1
|
Quan Y, Wang Y, Gao S, Yuan S, Song S, Liu B, Wang Y. Breaking the fortress: a mechanistic review of meningitis-causing bacteria breaching tactics in blood brain barrier. Cell Commun Signal 2025; 23:235. [PMID: 40399897 PMCID: PMC12096492 DOI: 10.1186/s12964-025-02248-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 05/13/2025] [Indexed: 05/23/2025] Open
Abstract
The blood-brain barrier is a physiological protective barrier around blood vessels in the brain. It prevents most bacteria and harmful substances from entering the brain through the blood. However, when bacterial meningitis occurs, bacteria enter the brain either from the circulation or by direct invasion from neighbouring structures, causing an inflammatory response that in severe cases may lead to death. High morbidity and mortality are prominent features of the disease. Many pathogenic bacteria can break through the blood-brain barrier and cause meningitis, such as Streptococcus pneumoniae, Group B Streptococcus, Streptococcus suis, Neisseria meningitidis, meningitis-associated Escherichia coli, etc. This article reviews the mechanisms by which these bacteria cross the blood-brain barrier when causing meningitis and the interactions between bacteria and host cells to help pathogens invade the brain. Clarifying the mechanism by which pathogens cross the blood-brain barrier can provide new ideas for developing effective treatments for bacterial meningitis.
Collapse
Affiliation(s)
- Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Shenao Song
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Baobao Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| |
Collapse
|
2
|
Kuwazoe H, Sakatani H, Kono M, Saika S, Inoue N, Hotomi M. Complement Component 3 Promotes Regeneration of Olfactory Receptor Neurons. J Transl Med 2025; 105:102200. [PMID: 39581348 DOI: 10.1016/j.labinv.2024.102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024] Open
Abstract
Olfactory receptor neurons (ORNs) in the olfactory epithelium are characterized by high regenerative capacity even after birth, but the molecular mechanisms involved in ORN regeneration remain unclear. Complement component 3 (C3) has been shown to promote tissue regeneration, so we hypothesized that C3 activates innate immunity and also promotes the regeneration of ORNs. In this study, we investigate the role of C3 in ORN regeneration. We used C3 knockout (KO) and wild-type C57BL/6J mice in this study to examine the olfactory regeneration process for 42 days after methimazole-induced olfactory disorder. To compare the regeneration process after ORN damage between C3 KO and wild-type mice, we conducted olfactory behavioral tests and immunohistologic analysis and examined growth factors and inflammatory cell induction. C3 KO mice showed delayed olfactory recovery with lower olfactory epithelial thickness. In C3 KO mice, ORN maturation was delayed in association with increased accumulation of immature ORNs. In the normal ORN regeneration process, undesirable immature ORNs are produced and eliminated by apoptosis. C3 deficiency reduced neutrophils induced during ORN regeneration, suggesting the involvement of C3 in ORN regeneration through neutrophil-dependent elimination of undesired ORNs. C3 is therefore suggested to have promoted ORN regeneration by preventing the accumulation of immature ORNs. In addition, C3 may assist ORN maturation by participating in ORN axon selection such as synaptic pruning. Our results indicate that C3, which is activated during pathogen infection, also promotes recovery from ORN damage. These findings may lead to new therapeutic strategies for olfactory disorder.
Collapse
Affiliation(s)
- Hiroki Kuwazoe
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Hideki Sakatani
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Masamitsu Kono
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan
| | - Norimitsu Inoue
- Department of Molecular Genetics, Wakayama Medical University, Wakayama, Japan
| | - Muneki Hotomi
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
3
|
Abdallah ESH, Metwally WGM, Bayoumi SALH, Abdel Rahman MAM, Mahmoud MM. Isolation and characterization of Streptococcus agalactiae inducing mass mortalities in cultured Nile tilapia (Oreochromis niloticus) with trials for disease control using zinc oxide nanoparticles and ethanolic leaf extracts of some medicinal plants. BMC Vet Res 2024; 20:468. [PMID: 39402574 PMCID: PMC11475875 DOI: 10.1186/s12917-024-04298-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Streptococcus agalactiae (Group B streptococcus, GBS) induces a serious infection that can harm not only aquatic life but also humans and other animals. In a fish farm in southern Egypt, Nile tilapia (Oreochromis niloticus) has developed an epidemic with clinical symptoms resembling piscine streptococcosis. RESULTS Initial microscopic inspection of the affected fish brain and kidney indicated the presence of Gram-positive cocci. S. agalactiae was effectively isolated and identified using nucleotide homology of the 16S rRNA and species-specific PCR. The partial 16S rRNA sequence was deposited in the GenBank database at the NCBI and given the accession number MW599202. Genotyping using RAPD analysis indicated that the isolates in the present study belonged to the same genotypes and had the same origin. The challenge test, via immersion (9.2 × 107, 9.2 × 106, and 9.2 × 105 CFU/ml for 1 h) or intraperitoneal injection (4.6 × 107, 4.6 × 106, and 4.6 × 105 CFU/fish), elicited clinical symptoms resembling those of naturally infected fish with a mortality rate as high as 80%. The ability to create a biofilm as one of the pathogen virulence factors was verified. Zinc oxide nanoparticles and the ethanolic leaf extracts of nine medicinal plants demonstrated considerable antibacterial activities against the tested S. agalactiae strain with low minimum bactericidal concentrations (MBC) and minimum inhibitory concentrations (MIC). The ethanolic leaf extracts from Lantana camara and Aberia caffra showed potent antibacterial activity with MBC values of 0.24 and 0.485 mg/ml, and MIC values of 0.12 & 0.24 mg/ml, respectively. CONCLUSION This study isolated S. agalactiae from O. niloticus mortalities in a fish farm in Assiut, Egypt. The pathogen persists in fish environments and can escape through biofilm formation, suggesting it cannot be easily eliminated. However, promising findings were obtained with in vitro control employing zinc oxide nanoparticles and medicinal plant extracts. Nevertheless further in vivo research is needed.
