1
|
Wu L, Wei J, Zhan Y, Xiao X, Xu X, Huang C, Long T, Li Y, Fu B, Wang M, Gao C. Comparative evaluation of methods for isolating extracellular vesicles from ICC cell culture supernatants: Insights into proteomic and glycomic analysis. Cell Commun Signal 2025; 23:207. [PMID: 40301937 PMCID: PMC12042569 DOI: 10.1186/s12964-025-02207-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/17/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are nanoscale structures involved in intercellular communication and play a key role in cancer pathology. Intrahepatic cholangiocarcinoma (ICC) is a highly invasive malignancy marked by abnormal sialylated glycosylation. Analyzing proteins and glycans in EVs provides insights into ICC molecular subtyping and mechanisms. Optimizing EV isolation methods for ICC-derived EVs enables comprehensive proteomic and glycomic analysis. METHODS We systematically evaluated five EV isolation methods-Ultracentrifugation (UC), exoEasy, Total Exosome Isolation (TEI), EVtrap, and ÄKTA-by analyzing the biophysical properties, proteomic profiles, and glycomic structures of EVs. Subsequently, we applied TMT-based quantitative proteome and light/heavy methylamine labeling for the quantification of sialylated N-glycan linkage isomers to investigate alterations in proteins and N-glycans within EVs secreted by HuCCT1 and HCCC-9810 cells with overexpressing ST6 β‑galactoside α2,6‑sialyltransferase 1 (ST6GAL1). RESULTS By evaluating the biophysical properties, proteome, and N-glycome of EVs extracted using five different methods, UC was identified as the optimal approach for this study, as it offered a balance between operational complexity, cost-effectiveness, and the preservation of EVs activity. In this study, a total of 1,928 high-confidence proteins and over 84 high-confidence glycans were quantified. EVs secreted by HuCCT1 and HCCC-9810 cells overexpressing ST6GAL1 exhibited consistent upregulation of 16 proteins, consistent downregulation of 10 proteins, as well as consistent upregulation of 3 glycans and consistent downregulation of 3 glycans. CONCLUSIONS Quantitative proteomic and glycomic analysis of ICC-derived EVs revealed that ST6GAL1 overexpression led to significant alterations in proteins involved in cancer cell adhesion and glycosylation pathways, along with specific changes in N-glycan structures. Notably, these modifications extended beyond α2,6-sialylation, suggesting that interactions between glycosyltransferases and glycans may drive these alterations.
Collapse
Affiliation(s)
- Linlin Wu
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jiao Wei
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yueping Zhan
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiao Xiao
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xuewen Xu
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Chenjun Huang
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Tian Long
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yueyue Li
- Shanghai Cancer Center and Institutes of Biomedical Sciences and Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200030, China
| | - Bin Fu
- Shanghai Cancer Center and Institutes of Biomedical Sciences and Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200030, China
| | - Mengmeng Wang
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Chunfang Gao
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
2
|
Djebbara S, Belguendouz H, Soufli I, Hannachi L, Ameur F, Benazzouz S, Benkhelifa S, Terrahi M, Achour K, Amir ZC, Amri M, Touil-Boukoffa C. Laminated Layer Extract from Echinococcus Granulosus cyst Attenuates Ocular Damages and Inflammatory Responses in an Experimental Autoimmune Uveitis Model. Acta Parasitol 2025; 70:34. [PMID: 39853513 DOI: 10.1007/s11686-024-00944-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/19/2024] [Indexed: 01/26/2025]
Abstract
PURPOSE Since extract of the laminated layer (LL) from E. granulosus showed immuno-modulatory effects in vitro and in vivo, we sought to determine its effect on the onset, development, and evolution of experimental auto-immune uveitis (EAU). The latter is a model of some human diseases with ocular inflammation that can cause blindness. METHODS E. granulosus LL extract was either injected before EAU induction for the pretreated group or later for treated group. Ocular exploration was made by retinal histological and immunohistological (CD86, CD4, CD8) analysis. Myeloperoxidase (MPO), Superoxide dismutase (SOD), Catalase enzymatic activities (CAT), and Malondialdehyde (MDA), Nitric oxide (NO), Urea, and TNF-α levels were measured in plasma. RESULTS LL injection attenuated retinal histological damage and reduced cells infiltration. Also, LL decreased systemic inflammatory and oxidative markers as well as TNF-α production and increased antioxidant parameters. CONCLUSIONS Interestingly, we observed a protective effect of E. granulosus LL extract during EAU. LL appears to ameliorate retinal damage by down-regulating inflammatory responses. Our results support LL immunomodulatory effects during autoimmune diseases and offer a promising prospect for helminthic therapy during autoimmune uveitis.
