
Affiliation(s)
| | - Julia D. Hankins
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Amal Kambal
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Texas Medical Center Digestive Diseases Center Gastrointestinal Experimental Model Systems (GEMS) Core, Houston, Texas, USA
| | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Texas Medical Center Digestive Diseases Center Gastrointestinal Experimental Model Systems (GEMS) Core, Houston, Texas, USA
| | - Ketki Patil
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Victoria Poplaski
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Carolyn Bomidi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Hoa Nguyen-Phuc
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Sandra L. Grimm
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Center for Precision and Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Center for Precision and Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Gulf Coast Consortium Center for Advanced Microscopy and Image Informatics, Houston, Texas, USA
| | - Sue E. Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Sarah E. Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Texas Medical Center Digestive Diseases Center Gastrointestinal Experimental Model Systems (GEMS) Core, Houston, Texas, USA
| | - Allison L. Speer
- Department of Pediatric Surgery, The University of Texas Health Science Center, Houston, Texas, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Texas Medical Center Digestive Diseases Center Gastrointestinal Experimental Model Systems (GEMS) Core, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
4
|
Nanlohy NM, Johannesson N, Wijnands L, Arroyo L, de Wit J, den Hartog G, Wolthers KC, Sridhar A, Fuentes S. Exploring host-commensal-pathogen dynamics in cell line and organotypic human intestinal epithelial models. iScience 2024; 27:109771. [PMID: 38711444 PMCID: PMC11070716 DOI: 10.1016/j.isci.2024.109771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/26/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Host and microbiome intricately interact in the ecosystem of the human digestive tract, playing a crucial role in our health. These interactions can initiate immune responses in the epithelial cells, which, in turn, activate downstream responses in other immune cells. Here, we used a CaCo-2 and a human intestinal enteroid (HIE) model to explore epithelial responses to both commensal and pathogenic bacteria, individually and combined. CaCo-2 cells were co-cultured with peripheral blood mononuclear cells, revealing downstream activation of immune cells. While both systems showed comparable cytokine profiles, they differed in their responses to the different bacteria, with the organoid system being more representative of responses observed in humans. We provide evidence of the pro-inflammatory responses associated with these bacteria. These models contribute to a deeper understanding of the interactions between the microbiota, intestinal epithelium, and immune cells in the gut, promoting advances in the field of host-microbe interactions.
Collapse
Affiliation(s)
- Nening M. Nanlohy
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Nina Johannesson
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location AMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
- OrganoVIR Labs, Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Lucas Wijnands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Laura Arroyo
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Jelle de Wit
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Gerco den Hartog
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Laboratory of Medical Immunology, Radboudumc, Nijmegen, the Netherlands
| | - Katja C. Wolthers
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location AMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Adithya Sridhar
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location AMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
- OrganoVIR Labs, Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Susana Fuentes
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| |
Collapse
|
5
|
Amoroso MG, Pucciarelli A, Serra F, Ianiro G, Iafusco M, Fiorito F, Polverino MG, Dimatteo M, Monini M, Ferrara D, Martemucci L, Di Bartolo I, De Carlo E, Fusco G. Ten different viral agents infecting and co-infecting children with acute gastroenteritis in Southern Italy: Role of known pathogens and emerging viruses during and after COVID-19 pandemic. J Med Virol 2024; 96:e29679. [PMID: 38767190 DOI: 10.1002/jmv.29679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/18/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
Acute gastroenteritis (AGE) represents a world public health relevant problem especially in children. Enteric viruses are the pathogens mainly involved in the episodes of AGE, causing about 70.00% of the cases. Apart from well-known rotavirus (RVA), adenovirus (AdV) and norovirus (NoV), there are various emerging viral pathogens potentially associated with AGE episodes. In this study, the presence of ten different enteric viruses was investigated in 152 fecal samples collected from children hospitalized for gastroenteritis. Real time PCR results showed that 49.3% of them were positive for viral detection with the following prevalence: norovirus GII 19.7%, AdV 15.8%, RVA 10.5%, human parechovirus (HPeV) 5.3%, enterovirus (EV) 3.3%, sapovirus (SaV) 2.6%. Salivirus (SalV), norovirus GI and astrovirus (AstV) 1.3% each, aichivirus (AiV) found in only one patient. In 38.2% of feces only one virus was detected, while co-infections were identified in 11.8% of the cases. Among young patients, 105 were ≤5 years old and 56.0% tested positive for viral detection, while 47 were >5 years old with 40.0% of them infected. Results obtained confirm a complex plethora of viruses potentially implicated in gastroenteritis in children, with some of them previously known for other etiologies but detectable in fecal samples. Subsequent studies should investigate the role of these viruses in causing gastroenteritis and explore the possibility that other symptoms may be ascribed to multiple infections.
