1
|
Wei K, Ma Y, Xu J, Zheng H, Xue L, Chu Y, Shi Y, Sun Z, Sun Q. Potential changes in microorganisms and metabolites associated with oral cancer: a preliminary study. BMC Cancer 2025; 25:611. [PMID: 40186151 PMCID: PMC11971795 DOI: 10.1186/s12885-025-13680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/06/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Oral squamous cell carcinoma is a malignant tumor with high morbidity and mortality, and changes in microflora have a close relationship with tumor development. In this study, we tried to identify the changes in oral microbial characteristics and metabolite levels in OSCC patients. METHODS In this study, saliva samples were collected from 40 oral cancer cases and 39 healthy controls. The microbiome was analysed by 16 S rDNA gene sequencing, and the metabolome was detected by Liquid Chromatography-Mass Spectrometry (LC-MS) with metabolite traceability using the Metorigin platform. Correlations between the microbiome and metabolome were analysed using the Spearman correlation method. RESULTS The study found a significant difference in the β diversity of oral microbiota between the oral cancer group and healthy controls, while α diversity showed no significant difference. At the phylum level, Deferribacterota significantly increased, and Cyanobacteria significantly decreased in the oral cancer group. At the genus level, Vibrio and Lactococcus were significantly elevated, while Bifidobacterium and Faecalibacterium were significantly reduced. Metabolomic analysis identified 36 differentially abundant metabolites; 13(S)-HOTrE and 13-HODE were significantly downregulated, while docosanamide was significantly upregulated in the oral cancer group. Six bacteria-specific metabolites, including Indole, were also downregulated. Correlation analysis showed that N-Acetylneuraminic acid had a significant negative correlation with Pseudoalteromonas and Vibrio (r < -0.4). CONCLUSION This study found large differences in microbiome levels at the portal level, at the genus level, and significant differences in the levels of a variety of metabolites labeled by indoles, providing a new and potentially valuable direction for the diagnosis and treatment of oral squamous carcinoma.
Collapse
Affiliation(s)
- Kaitong Wei
- Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| | - Yaqing Ma
- Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| | - Jing Xu
- Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| | - Hongyu Zheng
- Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lianping Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| | - Yaojuan Chu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| | - Yingying Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| | - Qiang Sun
- Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China.
| |
Collapse
|
2
|
Yang CC, Washio J, Lin YC, Hsu ML, Wang DH, Tsai FT, Lin YM, Tu HF, Chang HC, Takahashi N. Microbiome Signatures and Dysbiotic Patterns in Oral Cancer and Precancerous Lesions. Oral Dis 2025. [PMID: 40106821 DOI: 10.1111/odi.15317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/24/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND The oral microbiome has been shown to be associated with the development of oral squamous cell carcinoma (OSCC). Research has primarily focused on elucidating the oncogenic mechanisms of specific pathogens by comparing the microbiomes of OSCC and normal tissues. However, the characteristics of the microbiome in the precancerous state remain less understood, as does the influence of metabolic and environmental factors on OSCC-associated microbiomes. METHODS In this study, we analyzed mucosa-associated microbiomes in normal, precancerous, and OSCC lesions from a cohort of 51 patients using 16S rRNA amplicon sequencing. We investigated compositional changes in the microbiome, including the specific abundances and co-occurrences of OSCC-associated bacteria. RESULTS Our findings indicate that the microbiome associated with precancerous lesions is indistinguishable from that of the normal mucosa, whereas the OSCC microbiome significantly differs from both normal and precancerous conditions. Specifically, the OSCC microbiome harbors less Streptococcus, coupled with an increase in amino-acid-degrading anaerobes such as Fusobacterium and Prevotella. The metabolic properties of individual microbes reported suggest that the overrepresentation of OSCC-specific bacteria is a result of metabolic adaptation to tumor microenvironments, although this possibility needs to be experimentally confirmed. CONCLUSIONS Our results demonstrate oral microbiome patterns across OSCC progression, offering insights into microbial ecological perspectives.
Collapse
Affiliation(s)
- Cheng-Chieh Yang
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Stomatology, Oral & Maxillofacial Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jumpei Washio
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yu-Cheng Lin
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Oral Medicine Innovation Center (OMIC), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Lun Hsu
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ding-Han Wang
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Oral Medicine Innovation Center (OMIC), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Fa-Tzu Tsai
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Min Lin
- Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsi-Feng Tu
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Dentistry, National Yang Ming Chiao Tung University Hospital, Yilan County, Taiwan
| | - Hsiu-Chuan Chang
- Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Nobuhiro Takahashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
3
|
Chen J, Chen X, Ma J. Causal relationships of gut microbiota and blood metabolites with ovarian cancer and endometrial cancer: a Mendelian randomization study. J Ovarian Res 2025; 18:54. [PMID: 40082983 PMCID: PMC11905533 DOI: 10.1186/s13048-025-01630-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/17/2025] [Indexed: 03/16/2025] Open
Abstract
OBJECTIVES The study aimed to investigate the causal relationships of gut microbiota (GM), ovarian cancer (OC), endometrial cancer (EC), and potential metabolite mediators using Mendelian randomization (MR) analysis. METHODS Bidirectional two-sample MR analysis and reverse MR analysis of GM on OC/EC were employed to determine the causal effects of GM on OC/EC and the mediating role of blood metabolites in the relationship between GM and OC/EC, with results validated through sensitivity analysis. RESULTS We identified 6 pathogenic bacterial taxa associated with OC, including Euryarchaeota, Escherichia-Shigella, FamilyXIIIAD3011group, Prevotella9, and two unknown genera. Christensenellaceae R.7group, Tyzzerella3, and Victivallaceae were found to be protective against OC. The increase in EC risk was positively associated with Erysipelotrichia, Erysipelotrichaceae, Erysipelotrichales, and FamilyXI. Dorea, RuminococcaceaeUCG014, and Turicibacter exhibited a negative correlation with the EC risk. A total of 26 and 19 blood metabolites related to GM were identified, showing significant correlations with OC and EC, respectively. Cytosine was found to be an intermediate metabolite greatly associated with EC and FamilyXI. In reverse MR analysis, the FamilyXIIIAD3011group exhibited a significant bidirectional causal relationship with OC. CONCLUSION Our study revealed causal relationships of GM and intermediate metabolites with OC/EC, providing new avenues for understanding OC/EC and developing effective treatment strategies.
