1
|
Zhong H, Jin Y. Host-parasite interactions and their role in liver fluke-induced carcinogenesis: An evolutionary perspective. Acta Trop 2025; 266:107651. [PMID: 40360015 DOI: 10.1016/j.actatropica.2025.107651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/05/2025] [Accepted: 05/11/2025] [Indexed: 05/15/2025]
Affiliation(s)
- Haoran Zhong
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China
| | - Yamei Jin
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, PR China.
| |
Collapse
|
2
|
Eissa MM, Allam SRA, Ismail CA, Ghazala RA, El Skhawy N, Zaki IIA, Ibrahim EIES. Unveiling the anti-neoplastic potential of Schistosoma mansoni-derived antigen against breast cancer: a pre-clinical study. Eur J Med Res 2025; 30:304. [PMID: 40247360 PMCID: PMC12007238 DOI: 10.1186/s40001-025-02531-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/28/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Cancer is a global health concern, with millions of new cases and deaths annually. Recently, immunotherapy has strengthened cancer treatment by harnessing the body's immune system to fight cancer. The search for advanced cancer immunotherapies has expanded to explore pathogens like parasites for their potential anti-neoplastic effects. While some parasites have shown promising results, the role of Schistosoma mansoni in breast cancer remains unexplored. METHODS This pre-clinical study investigated the anti-neoplastic potential of autoclaved Schistosoma mansoni antigen against breast cancer. In vitro, autoclaved Schistosoma mansoni antigen was evaluated on the MCF-7 human breast cancer cell line, while in vivo experiments used a chemically induced breast cancer rat model to evaluate tumour growth, liver enzyme levels, and immune response. Histopathological and immunohistochemical analyses assessed changes in tumour tissue, cell proliferation (Ki-67), angiogenesis (CD31), immune cell infiltration (CD8+ T cells), regulatory T cells (FoxP3+), and programmed death ligand 1 (PD-L1) expression. RESULTS In vitro, autoclaved Schistosoma mansoni antigen significantly reduced MCF-7 cell viability in a dose- and time-dependent manner. In vivo, autoclaved Schistosoma mansoni antigen treatment significantly reduced tumour weight and volume, improved liver enzyme levels, increased tumour necrosis, and decreased fibrosis. Immunohistochemical analysis revealed decreased Ki-67 and CD31 expression, indicating reduced cell proliferation and angiogenesis, respectively. Autoclaved Schistosoma mansoni antigen also enhanced immune responses by increasing CD8+ T cells infiltration and decreasing FoxP3+ expression, resulting in a higher CD8+ T cells/FoxP3+ ratio within the tumour microenvironment. Notably, PD-L1 expression was also downregulated, suggesting potential immune checkpoint inhibition. CONCLUSIONS Autoclaved Schistosoma mansoni antigen demonstrated potent anti-neoplastic activity, significantly reducing tumour growth and modulating the immune response within the tumour microenvironment. These results highlight autoclaved Schistosoma mansoni antigen's potential as a novel immunotherapy for breast cancer.
Collapse
Affiliation(s)
- Maha Mohamed Eissa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Al-Moassat Medical Campus, Alexandria, Egypt.