Collapse
Affiliation(s)
- Ebtsam Sayed Hassan Abdallah
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, 71529, Egypt.
| | | | | | | | - Mahmoud Mostafa Mahmoud
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, 71529, Egypt
| |
Collapse
|
4
|
Wellford SA, Moseman EA. Olfactory immunology: the missing piece in airway and CNS defence. Nat Rev Immunol 2024; 24:381-398. [PMID: 38097777 PMCID: PMC11560121 DOI: 10.1038/s41577-023-00972-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
The olfactory mucosa is a component of the nasal airway that mediates the sense of smell. Recent studies point to an important role for the olfactory mucosa as a barrier to both respiratory pathogens and to neuroinvasive pathogens that hijack the olfactory nerve and invade the CNS. In particular, the COVID-19 pandemic has demonstrated that the olfactory mucosa is an integral part of a heterogeneous nasal mucosal barrier critical to upper airway immunity. However, our insufficient knowledge of olfactory mucosal immunity hinders attempts to protect this tissue from infection and other diseases. This Review summarizes the state of olfactory immunology by highlighting the unique immunologically relevant anatomy of the olfactory mucosa, describing what is known of olfactory immune cells, and considering the impact of common infectious diseases and inflammatory disorders at this site. We will offer our perspective on the future of the field and the many unresolved questions pertaining to olfactory immunity.
Collapse
Affiliation(s)
- Sebastian A Wellford
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - E Ashley Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
5
|
Uribe FR, González VPI, Kalergis AM, Soto JA, Bohmwald K. Understanding the Neurotrophic Virus Mechanisms and Their Potential Effect on Systemic Lupus Erythematosus Development. Brain Sci 2024; 14:59. [PMID: 38248274 PMCID: PMC10813552 DOI: 10.3390/brainsci14010059] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/24/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Central nervous system (CNS) pathologies are a public health concern, with viral infections one of their principal causes. These viruses are known as neurotropic pathogens, characterized by their ability to infiltrate the CNS and thus interact with various cell populations, inducing several diseases. The immune response elicited by neurotropic viruses in the CNS is commanded mainly by microglia, which, together with other local cells, can secrete inflammatory cytokines to fight the infection. The most relevant neurotropic viruses are adenovirus (AdV), cytomegalovirus (CMV), enterovirus (EV), Epstein-Barr Virus (EBV), herpes simplex virus type 1 (HSV-1), and herpes simplex virus type 2 (HSV-2), lymphocytic choriomeningitis virus (LCMV), and the newly discovered SARS-CoV-2. Several studies have associated a viral infection with systemic lupus erythematosus (SLE) and neuropsychiatric lupus (NPSLE) manifestations. This article will review the knowledge about viral infections, CNS pathologies, and the immune response against them. Also, it allows us to understand the relevance of the different viral proteins in developing neuronal pathologies, SLE and NPSLE.
Collapse
Affiliation(s)
- Felipe R. Uribe
- Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile; (F.R.U.); (V.P.I.G.)
| | - Valentina P. I. González
- Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile; (F.R.U.); (V.P.I.G.)
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile;
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Jorge A. Soto
- Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile; (F.R.U.); (V.P.I.G.)
| | - Karen Bohmwald
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma, Santiago 8910060, Chile
| |
Collapse
|
6
|
Segklia K, Matsas R, Papastefanaki F. Brain Infection by Group B Streptococcus Induces Inflammation and Affects Neurogenesis in the Adult Mouse Hippocampus. Cells 2023; 12:1570. [PMID: 37371040 DOI: 10.3390/cells12121570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Central nervous system infections caused by pathogens crossing the blood-brain barrier are extremely damaging and trigger cellular alterations and neuroinflammation. Bacterial brain infection, in particular, is a major cause of hippocampal neuronal degeneration. Hippocampal neurogenesis, a continuous multistep process occurring throughout life in the adult brain, could compensate for such neuronal loss. However, the high rates of cognitive and other sequelae from bacterial meningitis/encephalitis suggest that endogenous repair mechanisms might be severely affected. In the current study, we used Group B Streptococcus (GBS) strain NEM316, to establish an adult mouse model of brain infection and determine its impact on adult neurogenesis. Experimental encephalitis elicited neurological deficits and death, induced inflammation, and affected neurogenesis in the dentate gyrus of the adult hippocampus by suppressing the proliferation of progenitor cells and the generation of newborn neurons. These effects were specifically associated with hippocampal neurogenesis while subventricular zone neurogenesis was not affected. Overall, our data provide new insights regarding the effect of GBS infection on adult brain neurogenesis.
Collapse
Affiliation(s)
- Katerina Segklia
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Neurobiology Department, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Neurobiology Department, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Florentia Papastefanaki
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Neurobiology Department, Hellenic Pasteur Institute, 11521 Athens, Greece
| |
Collapse
|