Collapse
Affiliation(s)
- Maria Grazia Amoroso
- Department of Animal Health, Unit of Virology, Experimental Zooprophylactic Institute of Southern Italy, Portici, Italy
| | - Alessia Pucciarelli
- Department of Animal Health, Unit of Virology, Experimental Zooprophylactic Institute of Southern Italy, Portici, Italy
| | - Francesco Serra
- Department of Animal Health, Unit of Virology, Experimental Zooprophylactic Institute of Southern Italy, Portici, Italy
| | - Giovanni Ianiro
- Istituto Superiore di Sanità Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Michele Iafusco
- Pediatrics Department, "Pediatria 2", National Specialty Hospital Santobono Pausilipon, Napoli, Italy
| | - Filomena Fiorito
- Department of Veterinary Science and Animal Production, University of Naples Federico II, Naples, Italy
| | - Maria Grazia Polverino
- Department of Animal Health, Unit of Virology, Experimental Zooprophylactic Institute of Southern Italy, Portici, Italy
| | - Maria Dimatteo
- Department of Animal Health, Unit of Virology, Experimental Zooprophylactic Institute of Southern Italy, Portici, Italy
| | - Marina Monini
- Istituto Superiore di Sanità Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Daniela Ferrara
- Pediatrics Department, "Pediatria 2", National Specialty Hospital Santobono Pausilipon, Napoli, Italy
| | - Luigi Martemucci
- Pediatrics Department, "Pediatria 2", National Specialty Hospital Santobono Pausilipon, Napoli, Italy
| | - Ilaria Di Bartolo
- Istituto Superiore di Sanità Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Esterina De Carlo
- Department of Animal Health, Unit of Virology, Experimental Zooprophylactic Institute of Southern Italy, Portici, Italy
| | - Giovanna Fusco
- Department of Animal Health, Unit of Virology, Experimental Zooprophylactic Institute of Southern Italy, Portici, Italy
| |
Collapse
|
6
|
Capendale PE, García-Rodríguez I, Ambikan AT, Mulder LA, Depla JA, Freeze E, Koen G, Calitz C, Sood V, Vieira de Sá R, Neogi U, Pajkrt D, Sridhar A, Wolthers KC. Parechovirus infection in human brain organoids: host innate inflammatory response and not neuro-infectivity correlates to neurologic disease. Nat Commun 2024; 15:2532. [PMID: 38514653 PMCID: PMC10958052 DOI: 10.1038/s41467-024-46634-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Picornaviruses are a leading cause of central nervous system (CNS) infections. While genotypes such as parechovirus A3 (PeV-A3) and echovirus 11 (E11) can elicit severe neurological disease, the highly prevalent PeV-A1 is not associated with CNS disease. Here, we expand our current understanding of these differences in PeV-A CNS disease using human brain organoids and clinical isolates of the two PeV-A genotypes. Our data indicate that PeV-A1 and A3 specific differences in neurological disease are not due to infectivity of CNS cells as both viruses productively infect brain organoids with a similar cell tropism. Proteomic analysis shows that PeV-A infection significantly alters the host cell metabolism. The inflammatory response following PeV-A3 (and E11 infection) is significantly more potent than that upon PeV-A1 infection. Collectively, our findings align with clinical observations and suggest a role for neuroinflammation, rather than viral replication, in PeV-A3 (and E11) infection.
