1
|
Carević T, Kolarević S, Kolarević MK, Nestorović N, Novović K, Nikolić B, Ivanov M. Citrus flavonoids diosmin, myricetin and neohesperidin as inhibitors of Pseudomonas aeruginosa: Evidence from antibiofilm, gene expression and in vivo analysis. Biomed Pharmacother 2024; 181:117642. [PMID: 39486364 DOI: 10.1016/j.biopha.2024.117642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Citrus flavonoids are group of bioactive polyphenols. Here, we investigated the potential of diosmin, myricetin and neohesperidin as possible inhibitors of Pseudomonas aeruginosa. This bacterium is a major clinical challenge due to its propensity to form resistant biofilm. The aims of this study were to examine flavonoids antibacterial activity using the microdilution method, assays intended to determine several antibiofilm mechanisms (crystal violet, congo red binding, extracellular DNA (eDNA) test and confocal laser scanning microscopy (CLSM) live/dead cell imaging), followed by virulence genes RT-qPCR analysis. Furthermore, we aimed to examine in vivo toxicity of the compounds as well as their efficacy in P. aeruginosa zebrafish embryo infection model. Minimal inhibitory concentrations of tested flavonoids towards P. aeruginosa were in range 0.05 - 0.4 mg/mL. A high potential of the compounds to disturb both the formation of the bacterial biofilm and its eradication was recorded, including significant reduction in biofilm biomass, exopolysaccharide and eDNA production. Biofilm treatment with diosmin resulted in the lowest percentage of live microbial cells as observed in the CLSM live/dead cell imaging. The lasI, pvdS, and rhlC genes were found to be downregulated in the presence of diosmin and myricetin. Only diosmin stood out as non-embryotoxic. Consequently, in vivo analysis using a zebrafish model of P. aeruginosa infection showed an antivirulence effect of diosmin. Our findings suggest that diosmin could be potential candidate for the development of new agent that target P. aeruginosa infections by reducing its virulence mechanisms.
Collapse
Affiliation(s)
- Tamara Carević
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11108, Serbia
| | - Stoimir Kolarević
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11108, Serbia
| | - Margareta Kračun Kolarević
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11108, Serbia
| | - Nataša Nestorović
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11108, Serbia
| | - Katarina Novović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, Belgrade 11042, Serbia
| | - Biljana Nikolić
- Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade 11000, Serbia
| | - Marija Ivanov
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11108, Serbia.
| |
Collapse
|
2
|
Jing G, Hu C, Fang K, Li Y, Wang L. How Nanoparticles Help in Combating Chronic Wound Biofilms Infection? Int J Nanomedicine 2024; 19:11883-11921. [PMID: 39563901 PMCID: PMC11575445 DOI: 10.2147/ijn.s484473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/17/2024] [Indexed: 11/21/2024] Open
Abstract
Chronic wound infection has become a global health problem, with bacterial biofilms, which are difficult to penetrate using traditional antibiotics, considered the primary cause of recurrent infection and delayed healing in chronic wounds. In recent years, the outstanding performance of nanomaterials in controlling biofilm infections has been widely acknowledged, and these materials are regarded as highly promising for chronic wound infection management. The formation and structure of chronic wound biofilms undergo complex dynamic changes. Therefore, a deep understanding of the underlying causes of repeated wound infections and the specific antibacterial mechanisms of nanomaterials at different stages of biofilm formation is crucial for effective "chronic wound infection management". This review first reveals the relationship between biofilms, wound chronicity, and recurrent infections. Secondly, it focuses on the four stages of chronic wound biofilm formation: (1) adhesion stage, (2) aggregation and promotion stage, (3) maturation stage, and (4) regeneration and dissemination stage. It also comprehensively summarizes the specific antibacterial mechanisms of nanomaterials. This study analyzes essential factors affecting the control of chronic wound biofilms by nanoparticles from various perspectives, such as the material itself, the local wound environment, and the systemic host response. Finally, the limitations and potential future trends in current research are discussed. In summary, nanoparticles represent a promising strategy for combating chronic wound biofilm infections, and this review provides new insights for alternative adjuvant therapies in managing bacterial biofilm infections in chronic wounds.