Collapse
Affiliation(s)
- Sara Djebbara
- Cytokines and NO Synthases Team, LBCM, FSB, USTHB, BP 32 El Alia, Bab Ezzouar, Algiers, 16111, Algeria
| | - Houda Belguendouz
- Cytokines and NO Synthases Team, LBCM, FSB, USTHB, BP 32 El Alia, Bab Ezzouar, Algiers, 16111, Algeria
| | - Imene Soufli
- Cytokines and NO Synthases Team, LBCM, FSB, USTHB, BP 32 El Alia, Bab Ezzouar, Algiers, 16111, Algeria
| | - Leila Hannachi
- Department of Pathological Anatomy, University Hospital Center Mustapha Pacha, Algiers, Algeria
| | - Fahima Ameur
- Cytokines and NO Synthases Team, LBCM, FSB, USTHB, BP 32 El Alia, Bab Ezzouar, Algiers, 16111, Algeria
| | - Sara Benazzouz
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, CH-3012, Bern, Switzerland
| | - Sarra Benkhelifa
- Cytokines and NO Synthases Team, LBCM, FSB, USTHB, BP 32 El Alia, Bab Ezzouar, Algiers, 16111, Algeria
| | - Malika Terrahi
- Department of Ophthalmology, University Hospital Center Nafissa Hammoud, Algiers, Algeria
| | - Karima Achour
- Thoracic Surgery Department, University Hospital Center Bab El Oued, Algiers, Algeria
| | - Zine-Charaf Amir
- Department of Pathological Anatomy, University Hospital Center Mustapha Pacha, Algiers, Algeria
| | - Manel Amri
- Cytokines and NO Synthases Team, LBCM, FSB, USTHB, BP 32 El Alia, Bab Ezzouar, Algiers, 16111, Algeria
| | - Chafia Touil-Boukoffa
- Cytokines and NO Synthases Team, LBCM, FSB, USTHB, BP 32 El Alia, Bab Ezzouar, Algiers, 16111, Algeria.
- Algerian Academy for Science and Technology (AAST), Algiers, Algeria.
| |
Collapse
|
3
|
Zhang Y, Shen C, Zhu X, Leow CY, Ji M, Xu Z. Helminth-derived molecules: pathogenic and pharmacopeial roles. J Biomed Res 2024; 38:1-22. [PMID: 39314046 PMCID: PMC11629161 DOI: 10.7555/jbr.38.20240177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024] Open
Abstract
Parasitic helminths, taxonomically comprising trematodes, cestodes, and nematodes, are multicellular invertebrates widely disseminated in nature and have afflicted people continuously for a long time. Helminths play potent roles in the host through generating a variety of novel molecules, including some excretory/secretory products and others that are involved in intracellular material exchange and information transfer as well as the initiation or stimulation of immune and metabolic activation. The helminth-derived molecules have developed powerful and diverse immunosuppressive effects to achieve immune evasion for parasite survival and establish chronic infections. However, they also improve autoimmune and allergic inflammatory responses and promote metabolic homeostasis by promoting metabolic reprogramming of various immune functions, and then inducing alternatively activated macrophages, T helper 2 cells, and regulatory T cells-mediated immune responses. Therefore, a deeper exploration of the immunopathogenic mechanism and immune regulatory mechanisms of helminth-derived molecules exerted in the host is crucial for understanding host-helminth interactions as well as the development of therapeutic drugs for infectious or non-infectious diseases. In this review, we focus on the properties of helminth-derived molecules to give an overview of the most recent scientific knowledge about their pathogenic and pharmacopeial roles in immune-metabolic homeostasis.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chunxiang Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xinyi Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Minjun Ji
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Zhipeng Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Pathogen Biology, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
4
|
Pinheiro AAS, Torrecilhas AC, Souza BSDF, Cruz FF, Guedes HLDM, Ramos TD, Lopes‐Pacheco M, Caruso‐Neves C, Rocco PRM. Potential of extracellular vesicles in the pathogenesis, diagnosis and therapy for parasitic diseases. J Extracell Vesicles 2024; 13:e12496. [PMID: 39113589 PMCID: PMC11306921 DOI: 10.1002/jev2.12496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/11/2024] [Indexed: 08/11/2024] Open
Abstract
Parasitic diseases have a significant impact on human and animal health, representing a major hazard to the public and causing economic and health damage worldwide. Extracellular vesicles (EVs) have long been recognized as diagnostic and therapeutic tools but are now also known to be implicated in the natural history of parasitic diseases and host immune response modulation. Studies have shown that EVs play a role in parasitic disease development by interacting with parasites and communicating with other types of cells. This review highlights the most recent research on EVs and their role in several aspects of parasite-host interactions in five key parasitic diseases: Chagas disease, malaria, toxoplasmosis, leishmaniasis and helminthiases. We also discuss the potential use of EVs as diagnostic tools or treatment options for these infectious diseases.