| | - Sonia Rifaat Ahmed Allam
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Al-Moassat Medical Campus, Alexandria, Egypt
| | - Cherine Adel Ismail
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Rasha Abdelmawla Ghazala
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nahla El Skhawy
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Al-Moassat Medical Campus, Alexandria, Egypt
| | | | - Eman Ibrahim El-Said Ibrahim
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Al-Moassat Medical Campus, Alexandria, Egypt
| |
Collapse
|
3
|
Jain S. Can Schistosoma japonicum infection cause liver cancer? J Helminthol 2025; 99:e11. [PMID: 39924660 DOI: 10.1017/s0022149x24000762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
A co-relation between Schistosoma japonicum (Sj) and liver cancer (LC) in humans has been reported in the literature; however, this association is circumstantial. Due to the inconclusive nature of this association, the International Agency for Research on Cancer has placed Sj in Group 2B for LC, signifying it to be a 'possible carcinogen'. Many epidemiological, pathological and clinical studies have identified multiple factors, linked with Sj infection, which can lead to liver carcinogenesis. These factors include chronic inflammation in response to deposited eggs (which leads to fibrosis, cirrhosis and chromosomal instability at cellular level), hepatotoxic effects of egg-antigens, co-infection with hepatitis viruses, and up-regulation of glycolysis linked genes among others which predisposes hepatic tissue towards malignant transformation. The objective of this work is to present the current understanding on the association of Sj infection with LC. Mechanisms and factors linked with Sj infection that can lead to LC are emphasized, along with measures to diagnose and treat it. A comparison of liver carcinogenesis is also provided for cases linked with and independent of Sj infection. It appears that Sj, alone or with another carcinogen, is an important factor in liver carcinogenesis, but further studies are warranted to conclusively label 'infection with Sj alone' as a liver carcinogen.
Collapse
Affiliation(s)
- S Jain
- Independent Researcher, Institute for Globally Distributed Open Research and Education (IGDORE), Rewari, Haryana, India
| |
Collapse
|
4
|
Eissa MM, Salem AE, El Skhawy N. Parasites revive hope for cancer therapy. Eur J Med Res 2024; 29:489. [PMID: 39367471 PMCID: PMC11453045 DOI: 10.1186/s40001-024-02057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/10/2024] [Indexed: 10/06/2024] Open
Abstract
Parasites have attained a life-long stigma of being detrimental organisms with deleterious outcomes. Yet, recently, a creditable twist was verified that can dramatically change our perception of those parasites from being a source of misery to millions of people to a useful anti-cancerous tool. Various parasites have shown promise to combat cancer in different experimental models, including colorectal, lung, and breast cancers, among others. Helminths and protozoan parasites, as well as their derivatives such as Echinococcus granulosus protein KI-1, Toxoplasma gondii GRA15II, and Trypanosoma cruzi calreticulin, have demonstrated the ability to inhibit tumor growth, angiogenesis, and metastasis. This article provides an overview of the literature on various cancer types that have shown promising responses to parasite therapy in both in vitro and in vivo animal studies. Parasites have shown anti-neoplastic activity through a variety of mechanisms that collectively contribute to their anti-cancer properties. These include immunomodulation, inhibition of angiogenesis, and molecular mimicry with cancer cells. This review article sheds light on this intriguing emerging field and emphasizes the value of collaborative multidisciplinary research projects with funding agencies and pharmaceutical companies. Thus, these strategies would secure continuous exploration of this new avenue and accelerate the advancement of cancer therapy research. Although experimental studies are heavily conducted by leaps and bounds, further steps are definitely lagging. Upgrading research from the experimental level to the clinical trial would be a wise progression toward efficient exploitation of the anti-neoplastic capabilities of parasites, ultimately saving countless lives.
Collapse
Affiliation(s)
- Maha M Eissa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Ahmed Ebada Salem
- Department of Radiology and Nuclear Medicine, School of Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 48123, USA
| | - Nahla El Skhawy
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
Zhong H, Dong B, Zhu D, Fu Z, Liu J, Guan G, Jin Y. Schistosoma japonicumsja-let-7 Inhibits the Growth of Hepatocellular Carcinoma Cells via Cross-Species Regulation of Col1α2. Genes (Basel) 2024; 15:1165. [PMID: 39336756 PMCID: PMC11431810 DOI: 10.3390/genes15091165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Liver fibrosis, a critical precursor to hepatocellular carcinoma (HCC), results from chronic liver injury and significantly contributes to HCC progression. Schistosomiasis, a neglected tropical disease, is known to cause liver fibrosis; however, this process can be modulated by schistosome-derived miRNAs. Previous studies from our laboratory have demonstrated that Schistosoma japonicum extracellular vesicles (EVs) deliver sja-let-7 to hepatic stellate cells, leading to the inhibition of Col1α2 expression and alleviation of liver fibrosis. Given the well-documented antifibrotic and antiproliferative properties of the let-7 miRNA family, this study aims to preliminarily investigate the effects of the sja-let-7/Col1α2 axis on BALB/c mice and HCC cell line SNU387, providing a basis for the potential application of parasite-derived molecules in HCC therapy. In the present study, schistosome-induced fibrosis datasets were analyzed to identify the role of Col1α2 in extracellular matrix organization. Pan-cancer analysis revealed that Col1α2 is upregulated in various cancers, including HCC, with significant associations with immune cell infiltration and clinical parameters, highlighting its diagnostic importance. Functional assays demonstrated that transfection with sja-let-7 mimics significantly reduced Col1α2 expression, inhibited HCC cell proliferation, migration, and colony formation. These findings suggest that sja-let-7, by targeting Col1α2, has the potential to serve as a therapeutic agent in HCC treatment. This study indicates the pivotal role of Col1α2 in liver fibrosis and HCC, and the promising therapeutic application of helminth-derived miRNAs.