Collapse
Affiliation(s)
- Jinyan Chen
- Department of Gynecology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310003, China
| | - Xuejun Chen
- Department of Gynecology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310003, China
| | - Jiong Ma
- Department of Gynecology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310003, China.
| |
Collapse
|
4
|
Deo PN, Deshmukh RS, Gaike AH, Christopher A, Gujare M, Inamdar M. Oral microbiome profiles in oral potentially malignant disorders and oral cancer - A diagnostic perspective. J Oral Maxillofac Pathol 2025; 29:87-97. [PMID: 40248614 PMCID: PMC12002586 DOI: 10.4103/jomfp.jomfp_140_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/12/2024] [Accepted: 01/17/2025] [Indexed: 04/19/2025] Open
Abstract
Background Dysregulation of the oral microbiome has been correlated with many diseases, but oral microbiome in the etiopathogenesis of oral cancer remains a grey area and needs to be explored. It is imperative to understand the oral microbiome profiles so as to know the variations in the composition from normal to pre-cancer to cancer. Aim To profile the oral microbiome of normal, oral potentially malignant disorders (leukoplakia - Leu, oral submucous fibrosis - OSMF) and oral squamous cell carcinoma (OSCC) by Next-Generation Sequencing of the 16S ribosomal rRNA gene. Material and Methods This is an observational cross-sectional study. A total of 50 subjects were selected for this study, which included the the normal, Leukoplakia, OSMF, and OSCC groups. Bacterial genomic DNA was extracted, and 16S rRNA gene sequencing of the V4 region was carried out using the Illumina MiSeq system. Bio-informatics data analysis was carried out using the DADA2 pipeline and phyloseq R package, and the t-test was used for statistical analysis. Results and Conclusion Variations in the composition of the oral microbiome were identified across all study groups, and significant differences were noted in certain microbial taxa across normal, pre-cancer, and cancer. Certain bacterial taxa were detected only in OSCC. An increase in relative abundance of Gram-negative bacteria as well as an increasing trend in the abundance of periodontal taxa was observed in OSCC. This study generated a baseline data which may provide a guideline for future functional and integrative oral microbiome studies. Variations in oral microbiome composition may be used as biomarkers and provide signatures during the progression from normal to pre-cancer to cancer.
Collapse
Affiliation(s)
- Priya N. Deo
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Bharati Vidyapeeth Deemed to be University, Dental College and Hospital, Pune, Maharashtra, India
| | - Revati S. Deshmukh
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Bharati Vidyapeeth Deemed to be University, Dental College and Hospital, Pune, Maharashtra, India
| | - Akshay H. Gaike
- National Centre for Cell Science, Pune, Maharashtra, India
- Department of Zoology, Savitribai Phule Pune University, Pune, Maharashtra, India
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Anu Christopher
- Department of Pathology, Bharati Hospital and Research Centre, Pune, Maharashtra, India
| | - Mohak Gujare
- National Centre for Cell Science, Pune, Maharashtra, India
- Host-Microbe Interactomics, Wageningen University and Research, Wageningen, Netherlands
| | - Mitali Inamdar
- National Centre for Cell Science, Pune, Maharashtra, India
| |
Collapse
|
5
|
Leiva-Sabadini C, Saavedra P, Inostroza C, Aguayo S. Extracellular vesicle production by oral bacteria related to dental caries and periodontal disease: role in microbe-host and interspecies interactions. Crit Rev Microbiol 2024:1-18. [PMID: 39563638 DOI: 10.1080/1040841x.2024.2427656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/08/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
Extracellular vesicles (EVs) are cell membrane-derived structures between 20-400 nm in size. In bacteria, EVs play a crucial role in molecule secretion, cell wall biogenesis, cell-cell communication, biofilm development, and host-pathogen interactions. Despite these increasing reports of bacterial-derived vesicles, there remains a limited number of studies that summarize oral bacterial EVs, their cargo, and their main biological functions. Therefore, the aim of this review is to present the latest research on oral bacteria-derived EVs and how they can modulate various physiological and pathological processes in the oral cavity, including the pathogenesis of highly relevant diseases such as dental caries and periodontitis and their systemic complications. Overall, caries-associated bacteria (such as Streptococcus mutans) as well as periodontal pathogens (including the red complex pathogens Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola) have all been shown to produce EVs that carry an array of virulent factors and molecules involved in biofilm and immune modulation, bacterial adhesion, and extracellular matrix degradation. As bacterial EV production is strongly impacted by genotypic and environmental variations, the inhibition of EV genesis and secretion remains a key potential future approach against oral diseases.