Collapse
Affiliation(s)
- Ana Acacia Sá Pinheiro
- Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Rio de Janeiro Innovation Network in Nanosystems for Health‐NanoSAÚDE/Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Rio de JaneiroBrazil
| | - Ana Claudia Torrecilhas
- Departamento de Ciências FarmacêuticasDiadema Campus, Instituto de Ciências Ambientais, Químicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)DiademaSão PauloBrazil
| | - Bruno Solano de Freitas Souza
- Center for Biotechnology and Cell TherapySão Rafael HospitalSalvadorBrazil
- D'Or Institute for Research and Education (IDOR)SalvadorBrazil
| | - Fernanda Ferreira Cruz
- Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Rio de Janeiro Innovation Network in Nanosystems for Health‐NanoSAÚDE/Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Rio de JaneiroBrazil
| | - Herbert Leonel de Matos Guedes
- Instituto de Microbiologia Paulo de Goés (IMPG)Universidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Fundação Oswaldo Cruz (FIOCRUZ)Instituto Oswaldo Cruz (IOC)Rio de JaneiroBrazil
| | - Tadeu Diniz Ramos
- Instituto de Microbiologia Paulo de Goés (IMPG)Universidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Fundação Oswaldo Cruz (FIOCRUZ)Instituto Oswaldo Cruz (IOC)Rio de JaneiroBrazil
| | - Miqueias Lopes‐Pacheco
- Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Deparment of PediatricsCenter for Cystic Fibrosis and Airway Disease ResearchEmory University School of MedicineAtlantaGeorgiaUSA
| | - Celso Caruso‐Neves
- Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Rio de Janeiro Innovation Network in Nanosystems for Health‐NanoSAÚDE/Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Rio de JaneiroBrazil
- National Institute of Science and Technology for Regenerative MedicineINCT‐REGENERARio de JaneiroBrazil
| | - Patricia R. M. Rocco
- Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Rio de Janeiro Innovation Network in Nanosystems for Health‐NanoSAÚDE/Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Rio de JaneiroBrazil
- National Institute of Science and Technology for Regenerative MedicineINCT‐REGENERARio de JaneiroBrazil
| |
Collapse
|
5
|
Tiberti N, Manfredi M, Piubelli C, Buonfrate D. Progresses and challenges in Strongyloides spp. proteomics. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220447. [PMID: 38008115 PMCID: PMC10676815 DOI: 10.1098/rstb.2022.0447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/09/2023] [Indexed: 11/28/2023] Open
Abstract
The availability of high-quality data of helminth genomes provided over the past two decades has supported and accelerated large-scale 'omics studies and, consequently, the achievement of a more in-depth molecular characterization of a number of pathogens. This has also involved Strongyloides spp. and since their genome was made available transcriptomics has been rather frequently applied to investigate gene expression regulation across their life cycle. Strongyloides proteomics characterization has instead been somehow neglected, with only a few reports performing high-throughput or targeted analyses associated with protein identification by tandem mass spectrometry. Such investigations are however necessary in order to discern important aspects associated with human strongyloidiasis, including understanding parasite biology and the mechanisms of host-parasite interaction, but also to identify novel diagnostic and therapeutic targets. In this review article, we will give an overview of the published proteomics studies investigating strongyloidiasis at different levels, spanning from the characterization of the somatic proteome and excretory/secretory products of different parasite stages to the investigation of potentially immunogenic proteins. Moreover, in the effort to try to start filling the current gap in host-proteomics, we will also present the first serum proteomics analysis in patients suffering from human strongyloidiasis. This article is part of the Theo Murphy meeting issue 'Strongyloides: omics to worm-free populations'.