Collapse
Affiliation(s)
- Pamela E Capendale
- OrganoVIR Labs, Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Inés García-Rodríguez
- OrganoVIR Labs, Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Anoop T Ambikan
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, Stockholm, Sweden
| | - Lance A Mulder
- OrganoVIR Labs, Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Josse A Depla
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- UniQure Biopharma B.V., Department of Research & Development, Paasheuvelweg 25A, Amsterdam, The Netherlands
| | - Eline Freeze
- OrganoVIR Labs, Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Gerrit Koen
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Carlemi Calitz
- OrganoVIR Labs, Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Vikas Sood
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, Stockholm, Sweden
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Renata Vieira de Sá
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, Stockholm, Sweden
| | - Ujjwal Neogi
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, Stockholm, Sweden
| | - Dasja Pajkrt
- OrganoVIR Labs, Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Adithya Sridhar
- OrganoVIR Labs, Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Katja C Wolthers
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Adeniyi-Ipadeola GO, Hankins JD, Kambal A, Zeng XL, Patil K, Poplaski V, Bomidi C, Nguyen-Phuc H, Grimm SL, Coarfa C, Stossi F, Crawford SE, Blutt SE, Speer AL, Estes MK, Ramani S. Infant and Adult Human Intestinal Enteroids are Morphologically and Functionally Distinct. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.19.541350. [PMID: 37292968 PMCID: PMC10245709 DOI: 10.1101/2023.05.19.541350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background & Aims Human intestinal enteroids (HIEs) are gaining recognition as physiologically relevant models of the intestinal epithelium. While HIEs from adults are used extensively in biomedical research, few studies have used HIEs from infants. Considering the dramatic developmental changes that occur during infancy, it is important to establish models that represent infant intestinal characteristics and physiological responses. Methods We established jejunal HIEs from infant surgical samples and performed comparisons to jejunal HIEs from adults using RNA sequencing (RNA-Seq) and morphologic analyses. We validated differences in key pathways through functional studies and determined if these cultures recapitulate known features of the infant intestinal epithelium. Results RNA-Seq analysis showed significant differences in the transcriptome of infant and adult HIEs, including differences in genes and pathways associated with cell differentiation and proliferation, tissue development, lipid metabolism, innate immunity, and biological adhesion. Validating these results, we observed a higher abundance of cells expressing specific enterocyte, goblet cell and enteroendocrine cell markers in differentiated infant HIE monolayers, and greater numbers of proliferative cells in undifferentiated 3D cultures. Compared to adult HIEs, infant HIEs portray characteristics of an immature gastrointestinal epithelium including significantly shorter cell height, lower epithelial barrier integrity, and lower innate immune responses to infection with an oral poliovirus vaccine. Conclusions HIEs established from infant intestinal tissues reflect characteristics of the infant gut and are distinct from adult cultures. Our data support the use of infant HIEs as an ex-vivo model to advance studies of infant-specific diseases and drug discovery for this population.
Collapse
Affiliation(s)
| | - Julia D. Hankins
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| | - Amal Kambal
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
- Texas Medical Center Digestive Diseases Center Gastrointestinal Experimental Model Systems (GEMS) Core
| | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
- Texas Medical Center Digestive Diseases Center Gastrointestinal Experimental Model Systems (GEMS) Core
| | - Ketki Patil
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| | - Victoria Poplaski
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| | - Carolyn Bomidi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| | - Hoa Nguyen-Phuc
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| | - Sandra L. Grimm
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
- Center for Precision and Environmental Health, Baylor College of Medicine, Houston, TX
| | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
- Center for Precision and Environmental Health, Baylor College of Medicine, Houston, TX
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Golf Coast Consortium Center for Advanced Microscopy and Image Informatics, Houston, TX
| | - Sue E. Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| | - Sarah E. Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
- Texas Medical Center Digestive Diseases Center Gastrointestinal Experimental Model Systems (GEMS) Core
| | - Allison L. Speer
- Department of Pediatric Surgery, The University of Texas Health Science Center, Houston, TX
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
- Texas Medical Center Digestive Diseases Center Gastrointestinal Experimental Model Systems (GEMS) Core
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
8
|
García-Rodríguez I, Moreni G, Capendale PE, Mulder L, Aknouch I, Vieira de Sá R, Johannesson N, Freeze E, van Eijk H, Koen G, Wolthers KC, Pajkrt D, Sridhar A, Calitz C. Assessment of the broad-spectrum host targeting antiviral efficacy of halofuginone hydrobromide in human airway, intestinal and brain organotypic models. Antiviral Res 2024; 222:105798. [PMID: 38190972 DOI: 10.1016/j.antiviral.2024.105798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/10/2024]
Abstract
Halofuginone hydrobromide has shown potent antiviral efficacy against a variety of viruses such as SARS-CoV-2, dengue, or chikungunya virus, and has, therefore, been hypothesized to have broad-spectrum antiviral activity. In this paper, we tested this broad-spectrum antiviral activity of Halofuginone hydrobomide against viruses from different families (Picornaviridae, Herpesviridae, Orthomyxoviridae, Coronaviridae, and Flaviviridae). To this end, we used relevant human models of the airway and intestinal epithelium and regionalized neural organoids. Halofuginone hydrobomide showed antiviral activity against SARS-CoV-2 in the airway epithelium with no toxicity at equivalent concentrations used in human clinical trials but not against any of the other tested viruses.