Collapse
Affiliation(s)
- Camila Leiva-Sabadini
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paula Saavedra
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carla Inostroza
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sebastian Aguayo
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
6
|
Renu K. A molecular viewpoint of the intricate relationships among HNSCC, HPV infections, and the oral microbiota dysbiosis. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 126:102134. [PMID: 39500393 DOI: 10.1016/j.jormas.2024.102134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 11/03/2024] [Indexed: 11/10/2024]
Abstract
HPV infection and the type of host microbiota play a role in the formation of HNCs. In contrast to other forms of OSCC, where the relationship between HPV and the cancer is less obvious, HPV-HNSCC is a particular type of oropharyngeal cancer. HPV has infected a stratified squamous epithelium, which includes the throat, mouth, anogenital tract, respiratory tract, and skin on the hands and feet. HPV DNA was found in high amounts in the saliva and gargle samples of patients with HPV-related HNSCC. It has been discovered that the specificity of oral mRNA (HPV) and HPV DNA identification varies from 23 % to 82 % in the identification of OPSCCs. The higher rate of HPV transmission through vaginal-oral compared to penile-oral sexual activity may be the reason for the difference in HPV-positive HNSCC patients between males and females. The researchers postulate that HPV-inactive tumours signify an advanced stage of HPV-positive HNSCC, which explains why there are racial disparities in gene expression that correspond to different disease progressions in Black and White patients. The increase of CD8+ T cells in the cancer microenvironment, linked to P16 activation, extends life expectancy in OSCC. tumour markers methylation caused by HPV and suggested using them as possible HNC biomarkers. Fusobacterium levels are much higher in patients with OSCC, while Actinobacteria phylum and Firmicutes are significantly lower. It also serves as a biomarker for notable variations found in Firmicutes, Actinobacteria, Fusobacteriales, Fusobacteriia, Fusobacterium, and Fusobacteriaceae. Therefore, based on this we evidence, we could investigate the role of oral microbiota as a maker for the HPV associated HNSCC.
Collapse
Affiliation(s)
- Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
7
|
Zhang S, Zhao Y, Lalsiamthara J, Peng Y, Qi L, Deng S, Wang Q. Current research progress on Prevotella intermedia and associated diseases. Crit Rev Microbiol 2024:1-18. [PMID: 39140115 DOI: 10.1080/1040841x.2024.2390594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/29/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Prevotella intermedia is a Gram-negative anaerobic bacterium that is a common pathogen of periodontitis. Recent studies have revealed that P. intermedia is closely associated with a variety of diseases involving multiple systems. Under the action of its virulence factors such as cysteine protease and adhesins, P. intermedia has the ability to bind and invade various host cells including gingival fibroblasts. It can also copolymerize a variety of pathogenic bacteria, leading to interference with the host's immune inflammatory response and causing various diseases. In this article, we review the progress of research on P. intermedia virulence factors and bacterial pathogenesis, and the correlation between P. intermedia and various diseases.
Collapse
Affiliation(s)
- Shuyang Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Yuheng Zhao
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Jonathan Lalsiamthara
- Molecular Microbiology & Immunology, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Yan Peng
- Key Laboratory of Green Cleaning Technology& Detergent of Zhejiang Province, Hangzhou, China
| | - Linlong Qi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Shuli Deng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Qingjing Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Ravichandran A, Sivapackiam J, Periasamy S. Oral bacterial insights from a comparative study between healthy and comorbid diseased human individuals. Microb Pathog 2024; 191:106643. [PMID: 38631413 DOI: 10.1016/j.micpath.2024.106643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/04/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
The human oral cavity is colonized by a diverse microbial community, which includes both native and transient colonizers. The microbial composition is crucial for maintaining oral homeostasis, but due to overgrowth or imbalances of these microbial communities, dysbiosis can occur. There is a lack of understanding of the research of native and transient colonizers in the oral cavity of the Indian subpopulation Therefore, in our present study, we explored the role and prevalence of transient and native colonizers between healthy and comorbid oral diseased human individuals. Culture-dependent techniques and culture-independent 16S r DNA metagenomic analyses were employed to isolate and study the interactions of native and transient colonizers from human oral samples. Among the 66 human individuals of both healthy and comorbid individuals, the most abundant isolate was found to be Bacillus amyloliquefaciens MCC 4424. In addition, the more prevalent culturable isolate from the healthy samples was Streptococcus salivarius MTCC 13009, whereas in comorbid samples Staphylococcus pasteuri MTCC 13076, Rothia dentocariosa MTCC 13010 and Pseudomonas aeruginosa MTCC 13077 were prevalent to a greater extent. 16S rDNA metagenomic analyses revealed the prevalence and abundance of genera such as Bacteroidetes and Proteobacteria in healthy individuals; consequently, Fusobacteria and Firmicutes were observed mostly in comorbid individuals. The significant differences in bacterial population density were observed in terms of the Shannon index (p = 0.5145) and Simpson index (p = 0.9061) between the healthy and comorbid groups. B. amyloliquefaciens MCC 4424 exhibits antagonistic behavior when grown as a dual-species with native and transient colonizers. This result is very consistent with the findings of antibiofilm studies using confocal laser scanning microscopy, which revealed a significant reduction in biofilm biovolume (73 %) and maximum thickness (80 %) and an increase in the rough coefficient of biofilms (30 %). Our data suggested that B. amyloliquefaciens MCC 4424 can be a native colonizer of Indian sub-populations. It may act as a novel candidate for oral healthcare applications and greatly aids in the regulation of transient species in the oral cavity.