Collapse
Affiliation(s)
- Haoran Zhong
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (B.D.); (D.Z.); (Z.F.); (J.L.)
| | - Bowen Dong
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (B.D.); (D.Z.); (Z.F.); (J.L.)
| | - Danlin Zhu
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (B.D.); (D.Z.); (Z.F.); (J.L.)
| | - Zhiqiang Fu
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (B.D.); (D.Z.); (Z.F.); (J.L.)
| | - Jinming Liu
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (B.D.); (D.Z.); (Z.F.); (J.L.)
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou 730046, China;
| | - Yamei Jin
- National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (B.D.); (D.Z.); (Z.F.); (J.L.)
| |
Collapse
|
6
|
Chowdhury S, Sais D, Donnelly S, Tran N. The knowns and unknowns of helminth-host miRNA cross-kingdom communication. Trends Parasitol 2024; 40:176-191. [PMID: 38151361 DOI: 10.1016/j.pt.2023.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that oversee gene modulation. They are integral to cellular functions and can migrate between species, leading to cross-kingdom gene suppression. Recent breakthroughs in helminth genome studies have sparked curiosity about helminth RNA regulators and their ability to regulate genes across species. Growing data indicate that helminth miRNAs have a significant impact on the host's immune system. Specific miRNAs from helminth parasites can merge with the host's miRNA system, implying that parasites could exploit their host's regulatory machinery and function. This review highlights the role of cross-kingdom helminth-derived miRNAs in the interplay between host and parasite, exploring potential routes for their uptake, processing, and consequences in host interaction.
Collapse
Affiliation(s)
- Sumaiya Chowdhury
- The School of Life Sciences, University of Technology, Sydney, Australia; School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
| | - Dayna Sais
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
| | - Sheila Donnelly
- The School of Life Sciences, University of Technology, Sydney, Australia.
| | - Nham Tran
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia.
| |
Collapse
|
7
|
Zhong H, Dong B, Zhu D, Li H, Lu K, Fu Z, Liu J, Jin Y. Sja-Let-7 Attenuates Carbon Tetrachloride-Induced Liver Fibrosis in a Mouse Model via Col1α2. BIOLOGY 2023; 12:1465. [PMID: 38132291 PMCID: PMC10740823 DOI: 10.3390/biology12121465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
Liver fibrosis (LF) is a chronic progressive disease with no definitive treatment. The aim of this study was to assess helminth-derived molecules as potential therapeutic targets to prevent or reverse LF. A mouse model of carbon tetrachloride (CCL4)-induced LF was established and sja-let-7 was overexpressed by treatment with a miRNA agomir once per week. After four weeks, serum biochemistry, hepatic hydroxyproline content measurements, liver histology, mRNA expression profiling of fibrotic markers, the dual-luciferase reporter assay, and fluorescence in situ hybridization (FISH) were performed. Administration of the sja-let-7 agomir markedly ameliorated hepatosplenomegaly and reduced the liver hydroxyproline content. Liver histological analysis showed significant reductions in collagen deposition in the sja-let-7 agomir-treated mice. Additionally, the mRNA levels of both pro-fibrotic markers and pro-inflammatory cytokines were diminished after treatment. Furthermore, the dual-luciferase reporter assay and FISH identified the α2 chain of collagen type 1 (Col1α2) as the direct target of sja-let-7. Accordingly, the progression of LF was attenuated by targeting Col1α2 and the TGF-β/Smad signaling pathway.