Collapse
Affiliation(s)
- Inés García-Rodríguez
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands
| | - Giulia Moreni
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands
| | - Pamela E Capendale
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands
| | - Lance Mulder
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands
| | - Ikrame Aknouch
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; Viroclinics Xplore, Schaijk, the Netherlands
| | - Renata Vieira de Sá
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; UniQure Biopharma B.V., Department of Research & Development, Paasheuvelweg 25A, 1105, BE, Amsterdam, the Netherlands
| | - Nina Johannesson
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands
| | - Eline Freeze
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands
| | - Hetty van Eijk
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands
| | - Gerrit Koen
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands
| | - Katja C Wolthers
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands
| | - Dasja Pajkrt
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands
| | - Adithya Sridhar
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands
| | - Carlemi Calitz
- Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands; OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, 1100, AZ, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Moreni G, van Eijk H, Koen G, Johannesson N, Calitz C, Benschop K, Cremer J, Pajkrt D, Sridhar A, Wolthers K. Non-Polio Enterovirus C Replicate in Both Airway and Intestine Organotypic Cultures. Viruses 2023; 15:1823. [PMID: 37766230 PMCID: PMC10537321 DOI: 10.3390/v15091823] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Non-polio enteroviruses (EV) belonging to species C, which are highly prevalent in Africa, mainly among children, are poorly characterized, and their pathogenesis is mostly unknown as they are difficult to culture. In this study, human airway and intestinal organotypic models were used to investigate tissue and cellular tropism of three EV-C genotypes, EV-C99, CVA-13, and CVA-20. Clinical isolates were obtained within the two passages of culture on Caco2 cells, and all three viruses were replicated in both the human airway and intestinal organotypic cultures. We did not observe differences in viral replication between fetal and adult tissue that could potentially explain the preferential infection of infants by EV-C genotypes. Infection of the airway and the intestinal cultures indicates that they both can serve as entry sites for non-polio EV-C. Ciliated airway cells and enterocytes are the target of infection for all three viruses, as well as enteroendocrine cells for EV-C99.
Collapse
Affiliation(s)
- Giulia Moreni
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location AMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (H.v.E.); (G.K.); (N.J.); (C.C.); (A.S.); (K.W.)
- OrganoVIR Labs, Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Hetty van Eijk
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location AMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (H.v.E.); (G.K.); (N.J.); (C.C.); (A.S.); (K.W.)
| | - Gerrit Koen
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location AMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (H.v.E.); (G.K.); (N.J.); (C.C.); (A.S.); (K.W.)
| | - Nina Johannesson
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location AMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (H.v.E.); (G.K.); (N.J.); (C.C.); (A.S.); (K.W.)
- OrganoVIR Labs, Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Carlemi Calitz
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location AMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (H.v.E.); (G.K.); (N.J.); (C.C.); (A.S.); (K.W.)