Collapse
Affiliation(s)
- Anand Ravichandran
- Centre of Excellence in Biofilms, Department of Biotechnology, Rajalakshmi Engineering College (Autonomous), Thandalam, Chennai, 602105, Tamilnadu, India
| | - Jothilingam Sivapackiam
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Saravanan Periasamy
- Centre of Excellence in Biofilms, Department of Biotechnology, Rajalakshmi Engineering College (Autonomous), Thandalam, Chennai, 602105, Tamilnadu, India.
| |
Collapse
|
9
|
Xiang K, Li CX, Chen R, Zhao CH. Genetically predicted gut microbiome and risk of oral cancer. Cancer Causes Control 2024; 35:429-435. [PMID: 37815646 DOI: 10.1007/s10552-023-01800-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/08/2023] [Indexed: 10/11/2023]
Abstract
PURPOSE Mounting evidence suggests a possible link between gut microbiome and oral cancer, pointing to some potential modifiable targets for disease prevention. In the present study, Mendelian randomization (MR) was used to explore whether there was a causal link between gut microbiome and oral cancer. METHODS The single nucleotide polymorphisms (SNPs) significantly associated with gut microbiome were served as instrumental variables. MR analyses were performed using genetic approaches such as inverse variance weighting (IVW), MR Egger and weighted median, with IVW as the primary approach, supplemented by MR Egger and weighted median. Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) and MR-Egger regression were used to detect the presence of horizontal pleiotropy and identify outlier SNPs. RESULTS Causal effect estimates indicated that genetically predicted abundance of Prevotellaceae was associated with higher risk of oral cancer (odds ratio (OR) 1.80, 95% confidence interval (CI) 1.16-2.81, p = 0.009). There was no evidence of notable heterogeneity and horizontal pleiotropy. CONCLUSION Genetically derived estimates suggest that Prevotellaceae may be associated with the risk of oral cancer. Such robust evidence should be given priority in future studies and explore the underlying mechanisms.
Collapse
Affiliation(s)
- Kun Xiang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Cheng-Xi Li
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Ran Chen
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China.
| | - Chun-Hui Zhao
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China.
| |
Collapse
|
10
|
Chen G, Gao C, Jiang S, Cai Q, Li R, Sun Q, Xiao C, Xu Y, Wu B, Zhou H. Fusobacterium nucleatum outer membrane vesicles activate autophagy to promote oral cancer metastasis. J Adv Res 2024; 56:167-179. [PMID: 37059221 PMCID: PMC10834801 DOI: 10.1016/j.jare.2023.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 04/16/2023] Open
Abstract
INTRODUCTION Metastasis is an important cause of high mortality and lethality of oral cancer. Fusobacterium nucleatum (Fn) can promote tumour metastasis. Outer membrane vesicles (OMVs) are secreted by Fn. However, the effects of Fn-derived extracellular vesicles on oral cancer metastasis and the underlying mechanisms are unclear. OBJECTIVES We aimed to determine whether and how Fn OMVs mediate oral cancer metastasis. METHODS OMVs were isolated from brain heart infusion (BHI) broth supernatant of Fn by ultracentrifugation. Tumour-bearing mice were treated with Fn OMVs to evaluate the effect of OMVs on cancer metastasis. Transwell assays were performed to determine how Fn OMVs affect cancer cell migration and invasion. The differentially expressed genes in Fn OMV-treated/untreated cancer cells were identified by RNA-seq. Transmission electron microscopy, laser confocal microscopy, and lentiviral transduction were used to detect changes in autophagic flux in cancer cells stimulated with Fn OMVs. Western blotting assay was performed to determine changes in EMT-related marker protein levels in cancer cells. Fn OMVs' effects on migration after blocking autophagic flux by autophagy inhibitors were determined by in vitro and in vivo experiments. RESULTS Fn OMVs were structurally similar to vesicles. In the in vivo experiment, Fn OMVs promoted lung metastasis in tumour-bearing mice, while chloroquine (CHQ, an autophagy inhibitor) treatment reduced the number of pulmonary metastases resulting from the intratumoral Fn OMV injection. Fn OMVs promoted the migration and invasion of cancer cells in vivo, leading to altered expression levels of EMT-related proteins (E-cadherin downregulation; Vimentin/N-cadherin upregulation). RNA-seq showed that Fn OMVs activate intracellular autophagy pathways. Blocking autophagic flux with CHQ reduced in vitro and in vivo migration of cancer cells induced by Fn OMVs as well as reversed changes in EMT-related protein expression. CONCLUSION Fn OMVs not only induced cancer metastasis but also activated autophagic flux. Blocking autophagic flux weakened Fn OMV-stimulated cancer metastasis.