Collapse
Affiliation(s)
- Gang Jing
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, People's Republic of China
| | - Chen Hu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Keyi Fang
- School of Stomatology, Hainan Medical University, Haikou, Hainan, People's Republic of China
| | - Yingying Li
- School of Stomatology, Hainan Medical University, Haikou, Hainan, People's Republic of China
| | - Linlin Wang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, People's Republic of China
| |
Collapse
|
3
|
Li Y, Lu J, Shi J, Zhang L, Mu H, Cui T. Carboxymethyl chitosan nanoparticle-modulated cationic hydrogels doped with copper ions for combating bacteria and facilitating wound healing. Front Bioeng Biotechnol 2024; 12:1429771. [PMID: 39372435 PMCID: PMC11449867 DOI: 10.3389/fbioe.2024.1429771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024] Open
Abstract
The simultaneous administration of antibacterial treatment and acceleration of tissue regeneration are crucial for the effective healing of infected wounds. In this work, we developed a facile hydrogel (PCC hydrogel) through coordination and hydrogen interactions by polymerizing acrylamide monomers in the presence of carboxymethyl chitosan nanoparticles and copper ions. The prepared PCC hydrogel demonstrated effective bacterial capture from wound exudation and exhibited a potent bactericidal activity against methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. Furthermore, slow release of copper ions from the hydrogel facilitated wound healing by promoting cell migration, collagen deposition and angiogenesis. Additionally, the PCC hydrogel possessed excellent biocompatibility and hemostatic properties. The practical effectiveness of PCC hydrogel in addressing bacterial infections and facilitating wound healing was verified using a mouse model of MRSA-induced wound infections. Overall, this work presents a simple yet efficient multifunctional hydrogel platform that integrates antibacterial activity, promotion of wound healing, and hemostasis for managing bacteria-associated wounds.
Collapse
Affiliation(s)
- Yaqin Li
- Xinjiang Xinhe Zhitong Technology Service Co. Ltd., Urumqi, China
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianping Lu
- Xinjiang Xinhe Zhitong Biotechnology Co. Ltd., Urumqi, China
| | - Jingru Shi
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingjiao Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Haibo Mu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong Cui
- Karamay Central Hospital of Xinjiang, Karamay, China
| |
Collapse
|
4
|
Tang D, Lin Y, Yao H, Liu Y, Xi Y, Li M, Mao A. Effect of L-HSL on biofilm and motility of Pseudomonas aeruginosa and its mechanism. Appl Microbiol Biotechnol 2024; 108:418. [PMID: 39012538 PMCID: PMC11252199 DOI: 10.1007/s00253-024-13247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) biofilm formation is a crucial cause of enhanced antibiotic resistance. Quorum sensing (QS) is involved in regulating biofilm formation; QS inhibitors block the QS signaling pathway as a new strategy to address bacterial resistance. This study investigated the potential and mechanism of L-HSL (N-(3-cyclic butyrolactone)-4-trifluorophenylacetamide) as a QS inhibitor for P. aeruginosa. The results showed that L-HSL effectively inhibited the biofilm formation and dispersed the pre-formed biofilm of P. aeruginosa. The production of extracellular polysaccharides and the motility ability of P. aeruginosa were suppressed by L-HSL. C. elegans infection experiment showed that L-HSL was non-toxic and provided protection to C. elegans against P. aeruginosa infection. Transcriptomic analysis revealed that L-HSL downregulated genes related to QS pathways and biofilm formation. L-HSL exhibits a promising potential as a therapeutic drug for P. aeruginosa infection. KEY POINTS: • Chemical synthesis of N-(3-cyclic butyrolactone)-4-trifluorophenylacetamide, named L-HSL. • L-HSL does not generate survival pressure on the growth of P. aeruginosa and can inhibit the QS system. • KEGG enrichment analysis found that after L-HSL treatment, QS-related genes were downregulated.
Collapse
Affiliation(s)
- Deping Tang
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Yanyan Lin
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Huihui Yao
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Yali Liu
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Yanpeng Xi
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Mengjiao Li
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Aihong Mao
- Gansu Provincial Academic Institute for Medical Research, Lanzhou, 730050, Gansu, China.
| |
Collapse
|
5
|
Hajdú G, Szathmári C, Sőti C. Modeling Host-Pathogen Interactions in C. elegans: Lessons Learned from Pseudomonas aeruginosa Infection. Int J Mol Sci 2024; 25:7034. [PMID: 39000143 PMCID: PMC11241598 DOI: 10.3390/ijms25137034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Infections, such as that by the multiresistant opportunistic bacterial pathogen Pseudomonas aeruginosa, may pose a serious health risk, especially on vulnerable patient populations. The nematode Caenorhabditis elegans provides a simple organismal model to investigate both pathogenic mechanisms and the emerging role of innate immunity in host protection. Here, we review the virulence and infection strategies of P. aeruginosa and host defenses of C. elegans. We summarize the recognition mechanisms of patterns of pathogenesis, including novel pathogen-associated molecular patterns and surveillance immunity of translation, mitochondria, and lysosome-related organelles. We also review the regulation of antimicrobial and behavioral defenses by the worm's neuroendocrine system. We focus on how discoveries in this rich field align with well-characterized evolutionary conserved protective pathways, as well as on potential crossovers to human pathogenesis and innate immune responses.