Collapse
Affiliation(s)
- Haoran Zhong
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (B.D.); (D.Z.); (H.L.); (K.L.); (Z.F.); (J.L.)
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Bowen Dong
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (B.D.); (D.Z.); (H.L.); (K.L.); (Z.F.); (J.L.)
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Danlin Zhu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (B.D.); (D.Z.); (H.L.); (K.L.); (Z.F.); (J.L.)
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Hao Li
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (B.D.); (D.Z.); (H.L.); (K.L.); (Z.F.); (J.L.)
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Ke Lu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (B.D.); (D.Z.); (H.L.); (K.L.); (Z.F.); (J.L.)
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Zhiqiang Fu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (B.D.); (D.Z.); (H.L.); (K.L.); (Z.F.); (J.L.)
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jinming Liu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (B.D.); (D.Z.); (H.L.); (K.L.); (Z.F.); (J.L.)
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yamei Jin
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.Z.); (B.D.); (D.Z.); (H.L.); (K.L.); (Z.F.); (J.L.)
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| |
Collapse
|
8
|
Si W, Zhao Y, Qin X, Huang Y, Yu J, Liu X, Li Y, Yan X, Zhang Q, Sun J. What exactly does the PfK13 C580Y mutation in Plasmodium falciparum influence? Parasit Vectors 2023; 16:421. [PMID: 37974285 PMCID: PMC10652512 DOI: 10.1186/s13071-023-06024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The emergence and spread of artemisinin resistance threaten global malaria control and elimination goals, and encourage research on the mechanisms of drug resistance in malaria parasites. Mutations in Plasmodium falciparum Kelch 13 (PfK13) protein are associated with artemisinin resistance, but the unique or common mechanism which results in this resistance is unclear. METHODS We analyzed the effects of the PfK13 mutation on the transcriptome and proteome of P. falciparum at different developmental stages. Additionally, the number of merozoites, hemozoin amount, and growth of P. falciparum 3D7C580Y and P. falciparum 3D7WT were compared. The impact of iron supplementation on the number of merozoites of P. falciparum 3D7C580Y was also examined. RESULTS We found that the PfK13 mutation did not significantly change glycolysis, TCA, pentose phosphate pathway, or oxidative phosphorylation, but did reduce the expression of reproduction- and DNA synthesis-related genes. The reduced number of merozoites, decreased level of hemozoin, and slowed growth of P. falciparum 3D7C580Y were consistent with these changes. Furthermore, adding iron supply could increase the number of the merozoites of P. falciparum 3D7C580Y. CONCLUSIONS These results revealed that the PfK13 mutation reduced hemoglobin ingestion, leading to artemisinin resistance, likely by decreasing the parasites' requirement for haem and iron. This study helps elucidate the mechanism of artemisinin resistance due to PfK13 mutations.
Collapse
Affiliation(s)
- Wenwen Si
- School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Yuemeng Zhao
- School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xixi Qin
- School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Yixuan Huang
- School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Jing Yu
- School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xiao Liu
- School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Yanna Li
- School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xiaoli Yan
- School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Qingfeng Zhang
- School of Medicine, Tongji University, Shanghai, People's Republic of China.
| | - Jun Sun
- School of Medicine, Tongji University, Shanghai, People's Republic of China.