Collapse
Affiliation(s)
- Gang Chen
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen 518118, China; Department of Stomatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Chunna Gao
- Department of Stomatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Shan Jiang
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen 518118, China
| | - Qiaoling Cai
- Department of Stomatology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Rongrong Li
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qiang Sun
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Can Xiao
- Department of Stomatology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yubo Xu
- Department of Stomatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Buling Wu
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen 518118, China.
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510655, China; State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
11
|
Lan Q, Zhang C, Hua H, Hu X. Compositional and functional changes in the salivary microbiota related to oral leukoplakia and oral squamous cell carcinoma: a case control study. BMC Oral Health 2023; 23:1021. [PMID: 38115005 PMCID: PMC10731685 DOI: 10.1186/s12903-023-03760-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is one of the most common malignant tumours with increasing incidence, and oral leukoplakia (OLK) has a strong tendency to undergo malignant transformation. The oral microbiota may influence oral cancer progression, but the salivary bacterial composition and functional changes in OSCC and OLK have not been comprehensively elucidated. Therefore, we compared salivary bacteria in OLK and OSCC patients with healthy controls (HC). METHODS Metagenomic sequencing was used to compare the bacterial composition and functional changes of 18 OSCC patients, 21 OLK patients and 21 HC. Spearman correlation was used to identify possible associations between functions and bacteria. RESULTS Gemella was the most differentially enriched genus in OSCC. At the species level, Streptococcus sp. NPS 308, Streptococcus agalactiae, Gemella haemolysans and Gemella morbillorum were slightly increased in OLK and OSCC. Kyoto Encyclopedia of Genes and Genomes (KEGG) results showed that OSCC was mainly associated with metabolism functions, including lipid metabolism, carbohydrate metabolism and glycan biosynthesis and metabolism. The synthesis and degradation of ketone bodies, cysteine and methionine metabolism and glycerolipid metabolism differed significantly among the three groups, and were highest in OSCC and lowest in HC. And G. haemolysans was significantly associated with these selected metabolic pathways. CONCLUSIONS Metagenomic analysis revealed significant differences in the salivary microbiota among OSCC, OLK and HC. Thus, salivary microbiota composition and functional changes may be associated with OSCC progression. Metabolism of nonessential amino acids such as cysteine and methionine in bacteria may play an important role in oral oncogenesis, and more studies of the mechanism between metabolisms of bacteria and oral oncogenesis are needed in the future.
Collapse
Affiliation(s)
- Qingying Lan
- Department of Oral Medicine, National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Peking University School and Hospital of Stomatology, 22 South Zhongguancun Avenue, Haidian District, Beijing, 100081, China
| | - Chang Zhang
- Department of Oral Medicine, National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Peking University School and Hospital of Stomatology, 22 South Zhongguancun Avenue, Haidian District, Beijing, 100081, China
| | - Hong Hua
- Department of Oral Medicine, National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Peking University School and Hospital of Stomatology, 22 South Zhongguancun Avenue, Haidian District, Beijing, 100081, China
| | - Xiaosheng Hu
- Department of Oral Medicine, National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Peking University School and Hospital of Stomatology, 22 South Zhongguancun Avenue, Haidian District, Beijing, 100081, China.
| |
Collapse
|
12
|
Constantin M, Chifiriuc MC, Mihaescu G, Vrancianu CO, Dobre EG, Cristian RE, Bleotu C, Bertesteanu SV, Grigore R, Serban B, Cirstoiu C. Implications of oral dysbiosis and HPV infection in head and neck cancer: from molecular and cellular mechanisms to early diagnosis and therapy. Front Oncol 2023; 13:1273516. [PMID: 38179168 PMCID: PMC10765588 DOI: 10.3389/fonc.2023.1273516] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Head and neck cancer (HNC) is the sixth most common type of cancer, with more than half a million new cases annually. This review focuses on the role of oral dysbiosis and HPV infection in HNCs, presenting the involved taxons, molecular effectors and pathways, as well as the HPV-associated particularities of genetic and epigenetic changes and of the tumor microenvironment occurred in different stages of tumor development. Oral dysbiosis is associated with the evolution of HNCs, through multiple mechanisms such as inflammation, genotoxins release, modulation of the innate and acquired immune response, carcinogens and anticarcinogens production, generation of oxidative stress, induction of mutations. Thus, novel microbiome-derived biomarkers and interventions could significantly contribute to achieving the desideratum of personalized management of oncologic patients, regarding both early diagnosis and treatment. The results reported by different studies are not always congruent regarding the variations in the abundance of different taxons in HNCs. However, there is a consistent reporting of a higher abundance of Gram-negative species such as Fusobacterium, Leptotrichia, Treponema, Porphyromonas gingivalis, Prevotella, Bacteroidetes, Haemophilus, Veillonella, Pseudomonas, Enterobacterales, which are probably responsible of chronic inflammation and modulation of tumor microenvironment. Candida albicans is the dominant fungi found in oral carcinoma being also associated with shorter survival rate. Specific microbial signatures (e.g., F. nucleatum, Bacteroidetes and Peptostreptococcus) have been associated with later stages and larger tumor, suggesting their potential to be used as biomarkers for tumor stratification and prognosis. On the other hand, increased abundance of Corynebacterium, Kingella, Abiotrophia is associated with a reduced risk of HNC. Microbiome could also provide biomarkers for differentiating between oropharyngeal and hypopharyngeal cancers as well as between HPV-positive and HPV-negative tumors. Ongoing clinical trials aim to validate non-invasive tests for microbiome-derived biomarkers detection in oral and throat cancers, especially within high-risk populations. Oro-pharyngeal dysbiosis could also impact the HNCs therapy and associated side-effects of radiotherapy, chemotherapy, and immunotherapy. HPV-positive tumors harbor fewer mutations, as well as different DNA methylation pattern and tumor microenvironment. Therefore, elucidation of the molecular mechanisms by which oral microbiota and HPV infection influence the HNC initiation and progression, screening for HPV infection and vaccination against HPV, adopting a good oral hygiene, and preventing oral dysbiosis are important tools for advancing in the battle with this public health global challenge.