Collapse
Affiliation(s)
- Gábor Hajdú
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Csenge Szathmári
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Csaba Sőti
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
6
|
Delgado-Nungaray JA, Grajeda-Arias D, Reynaga-Delgado E, Gonzalez-Reynoso O. Biodegradation of Nitrile Gloves as Sole Carbon Source of Pseudomonas aeruginosa in Liquid Culture. Polymers (Basel) 2024; 16:1162. [PMID: 38675080 PMCID: PMC11055158 DOI: 10.3390/polym16081162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Nitrile gloves have become a significant environmental pollutant after the COVID-19 pandemic due to their single-use design. This study examines the capability of P. aeruginosa to use nitrile gloves as its sole carbon energy source. Biodegradation was determined by P. aeruginosa adapting to increasing nitrile glove concentrations at 1%, 3%, and 5% (w/v). The growth kinetics of P. aeruginosa were evaluated, as well as the polymer weight loss. Topographic changes on the glove surfaces were examined using SEM, and FT-IR was used to evaluate the biodegradation products of the nitrile gloves. Following the establishment of a biofilm on the glove surface, the nitrile toxicity was minimized via biodegradation. The result of the average weight loss of nitrile gloves was 2.25%. FT-IR analysis revealed the presence of aldehydes and aliphatic amines associated with biodegradation. SEM showed P. aeruginosa immersed in the EPS matrix, causing the formation of cracks, scales, protrusions, and the presence of semi-spherical particles. We conclude that P. aeruginosa has the capability to use nitrile gloves as its sole carbon source, even up to 5%, through biofilm formation, demonstrating the potential of P. aeruginosa for the degradation of nitrile gloves.
Collapse
Affiliation(s)
- Javier Alejandro Delgado-Nungaray
- Chemical Engineering Department, University Center for Exact and Engineering Sciences, University of Guadalajara, Blvd. M. García Barragán # 1451, Guadalajara C.P. 44430, Jalisco, Mexico;
| | - David Grajeda-Arias
- Pharmacobiology Department, University Center for Exact and Engineering Sciences, University of Guadalajara, Blvd. M. García Barragán # 1451, Guadalajara C.P. 44430, Jalisco, Mexico; (D.G.-A.); (E.R.-D.)
| | - Eire Reynaga-Delgado
- Pharmacobiology Department, University Center for Exact and Engineering Sciences, University of Guadalajara, Blvd. M. García Barragán # 1451, Guadalajara C.P. 44430, Jalisco, Mexico; (D.G.-A.); (E.R.-D.)
| | - Orfil Gonzalez-Reynoso
- Chemical Engineering Department, University Center for Exact and Engineering Sciences, University of Guadalajara, Blvd. M. García Barragán # 1451, Guadalajara C.P. 44430, Jalisco, Mexico;
| |
Collapse
|
7
|
Sharma DK, Rajpurohit YS. Multitasking functions of bacterial extracellular DNA in biofilms. J Bacteriol 2024; 206:e0000624. [PMID: 38445859 PMCID: PMC11025335 DOI: 10.1128/jb.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Bacterial biofilms are intricate ecosystems of microbial communities that adhere to various surfaces and are enveloped by an extracellular matrix composed of polymeric substances. Within the context of bacterial biofilms, extracellular DNA (eDNA) originates from cell lysis or is actively secreted, where it exerts a significant influence on the formation, stability, and resistance of biofilms to environmental stressors. The exploration of eDNA within bacterial biofilms holds paramount importance in research, with far-reaching implications for both human health and the environment. An enhanced understanding of the functions of eDNA in biofilm formation and antibiotic resistance could inspire the development of strategies to combat biofilm-related infections and improve the management of antibiotic resistance. This comprehensive review encapsulates the latest discoveries concerning eDNA, encompassing its origins, functions within bacterial biofilms, and significance in bacterial pathogenesis.