| |
Collapse
|
9
|
Naidoo D, Brennan R, de Lencastre A. Conservation and Targets of miR-71: A Systematic Review and Meta-Analysis. Noncoding RNA 2023; 9:41. [PMID: 37624033 PMCID: PMC10458147 DOI: 10.3390/ncrna9040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
MicroRNAs (miRNAs) perform a pivotal role in the regulation of gene expression across the animal kingdom. As negative regulators of gene expression, miRNAs have been shown to function in the genetic pathways that control many biological processes and have been implicated in roles in human disease. First identified as an aging-associated gene in C. elegans, miR-71, a miRNA, has a demonstrated capability of regulating processes in numerous different invertebrates, including platyhelminths, mollusks, and insects. In these organisms, miR-71 has been shown to affect a diverse range of pathways, including aging, development, and immune response. However, the exact mechanisms by which miR-71 regulates these pathways are not completely understood. In this paper, we review the identified functions of miR-71 across multiple organisms, including identified gene targets, pathways, and the conditions which affect regulatory action. Additionally, the degree of conservation of miR-71 in the evaluated organisms and the conservation of their predicted binding sites in target 3' UTRs was measured. These studies may provide an insight on the patterns, interactions, and conditions in which miR-71 is able to exert genotypic and phenotypic influence.
Collapse
Affiliation(s)
- Devin Naidoo
- Frank H. Netter MD School of Medicine, Quinnipiac University, Hamden, CT 06518, USA
| | - Ryan Brennan
- Frank H. Netter MD School of Medicine, Quinnipiac University, Hamden, CT 06518, USA
| | - Alexandre de Lencastre
- Department of Molecular and Cellular Biology, Quinnipiac University, Hamden, CT 06518, USA
| |
Collapse
|
10
|
Zhong H, Jin Y. Single-sex schistosomiasis: a mini review. Front Immunol 2023; 14:1158805. [PMID: 37153566 PMCID: PMC10154636 DOI: 10.3389/fimmu.2023.1158805] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Schistosomiasis is a neglected tropical disease caused by dioecious blood flukes of the genus Schistosoma and second to malaria as a parasitic disease with significant socio-economic impacts. Mating is essential for maturation of male and female schistosomes and for females to lay of eggs, which are responsible for the pathogenesis and propagation of the life cycle beyond the mammalian host. Single-sex schistosomes, which do not produce viable eggs without mating, have been overlooked given the symptomatic paucity of the single-sex schistosomiasis and limited diagnostic toolkit. Besides, single-sex schistosomes are less sensitive to praziquantel. Therefore, these issues should be considered to achieve the elimination of this infection disease. The aim of this review is to summarize current progress in research of single-sex schistosomes and host-parasite interactions.
Collapse
Affiliation(s)
- Haoran Zhong
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yamei Jin
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Yamei Jin,
| |
Collapse
|
11
|
Leija-Montoya AG, González-Ramírez J, Martínez-Coronilla G, Mejía-León ME, Isiordia-Espinoza M, Sánchez-Muñoz F, Chávez-Cortez EG, Pitones-Rubio V, Serafín-Higuera N. Roles of microRNAs and Long Non-Coding RNAs Encoded by Parasitic Helminths in Human Carcinogenesis. Int J Mol Sci 2022; 23:ijms23158173. [PMID: 35897749 PMCID: PMC9331937 DOI: 10.3390/ijms23158173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 12/14/2022] Open
Abstract
Infectious agents such as viruses, bacteria, and parasites can lead to cancer development. Infection with the helminthic parasite Schistosoma haematobium can cause cancer of the urinary bladder in humans, and infection with the parasites Clonorchis sinensis and Opisthorchis viverrini can promote cholangiocarcinoma. These three pathogens have been categorized as “group 1: carcinogenic to humans” by the International Agency for Research on Cancer (IARC). Additionally, the parasite Schistosoma japonicum has been associated with liver and colorectal cancer and classified as “group 2B: possibly carcinogenic to humans”. These parasites express regulatory non-coding RNAs as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), which modulate genic expression in different biological processes. In this review, we discuss the potential roles of miRNAS and lncRNAs encoded by helminthic parasites that are classified by the IARC as carcinogenic and possibly carcinogenic to humans. The miRNAs of these parasites may be involved in carcinogenesis by modulating the biological functions of the pathogen and the host and by altering microenvironments prone to tumor growth. miRNAs were identified in different host fluids. Additionally, some miRNAs showed direct antitumoral effects. Together, these miRNAs show potential for use in future therapeutic and diagnostic applications. LncRNAs have been less studied in these parasites, and their biological effects in the parasite–host interaction are largely unknown.