Collapse
Affiliation(s)
- Marian Constantin
- Department of Microbiology, Institute of Biology of Romanian Academy, Bucharest, Romania
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Department of Life, Medical and Agricultural Sciences, Biological Sciences Section, Romanian Academy, Bucharest, Romania
| | - Grigore Mihaescu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- DANUBIUS Department, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Elena-Georgiana Dobre
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- Immunology Department, “Victor Babes” National Institute of Pathology, Bucharest, Romania
| | - Roxana-Elena Cristian
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- DANUBIUS Department, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Coralia Bleotu
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- Cellular and Molecular Pathology Department, Ştefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Serban Vifor Bertesteanu
- Coltea Clinical Hospital, ENT, Head & Neck Surgery Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Raluca Grigore
- Coltea Clinical Hospital, ENT, Head & Neck Surgery Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Bogdan Serban
- University Emergency Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Catalin Cirstoiu
- University Emergency Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
13
|
Inchingolo AM, Malcangi G, Piras F, Palmieri G, Settanni V, Riccaldo L, Morolla R, Buongiorno S, de Ruvo E, Inchingolo AD, Mancini A, Inchingolo F, Dipalma G, Benagiano S, Tartaglia GM, Patano A. Precision Medicine on the Effects of Microbiota on Head-Neck Diseases and Biomarkers Diagnosis. J Pers Med 2023; 13:933. [PMID: 37373922 DOI: 10.3390/jpm13060933] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Precision medicine using highly precise technologies and big data has produced personalised medicine with rapid and reliable diagnoses and targeted therapies. The most recent studies have directed precision medicine into the study of tumours. The application of precision medicine in the oral microbiota can be used both in the field of prevention and treatment in the strictly dental field. This article aims to evaluate the interaction between microbiota and oral cancer and the presence of biomarkers as risk predictors. MATERIALS AND METHODS A literature search of PubMed, Scopus, and Web of Science was performed analysing the various interactions between microorganisms, biomarkers, and oral cancer. RESULTS After screening processes, 21 articles were selected for qualitative analysis. CONCLUSION The correlation between oral diseases/cancers and changes in the microbiota explains the increasing utility of precision medicine in enhancing diagnosis and adapting treatment on the individual components of the microbiota. Diagnosing and treating oral diseases and cancers through precision medicine gives, as well as economic advantages to the health care system, predictable and rapid management of the patient.
Collapse
Affiliation(s)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Fabio Piras
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Giulia Palmieri
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Vito Settanni
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Lilla Riccaldo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Roberta Morolla
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Silvio Buongiorno
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Elisabetta de Ruvo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | | | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Stefania Benagiano
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Gianluca Martino Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milan, Italy
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Assunta Patano
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy
| |
Collapse
|
14
|
Wright RJ, Pewarchuk ME, Marshall EA, Murrary B, Rosin MP, Laronde DM, Zhang L, Lam WL, Langille MGI, Rock LD. Exploring the microbiome of oral epithelial dysplasia as a predictor of malignant progression. BMC Oral Health 2023; 23:206. [PMID: 37024828 PMCID: PMC10080811 DOI: 10.1186/s12903-023-02911-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/25/2023] [Indexed: 04/08/2023] Open
Abstract
A growing body of research associates the oral microbiome and oral cancer. Well-characterized clinical samples with outcome data are required to establish relevant associations between the microbiota and disease. The objective of this study was to characterize the community variations and the functional implications of the microbiome in low-grade oral epithelial dysplasia (OED) using 16S rRNA gene sequencing from annotated archival swabs in progressing (P) and non-progressing (NP) OED. We characterised the microbial community in 90 OED samples - 30 swabs from low-grade OED that progressed to cancer (cases) and 60 swabs from low-grade OED that did not progress after a minimum of 5 years of follow up (matched control subjects). There were small but significant differences between P and NP samples in terms of alpha diversity as well as beta diversity in conjunction with other clinical factors such as age and smoking status for both taxa and functional predictions. Across all samples, the most abundant genus was Streptococcus, followed by Haemophilus, Rothia, and Neisseria. Taxa and predicted functions were identified that were significantly differentially abundant with progression status (all Ps and NPs), when samples were grouped broadly by the number of years between sampling and progression or in specific time to progression for Ps only. However, these differentially abundant features were typically present only at low abundances. For example, Campylobacter was present in slightly higher abundance in Ps (1.72%) than NPs (1.41%) and this difference was significant when Ps were grouped by time to progression. Furthermore, several of the significantly differentially abundant functions were linked to the Campylobacteraceae family in Ps and may justify further investigation. Larger cohort studies to further explore the microbiome as a potential biomarker of risk in OED are warranted.