- OrganoVIR Labs, Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Kimberley Benschop
- National Institute for Public Health and Environment, RIVM, 3721 MA Bilthoven, The Netherlands; (K.B.); (J.C.)
| | - Jeroen Cremer
- National Institute for Public Health and Environment, RIVM, 3721 MA Bilthoven, The Netherlands; (K.B.); (J.C.)
| | - Dasja Pajkrt
- OrganoVIR Labs, Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Adithya Sridhar
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location AMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (H.v.E.); (G.K.); (N.J.); (C.C.); (A.S.); (K.W.)
- OrganoVIR Labs, Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Katja Wolthers
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Location AMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (H.v.E.); (G.K.); (N.J.); (C.C.); (A.S.); (K.W.)
| |
Collapse
|
10
|
Cable J, Denison MR, Kielian M, Jackson WT, Bartenschlager R, Ahola T, Mukhopadhyay S, Fremont DH, Kuhn RJ, Shannon A, Frazier MN, Yuen KY, Coyne CB, Wolthers KC, Ming GL, Guenther CS, Moshiri J, Best SM, Schoggins JW, Jurado KA, Ebel GD, Schäfer A, Ng LFP, Kikkert M, Sette A, Harris E, Wing PAC, Eggenberger J, Krishnamurthy SR, Mah MG, Meganck RM, Chung D, Maurer-Stroh S, Andino R, Korber B, Perlman S, Shi PY, Bárcena M, Aicher SM, Vu MN, Kenney DJ, Lindenbach BD, Nishida Y, Rénia L, Williams EP. Positive-strand RNA viruses-a Keystone Symposia report. Ann N Y Acad Sci 2023; 1521:46-66. [PMID: 36697369 PMCID: PMC10347887 DOI: 10.1111/nyas.14957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Positive-strand RNA viruses have been the cause of several recent outbreaks and epidemics, including the Zika virus epidemic in 2015, the SARS outbreak in 2003, and the ongoing SARS-CoV-2 pandemic. On June 18-22, 2022, researchers focusing on positive-strand RNA viruses met for the Keystone Symposium "Positive-Strand RNA Viruses" to share the latest research in molecular and cell biology, virology, immunology, vaccinology, and antiviral drug development. This report presents concise summaries of the scientific discussions at the symposium.
Collapse
Affiliation(s)
| | - Mark R Denison
- Department of Pediatrics and Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; and Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, Tennessee, USA
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - William T Jackson
- Department of Microbiology and Immunology and Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University and German Cancer Research Center (DKFZ), Research Division Virus-associated Carcinogenesis, Heidelberg, Germany
| | - Tero Ahola
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | | | - Daved H Fremont
- Department of Pathology & Immunology; Department of Molecular Microbiology; and Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Ashleigh Shannon
- Architecture et Fonction des Macromolécules Biologiques, CNRS and Aix Marseille Université, Marseille, France
| | - Meredith N Frazier
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Kwok-Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine and State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, People's Republic of China
| | - Carolyn B Coyne
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Katja C Wolthers
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam and Amsterdam Institute for Infection and Immunity, OrganoVIR Labs, Amsterdam, The Netherlands
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Jasmine Moshiri
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Sonja M Best
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - John W Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kellie Ann Jurado
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gregory D Ebel
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lisa F P Ng
- ASTAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science Technology and Research (A*STAR), Singapore City, Singapore
- National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, USA
| | - Peter A C Wing
- Nuffield Department of Medicine and Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Julie Eggenberger
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Siddharth R Krishnamurthy
- Metaorganism Immunity Section, Laboratory of Immune System Biology and NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Marcus G Mah
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore City, Singapore
| | - Rita M Meganck
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Donghoon Chung
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, Texas, USA
| | - Sebastian Maurer-Stroh
- Yong Loo Lin School of Medicine and Department of Biological Sciences, National University of Singapore, Singapore City, Singapore
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore City, Singapore
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
| | - Bette Korber
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, and Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Montserrat Bárcena
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sophie-Marie Aicher