Collapse
Affiliation(s)
- Ana Gabriela Leija-Montoya
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Centro Cívico, Mexicali 21000, BC, Mexico; (A.G.L.-M.); (G.M.-C.); (M.E.M.-L.)
| | - Javier González-Ramírez
- Facultad de Enfermería, Universidad Autónoma de Baja California, Av. Álvaro Obregón y Calle “G” S/N, Col. Nueva, Mexicali 21100, BC, Mexico;
| | - Gustavo Martínez-Coronilla
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Centro Cívico, Mexicali 21000, BC, Mexico; (A.G.L.-M.); (G.M.-C.); (M.E.M.-L.)
| | - María Esther Mejía-León
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Centro Cívico, Mexicali 21000, BC, Mexico; (A.G.L.-M.); (G.M.-C.); (M.E.M.-L.)
| | - Mario Isiordia-Espinoza
- Instituto de Investigación en Ciencias Médicas, Departamento de Clínicas, División de Ciencias Biomédicas, Centro Universitario de Los Altos, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47600, JAL, Mexico;
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología, Juan Badiano No. 1, Col. Sección XVI, Tlapan 140080, DF, Mexico;
| | - Elda Georgina Chávez-Cortez
- Centro de Ciencias de la Salud, Facultad de Odontología, Universidad Autónoma de Baja California, Zotoluca s/n, Fracc. Calafia, Mexicali 21040, BC, Mexico; (E.G.C.-C.); (V.P.-R.)
| | - Viviana Pitones-Rubio
- Centro de Ciencias de la Salud, Facultad de Odontología, Universidad Autónoma de Baja California, Zotoluca s/n, Fracc. Calafia, Mexicali 21040, BC, Mexico; (E.G.C.-C.); (V.P.-R.)
| | - Nicolas Serafín-Higuera
- Centro de Ciencias de la Salud, Facultad de Odontología, Universidad Autónoma de Baja California, Zotoluca s/n, Fracc. Calafia, Mexicali 21040, BC, Mexico; (E.G.C.-C.); (V.P.-R.)
- Correspondence:
| |
Collapse
|
12
|
Zhong H, Jin Y. Multifunctional Roles of MicroRNAs in Schistosomiasis. Front Microbiol 2022; 13:925386. [PMID: 35756064 PMCID: PMC9218868 DOI: 10.3389/fmicb.2022.925386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/20/2022] [Indexed: 11/22/2022] Open
Abstract
Schistosomiasis is a parasitic disease that is caused by helminths of the genus Schistosoma. The dioecious schistosomes mate and lay eggs after undergoing a complex life cycle. Schistosome eggs are mostly responsible for the transmission of schistosomiasis and chronic fibrotic disease induced by egg antigens is the main cause of the high mortality rate. Currently, chemotherapy with praziquantel (PZQ) is the only effective treatment against schistosomiasis, although the potential of drug resistance remains a concern. Hence, there is an urgent demand for new and effective strategies to combat schistosomiasis, which is the second most prevalent parasitic disease after malaria. MicroRNAs (miRNAs) are small non-coding RNAs that play pivotal regulatory roles in many organisms, including the development and sexual maturation of schistosomes. Thus, miRNAs are potential targets for treatment of schistosomiasis. Moreover, miRNAs can serve as multifunctional “nano-tools” for cross-species delivery in order to regulate host-parasite interactions. In this review, the multifunctional roles of miRNAs in the growth and development of schistosomes are discussed. The various regulatory functions of host-derived and worm-derived miRNAs on the progression of schistosomiasis are also thoroughly addressed, especially the promotional and inhibitory effects on schistosome-induced liver fibrosis. Additionally, the potential of miRNAs as biomarkers for the diagnosis and treatment of schistosomiasis is considered.
Collapse
Affiliation(s)
- Haoran Zhong
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yamei Jin
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|