Collapse
Affiliation(s)
- Robyn J Wright
- Department of Pharmacology, Dalhousie University, Halifax, Canada.
| | - Michelle E Pewarchuk
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, Canada
| | - Erin A Marshall
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, Canada
| | - Benjamin Murrary
- Department of Pharmacology, Dalhousie University, Halifax, Canada
| | - Miriam P Rosin
- Department of Cancer Control Research, British Columbia Cancer Research Centre, Vancouver, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Denise M Laronde
- Department of Cancer Control Research, British Columbia Cancer Research Centre, Vancouver, Canada
- Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Lewei Zhang
- Faculty of Dentistry, University of British Columbia, Vancouver, Canada
- Oral Biopsy Service, Vancouver General Hospital, Vancouver, Canada
| | - Wan L Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, Canada
| | - Morgan G I Langille
- Department of Pharmacology, Dalhousie University, Halifax, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Canada
| | - Leigha D Rock
- Department of Pharmacology, Dalhousie University, Halifax, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Canada
- Faculty of Dentistry, Dalhousie University, Halifax, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Canada
- Department of Anatomical Pathology, QEII Hospital, Nova Scotia Health, Halifax, Canada
| |
Collapse
|
15
|
Samami E, Aleebrahim-Dehkordi E, Mohebalizadeh M, Yaribash S, Saghazadeh A, Rezaei N. Inosine, gut microbiota, and cancer immunometabolism. Am J Physiol Endocrinol Metab 2023; 324:E1-E8. [PMID: 36416582 DOI: 10.1152/ajpendo.00207.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This article briefly reviews cancer immunity and the role of gut microbiota in carcinogenesis, followed by an understanding of mechanisms by which inosine is involved in cancer immunometabolism. The immune system plays a paradoxical role in cancer treatment. Antitumor immunity depends on the T-cell priming against tumor antigens, whereas inflammatory mediators trigger the protumor signaling in the tumor microenvironment. Studies link the microbiome with metabolism and immunity-two main factors implicated in carcinogenesis. Gut microbiota has been shown to affect both antitumor immunity and protumor immune signaling. There is mounting evidence that the human microbiome can play a role in the immunotherapeutic effects, both response and resistance. Inosine-5'-monophosphate dehydrogenase (IMPDH) is a highly conservative enzyme widely expressed in mammals. Cell signaling pathways use molecular inosine, a crucial secondary metabolite in purine metabolism and a molecular messenger. Recent research has identified inosine as a critical regulator of immune checkpoint inhibition (ICI) therapeutic response in various tumor types. Some bacterial species were found to produce inosine or its metabolite hypoxanthine and induce T-helper 1 differentiation and effector functions via the inosine-A2AR-cAMP-PKA pathway upon ICI therapy. Also, inosine acts as a substitute carbon source for T-cell metabolism in glucose-restricted environments, i.e., the tumor microenvironment, assisting T-cell proliferation and differentiation while enhancing sensitivity to ICI, reinforcing the notion that inosine metabolism might contribute to antitumor immunity. Also, inosine is a potent agonist of the adenosine receptor, A2AR, and A2AR signaling can affect T-cell responses and antitumor immunity, making the inosine-A2AR pathway blockage a candidate for cancer treatment. Further research is required to investigate inosine as a cancer immunometabolism therapy.
Collapse
Affiliation(s)
- Elham Samami
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Elahe Aleebrahim-Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Shahrekord, Iran
| | - Mehdi Mohebalizadeh
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Urmia, Iran
| | - Shakila Yaribash
- International Campus, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amene Saghazadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Urmia, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Zheng H, Chen X, Li Q, Liu Y, Cai J. Effects of chemotherapy and immunotherapy on microbial diversity in TME and engineered bacterial-mediated tumor therapy. Front Immunol 2023; 14:1084926. [PMID: 36817477 PMCID: PMC9932492 DOI: 10.3389/fimmu.2023.1084926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Tumor microbiota is a group of microorganisms located in tumor tissues with rich diversity that can promote tumorigenesis and development, and different types of tumors have different tumor microbiotas, which has important implications for tumor research, detection, and clinical treatment. In this review, we examine the diversity of the tumor microbiota, discuss the impact of chemotherapy and immunotherapy on tumor microbiota diversity, and summarize recent advances in the use of genetically engineered bacteria for the treatment of tumors. In addition, we propose key questions that need to be further addressed by the tumor microbiota.