Collapse
Affiliation(s)
- Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Schools of Life Sciences, Homi Bhabha National Institute (DAE—Deemed University), Mumbai, India
| | - Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Schools of Life Sciences, Homi Bhabha National Institute (DAE—Deemed University), Mumbai, India
| |
Collapse
|
8
|
Vadakkan K, Ngangbam AK, Sathishkumar K, Rumjit NP, Cheruvathur MK. A review of chemical signaling pathways in the quorum sensing circuit of Pseudomonas aeruginosa. Int J Biol Macromol 2024; 254:127861. [PMID: 37939761 DOI: 10.1016/j.ijbiomac.2023.127861] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Pseudomonas aeruginosa, an increasingly common competitive and biofilm organism in healthcare infection with sophisticated, interlinked and hierarchic quorum systems (Las, Rhl, PQS, and IQS), creates the greatest threats to the medical industry and has rendered prevailing chemotherapy medications ineffective. The rise of multidrug resistance has evolved into a concerning and potentially fatal occurrence for human life. P. aeruginosa biofilm development is assisted by exopolysaccharides, extracellular DNA, proteins, macromolecules, cellular signaling and interaction. Quorum sensing is a communication process between cells that involves autonomous inducers and regulators. Quorum-induced infectious agent biofilms and the synthesis of virulence factors have increased disease transmission, medication resistance, infection episodes, hospitalizations and mortality. Hence, quorum sensing may be a potential therapeutical target for bacterial illness, and developing quorum inhibitors as an anti-virulent tool could be a promising treatment strategy for existing antibiotics. Quorum quenching is a prevalent technique for treating infections caused by microbes because it diminishes microbial pathogenesis and increases microbe biofilm sensitivity to antibiotics, making it a potential candidate for drug development. This paper examines P. aeruginosa quorum sensing, the hierarchy of quorum sensing mechanism, quorum sensing inhibition and quorum sensing inhibitory agents as a drug development strategy to supplement traditional antibiotic strategies.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biology, St. Mary's College, Thrissur, Kerala 680020, India; Manipur International University, Imphal, Manipur 795140, India.
| | | | - Kuppusamy Sathishkumar
- Rhizosphere Biology Laboratory, Department of Microbiology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India
| | | | | |
Collapse
|
9
|
Wang X, Liu M, Yu C, Li J, Zhou X. Biofilm formation: mechanistic insights and therapeutic targets. MOLECULAR BIOMEDICINE 2023; 4:49. [PMID: 38097907 PMCID: PMC10721784 DOI: 10.1186/s43556-023-00164-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Biofilms are complex multicellular communities formed by bacteria, and their extracellular polymeric substances are observed as surface-attached or non-surface-attached aggregates. Many types of bacterial species found in living hosts or environments can form biofilms. These include pathogenic bacteria such as Pseudomonas, which can act as persistent infectious hosts and are responsible for a wide range of chronic diseases as well as the emergence of antibiotic resistance, thereby making them difficult to eliminate. Pseudomonas aeruginosa has emerged as a model organism for studying biofilm formation. In addition, other Pseudomonas utilize biofilm formation in plant colonization and environmental persistence. Biofilms are effective in aiding bacterial colonization, enhancing bacterial resistance to antimicrobial substances and host immune responses, and facilitating cell‒cell signalling exchanges between community bacteria. The lack of antibiotics targeting biofilms in the drug discovery process indicates the need to design new biofilm inhibitors as antimicrobial drugs using various strategies and targeting different stages of biofilm formation. Growing strategies that have been developed to combat biofilm formation include targeting bacterial enzymes, as well as those involved in the quorum sensing and adhesion pathways. In this review, with Pseudomonas as the primary subject of study, we review and discuss the mechanisms of bacterial biofilm formation and current therapeutic approaches, emphasizing the clinical issues associated with biofilm infections and focusing on current and emerging antibiotic biofilm strategies.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ming Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chuanjiang Yu
- Institute for Cancer Genetics, Columbia University, New York, NY, 10032, USA
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Xikun Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Esfahani MB, Khodavandi A, Alizadeh F, Bahador N. Antibacterial and Anti-Biofilm Activities of Microbial Synthesized Silver and Magnetic Iron Oxide Nanoparticles Against Pseudomonas aeruginosa. IEEE Trans Nanobioscience 2023; 22:956-966. [PMID: 37071524 DOI: 10.1109/tnb.2023.3268138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Pseudomonas aeruginosa is a human bacterial pathogen causing devastating diseases and equipped with various virulence factors like biofilm formation. Common antibiotic treatment has limited efficacy for the P. aeruginosa present in biofilms because of the increased resistance. In this study, we focused our attention on the antibacterial and anti-biofilm activities of various microbial synthesized silver (nano-Ag) and magnetic iron oxide (nano-Fe3O4) nanoparticles against clinical isolates of P. aeruginosa that displayed ceftazidime resistance. The nano-Ag and nano-Fe3O4 represented great antibacterial properties. Nano-Ag and nano-Fe3O4 exhibited a reduction in the biofilm formation by P. aeruginosa reference strain as determined by crystal violet and XTT assays and light microscopy method. Among all, nano-Ag-2 and 7 owing to inherent attributes and mechanisms of resistance in the bacterial biofilm, exhibited anti-biofilm efficacy against ceftazidime resistance clinical isolate of P. aeruginosa. Moreover, nano-Ag and nano-Fe3O4 changed the relative expression of biofilm-associated genes, PELA and PSLA in a concentration dependent manner by P. aeruginosa reference strain. As revealed by qRT-PCR, the expression levels of biofilm-associated genes were downregulated in P. aeruginosa biofilms treated with nano-Ag, while selected biofilm-associated genes were low expressed under treated with nano-Fe3O4. Results of the study demonstrate the potential of microbial synthesized nano-Ag-2 and 7 to act as anti-biofilm agents against ceftazidime resistance clinical isolate of P. aeruginosa. Molecular targeting of biofilm-associated genes by nano-Ag and nano-Fe3O4 may be candidate for new therapeutics against P. aeruginosa diseases.