- Institut Pasteurgrid, Université de Paris Cité, Virus Sensing and Signaling Unit, Paris, France
| | - Michelle N Vu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Devin J Kenney
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Brett D Lindenbach
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yukiko Nishida
- Chugai Pharmaceutical, Co., Tokyo, Japan
- Lee Kong Chian School of Medicine and School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Laurent Rénia
- ASTAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science Technology and Research (A*STAR), Singapore City, Singapore
| | - Evan P Williams
- Department of Microbiology, Immunology, and Biochemistry, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
11
|
Aknouch I, García-Rodríguez I, Giugliano FP, Calitz C, Koen G, van Eijk H, Johannessson N, Rebers S, Brouwer L, Muncan V, Stittelaar KJ, Pajkrt D, Wolthers KC, Sridhar A. Amino acid variation at VP1-145 of enterovirus A71 determines the viral infectivity and receptor usage in a primary human intestinal model. Front Microbiol 2023; 14:1045587. [PMID: 37138595 PMCID: PMC10149690 DOI: 10.3389/fmicb.2023.1045587] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/16/2023] [Indexed: 05/05/2023] Open
Abstract
Enterovirus A71 (EV-A71) can elicit a wide variety of human diseases such as hand, foot, and mouth disease and severe or fatal neurological complications. It is not clearly understood what determines the virulence and fitness of EV-A71. It has been observed that amino acid changes in the receptor binding protein, VP1, resulting in viral binding to heparan sulfate proteoglycans (HSPGs) may be important for the ability of EV-A71 to infect neuronal tissue. In this study, we identified that the presence of glutamine, as opposed to glutamic acid, at VP1-145 is key for viral infection in a 2D human fetal intestinal model, consistent with previous findings in an airway organoid model. Moreover, pre-treatment of EV-A71 particles with low molecular weight heparin to block HSPG-binding significantly reduced the infectivity of two clinical EV-A71 isolates and viral mutants carrying glutamine at VP1-145. Our data indicates that mutations in VP1 leading to HSPG-binding enhances viral replication in the human gut. These mutations resulting in increased production of viral particles at the primary replication site could lead to a higher risk of subsequent neuroinfection. Importance With the near eradication of polio worldwide, polio-like illness (as is increasingly caused by EV-A71 infections) is of emerging concern. EV-A71 is indeed the most neurotropic enterovirus that poses a major threat globally to public health and specifically in infants and young children. Our findings will contribute to the understanding of the virulence and the pathogenicity of this virus. Further, our data also supports the identification of potential therapeutic targets against severe EV-A71 infection especially among infants and young children. Furthermore, our work highlights the key role of HSPG-binding mutations in the disease outcome of EV-A71. Additionally, EV-A71 is not able to infect the gut (the primary replication site in humans) in traditionally used animal models. Thus, our research highlights the need for human-based models to study human viral infections.Graphical Abstract.
Collapse
Affiliation(s)
- Ikrame Aknouch
- Department of Medical Microbiology, OrganoVIR Labs, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Viroclinics Xplore, Schaijk, Netherlands
- *Correspondence: Ikrame Aknouch,
| | - Inés García-Rodríguez
- Department of Medical Microbiology, OrganoVIR Labs, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Francesca Paola Giugliano
- Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Carlemi Calitz
- Department of Medical Microbiology, OrganoVIR Labs, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Gerrit Koen
- Department of Medical Microbiology, OrganoVIR Labs, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Hetty van Eijk
- Department of Medical Microbiology, OrganoVIR Labs, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Nina Johannessson
- Department of Medical Microbiology, OrganoVIR Labs, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Sjoerd Rebers
- Department of Medical Microbiology, OrganoVIR Labs, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Lieke Brouwer
- Department of Medical Microbiology, OrganoVIR Labs, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Vanesa Muncan
- Tytgat Institute for Intestinal and Liver Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Koert J. Stittelaar
- Department of Epidemiology, Bioinformatics and Animal Models, Wageningen Bioveterinary Research, Wageningen University, Wageningen, Netherlands
| | - Dasja Pajkrt
- Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Katja C. Wolthers
- Department of Medical Microbiology, OrganoVIR Labs, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Adithya Sridhar
- Department of Medical Microbiology, OrganoVIR Labs, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Adithya Sridhar,
| |
Collapse
|