Collapse
Affiliation(s)
- Heng Zheng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China.,School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Xianxian Chen
- Department of Interventional Radiology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Qiyang Li
- Department of Interventional Radiology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Yuqi Liu
- Department of Interventional Radiology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jinzhong Cai
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China.,Department of Interventional Radiology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| |
Collapse
|
17
|
代 东, 李 博, 李 明, 程 磊. [Research Progress on the Interaction Between Microorganisms and Macrophages and Their Role in the Mediation of the Onset and Development of Oral Cancer]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:27-32. [PMID: 36647639 PMCID: PMC10409038 DOI: 10.12182/20230160205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Indexed: 01/18/2023]
Abstract
Oral squamous cell carcinoma is the sixth most common malignant tumor in the world, and the clinical treatment effect is not satisfactory. Because of the special nature of its location, oral cancer is inextricably linked with a wide variety of microorganisms, and its pathogenesis and development are also extremely susceptible to microbial regulation. In addition, the mediating role of the immune system is also indispensable to the course of tumor pathogenesis and development, especially tumor-associated macrophages, which amplify the regulatory role of microorganisms, and in turn regulate the microbial population components--two complementary effects that jointly exacerbate oral cancer. Herein, we summarized the existing research on the relationship between microorganisms and macrophages, as well as the regulatory role of microorganisms and macrophages in the pathogenesis and development of oral cancer. We also discussed the current status of and gaps in research on the relationship between microorganisms and macrophages and oral cancer. Both microorganisms and macrophages are considered promising indicators for prognosis, showing potentials to be used as new therapeutic targets. Despite some research interest in the role of microorganisms and macrophages in oral cancer, very few studies have linked them to oral precancerous lesions, and the mutual regulatory relationship between microorganisms and macrophages remains unclear. Therefore, in-depth exploration of the relationship network of microorganisms, macrophages and oral cancer is expected to provide more possibilities for the early diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- 东跃 代
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 博磊 李
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 明云 李
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 磊 程
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Abstract
Oral microbial dysbiosis contributes to the development of oral squamous cell carcinoma (OSCC). Numerous studies have focused on variations in the oral bacterial microbiota of patients with OSCC. However, similar studies on fungal microbiota, another integral component of the oral microbiota, are scarce. Moreover, there is an evidence gap regarding the role that microecosystems play in different niches of the oral cavity at different stages of oral carcinogenesis. Here, we catalogued the microbial communities in the human oral cavity by profiling saliva, gingival plaque, and mucosal samples at different stages of oral carcinogenesis. We analyzed the oral bacteriome and mycobiome along the health-premalignancy-carcinoma sequence. Some species, including Prevotella intermedia, Porphyromonas endodontalis, Acremonium exuviarum, and Aspergillus fumigatus, were enriched, whereas others, such as Streptococcus salivarius subsp. salivarius, Scapharca broughtonii, Mortierella echinula, and Morchella septimelata, were depleted in OSCC. These findings suggest that an array of signature species, including bacteria and fungi, are closely associated with oral carcinogenesis. OSCC-associated diversity differences, species distinction, and functional alterations were most remarkable in mucosal samples, not in gingival plaque or saliva samples, suggesting an urgent need to define oral carcinogenesis-associated microbial dysbiosis based on the spatial microbiome. IMPORTANCE Abundant oral microorganisms constitute a complex microecosystem within the oral environment of the host, which plays a critical role in the adjustment of various physiological and pathological states of the oral cavity. In this study, we demonstrated that variations in the "core microbiome" may be used to predict carcinogenesis. In addition, sample data collected from multiple oral sites along the health-premalignancy-carcinoma sequence increase our understanding of the microecosystems of different oral niches and their specific changes during oral carcinogenesis. This work provides insight into the roles of bacteria and fungi in OSCC and may contribute to the development of early diagnostic assays and novel treatments.
Collapse
|
19
|
Lenka S, Bhuyan SK, Bhuyan R. Understanding the characteristics of the host genome and microbiome interaction in oral squamous cell carcinoma: a narrative review. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00306-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Oral health status is directly associated with microbes present within it. The abundance of microbes at the OSCC site is more than at its control site, representing its possible role in the progression of OSCC development. Dysbiosis of oral microbiota could be a crucial etiological risk factor in the elevation of OSCC. This study aimed to analyze and assess: a) positive regulator microbes of oral cancer and their abundance at the cancer site, b) pathways involved in positive regulator microbes, and c) identification of the most virulent oral oncogenic microbe.
Main body
It is obtained from several studies that microbes belonging to Prevotella, Fusobacterium, Alloprevotella, Capnocytophaga, Porphyromonas, Campylobacter, and Aggregatibacter are detected to be more in number contrast to healthy sites. Fusobacterium nucleatum, Porphyromonas gingivalis, and Candida albicans show molecular pathways linked with OSCC development. Genes encoding for virulent factors like FimA, Gingipains, lipopolysaccharide (P. gingivalis), FadA, Fap2 (F. nucleatum), and zymosan (C. Albicans) are directly involved in elevating oral cancer.
Conclusion
Mostly, the genes that are involved in promoting oral cancer are the genes that generally encode cell wall proteins. The cell wall proteins that is FadA, Fap, and FimA interact with the host's cell and hamper the normal regulation pathway, which leads to activation of cell proliferating pathways, down-regulates apoptotic pathways, cytoskeleton rearrangement, and upregulates the cell cycle checkpoint regulators; as a result, progression of oral cancer occurs.
Collapse
|