Collapse
Affiliation(s)
- Natalia Tiberti
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella (Verona), Italy
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Chiara Piubelli
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella (Verona), Italy
| | - Dora Buonfrate
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella (Verona), Italy
| |
Collapse
|
6
|
Yan L, Li Y, Li R, Liu M, He X, Yang X, Cho WC, Ayaz M, Kandil OM, Yang Y, Song H, Zheng Y. Comparative characterization of microRNA-71 of Echinococcus granulosus exosomes. Parasite 2023; 30:55. [PMID: 38084936 PMCID: PMC10714675 DOI: 10.1051/parasite/2023060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Cystic echinococcosis (CE) is a global zoonotic disease caused by Echinococcus granulosus, posing a great threat to human and animal health. MiRNAs are small regulatory noncoding RNA involved in the pathogenesis of parasitic diseases, possibly via exosomes. Egr-miR-71 has been identified as one of the miRNAs in the blood of CE patients, but its secretory characteristics and functions remains unclear. Herein, we studied the secretory and biological activity of exosomal egr-miR-71 and its immunoregulatory functions in sheep peripheral blood mononuclear cells (PBMCs). Our results showed that egr-miR-71 was enriched in the exosome secreted by protoscoleces with biological activity. These egr-miR-71-containing exosomes were easily internalized and then induced the dysregulation of cytokines (IL-10 and TNF-α), nitric oxide (NO) and key components (CD14 and IRF5) in the LPS/TLR4 pathway in the coincubated sheep PBMCs. Similarly, egr-miR-71 overexpression also altered the immune functions but exhibited obvious differences in regulation of the cytokines and key components, preferably inhibiting proinflammatory cytokines (IL-1α, IL-1β and TNF-α). These results demonstrate that exosomal egr-miR-71 is bioactive and capacity of immunomodulation of PBMCs, potentially being involved in immune responses during E. granulosus infection.
Collapse
Affiliation(s)
- Lujun Yan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University Hangzhou 311300 China
| | - Yating Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University Hangzhou 311300 China
| | - Rui Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University Hangzhou 311300 China
| | - Mengqi Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University Hangzhou 311300 China
| | - Xuedong He
- College of Animal sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fujian-Taiwan Key Laboratory of Animal Pathogen Biology Fuzhou 350002 China
| | - Xing Yang
-
Department of Medical Microbiology and Immunology, School of Basic Medicine, Dali University Dali 671000 Yunnan China
| | - William C. Cho
-
Department of Clinical Oncology, Queen Elizabeth Hospital Hong Kong SAR China
| | - Mazhar Ayaz
-
Cholistan University of Veterinary and Animal Sciences Bahawalpur 73000 Pakistan
| | - Omnia M. Kandil
-
Depterment of Parasitology and Animal Disease, Veterinary Research Institute, National Research Centre Giza 12622 Egypt
| | - Yongchun Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University Hangzhou 311300 China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University Hangzhou 311300 China
| | - Yadong Zheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University Hangzhou 311300 China
| |
Collapse
|
7
|
Ancarola ME, Maldonado LL, García LCA, Franchini GR, Mourglia-Ettlin G, Kamenetzky L, Cucher MA. A Comparative Analysis of the Protein Cargo of Extracellular Vesicles from Helminth Parasites. Life (Basel) 2023; 13:2286. [PMID: 38137887 PMCID: PMC10744797 DOI: 10.3390/life13122286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Helminth parasites cause debilitating-sometimes fatal-diseases in humans and animals. Despite their impact on global health, mechanisms underlying host-parasite interactions are still poorly understood. One such mechanism involves the exchange of extracellular vesicles (EVs), which are membrane-enclosed subcellular nanoparticles. To date, EV secretion has been studied in helminth parasites, including EV protein content. However, information is highly heterogeneous, since it was generated in multiple species, using varied protocols for EV isolation and data analysis. Here, we compared the protein cargo of helminth EVs to identify common markers for each taxon. For this, we integrated published proteomic data and performed a comparative analysis through an orthology approach. Overall, only three proteins were common in the EVs of the seven analyzed species. Additionally, varied repertoires of proteins with moonlighting activity, vaccine antigens, canonical and non-canonical proteins related to EV biogenesis, taxon-specific proteins of unknown function and RNA-binding proteins were observed in platyhelminth and nematode EVs. Despite the lack of consensus on EV isolation protocols and protein annotation, several proteins were shown to be consistently detected in EV preparations from organisms at different taxa levels, providing a starting point for a selective biochemical characterization.
Collapse
Affiliation(s)
- María Eugenia Ancarola
- Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires C1121, Argentina; (M.E.A.); (L.L.M.)
- Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires C1121, Argentina
| | - Lucas L. Maldonado
- Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires C1121, Argentina; (M.E.A.); (L.L.M.)
- Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires C1121, Argentina
- Instituto de Tecnología (INTEC), Universidad Argentina de la Empresa (UADE), Buenos Aires C1073, Argentina
| | - Lucía C. A. García
- Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires C1121, Argentina; (M.E.A.); (L.L.M.)
- Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires C1121, Argentina
| | - Gisela R. Franchini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP)-Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), La Plata B1900, Argentina;
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata B1900, Argentina
| | - Gustavo Mourglia-Ettlin
- Área Inmunología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay;
| | - Laura Kamenetzky
- Instituto de Biociencias, Biotecnología y Biología Traslacional, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428, Argentina;
| | - Marcela A. Cucher
- Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires C1121, Argentina; (M.E.A.); (L.L.M.)
- Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires C1121, Argentina
| |
Collapse
|
8
|
Liu C, Cao J, Zhang H, Field MC, Yin J. Extracellular vesicles secreted by Echinococcus multilocularis: important players in angiogenesis promotion. Microbes Infect 2023; 25:105147. [PMID: 37142117 DOI: 10.1016/j.micinf.2023.105147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/06/2023]
Abstract
The involvement of Echinococcus multilocularis, and other parasitic helminths, in regulating host physiology is well recognized, but molecular mechanisms remain unclear. Extracellular vesicles (EVs) released by helminths play important roles in regulating parasite-host interactions by transferring materials to the host. Analysis of protein cargo of EVs from E. multilocularis protoscoleces in the present study revealed a unique composition exclusively associated with vesicle biogenesis. Common proteins in various Echinococcus species were identified, including the classical EVs markers tetraspanins, TSG101 and Alix. Further, unique tegumental antigens were identified which could be exploited as Echinococcus EV markers. Parasite- and host-derived proteins within these EVs are predicted to support important roles in parasite-parasite and parasite-host communication. In addition, the enriched host-derived protein payloads identified in parasite EVs in the present study suggested that they can be involved in focal adhesion and potentially promote angiogenesis. Further, increased angiogenesis was observed in livers of mice infected with E. multilocularis and the expression of several angiogenesis-regulated molecules, including VEGF, MMP9, MCP-1, SDF-1 and serpin E1 were increased. Significantly, EVs released by the E. multilocularis protoscolex promoted proliferation and tube formation by human umbilical vein endothelial cells (HUVECs) in vitro. Taken together, we present the first evidence that tapeworm-secreted EVs may promote angiogenesis in Echinococcus-infections, identifying central mechanisms of Echinococcus-host interactions.
Collapse
Affiliation(s)
- Congshan Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Haobing Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK; Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jianhai Yin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai, 200025, China.
| |
Collapse
|
9
|
Guo X, Wang S, Zhang J, Li R, Zhang Y, Wang Z, Kong Q, Cho WC, Ju X, Shen Y, Zhang L, Fan H, Cao J, Zheng Y. Proteomic profiling of serum extracellular vesicles identifies diagnostic markers for echinococcosis. PLoS Negl Trop Dis 2022; 16:e0010814. [PMID: 36206314 PMCID: PMC9581430 DOI: 10.1371/journal.pntd.0010814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/19/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022] Open
Abstract
Echinococcosis is a parasitic disease caused by the metacestodes of Echinococcus spp. The disease has a long latent period and is largely underdiagnosed, partially because of the lack of effective early diagnostic approaches. Using liquid chromatography-mass spectrometry, we profiled the serum-derived extracellular vesicles (EVs) of E. multilocularis-infected mice and identified three parasite-origin proteins, thioredoxin peroxidase 1 (TPx-1), transitional endoplasmic reticulum ATPase (TER ATPase), and 14-3-3, being continuously released by the parasites into the sera during the infection via EVs. Using ELISA, both TPx-1 and TER ATPase were shown to have a good performance in diagnosis of experimental murine echinococcosis as early as 10 days post infection and of human echinococcosis compared with that of control. Moreover, TER ATPase and TPx-1 were further demonstrated to be suitable for evaluation of the prognosis of patients with treatment. The present study discovers the potential of TER ATPase and TPx-1 as promising diagnostic candidates for echinococcosis.
Collapse
Affiliation(s)
- Xiaola Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shuai Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Junmei Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Rui Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yong’e Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhengrong Wang
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Qingming Kong
- Institute of Parasitic Diseases, School of Biological Engineering, Hangzhou Medical College, Hangzhou, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Agriculture, Guangdong Ocean University, Zhanjiang, China
| | - Yujuan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China; Shanghai, China
| | - Lingqiang Zhang
- Department of Hepatopancreatobiliary Surgery, Qinghai University Affiliated Hospital, Qinghai Province Key Laboratory of Hydatid Disease Research, Xining, China
| | - Haining Fan
- Department of Hepatopancreatobiliary Surgery, Qinghai University Affiliated Hospital, Qinghai Province Key Laboratory of Hydatid Disease Research, Xining, China
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China; Shanghai, China
| | - Yadong Zheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| |
Collapse
|