Collapse
|
11
|
Luo S, Kang X, Luo X, Li C, Wang G. Study on the inhibitory effect of quercetin combined with gentamicin on the formation of Pseudomonas aeruginosa and its bioenvelope. Microb Pathog 2023; 182:106274. [PMID: 37516213 DOI: 10.1016/j.micpath.2023.106274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
OBJECTIVE The potential effects of quercetin and gentamicin combination on the bacteriostatic activity and biofilm formation of Pseudomonas aeruginosa (PA) were examined, and the findings provided a theoretical basis for the development of quercetin as a new biofilm inhibitor. METHODS The minimum inhibitory concentration (MIC) of eight PAs was determined by microdilution method and the partial inhibitory concentration index (FICI) of the combined drug was analyzed by micro-dilution method. Thereafter, the lowest film inhibitory concentration (MBIC) of quercetin and gentamicin alone and in combination was evaluated by crystal violet staining. Finally, scanning electron microscopy (SEM) and laser confocal microscopy (CLSM) were used to decipher the inhibitory effect of the combination on biofilm formation. OUTCOME The antibacterial activity of quercetin alone was relatively weak, but after combination with gentamicin, the antibacterial activity was significantly enhanced, as evident by FICI of 0.28 and 0.53 and manifested as synergistic or additive effect, which indicated that quercetin can enhance gentamicin antibacterial activity. The results of crystal violet staining revealed that quercetin and gentamicin alone exhibited a similar biofilm formation inhibitory effect, but the inhibitory effect was substantially weaker, and the antibiofilm activity was stronger and exhibited a dose-dependent response after the combination of the two with 1/2FICI. The results of scanning electron microscopy and laser confocal microscopy also showed that the treatment of PA biofilm after combining quercetin and gentamicin with 1/2FICI could completely destroy the spatial structure of the complete biofilm, significantly reduce the thickness of bacteria, and markedly reduce the proportion of viable bacteria in the membrane. CONCLUSION The combination of quercetin and gentamicin can effectively inhibit the formation of PA as well as its biofilm, and exhibit synergistic and additive effects.
Collapse
Affiliation(s)
- Shuangyan Luo
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Xinyun Kang
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Xiaofeng Luo
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Caixia Li
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Guiqin Wang
- School of Agriculture, Ningxia University, 750021, Yinchuan, China.
| |
Collapse
|
12
|
Chauhan M, Kimothi A, Sharma A, Pandey A. Cold adapted Pseudomonas: ecology to biotechnology. Front Microbiol 2023; 14:1218708. [PMID: 37529326 PMCID: PMC10388556 DOI: 10.3389/fmicb.2023.1218708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
The cold adapted microorganisms, psychrophiles/psychrotolerants, go through several modifications at cellular and biochemical levels to alleviate the influence of low temperature stress conditions. The low temperature environments depend on these cold adapted microorganisms for various ecological processes. The ability of the microorganisms to function in cold environments depends on the strategies directly associated with cell metabolism, physicochemical constrains, and stress factors. Pseudomonas is one among such group of microorganisms which is predominant in cold environments with a wide range of ecological and biotechnological applications. Bioformulations of Pseudomonas spp., possessing plant growth promotion and biocontrol abilities for application under low temperature environments, are well documented. Further, recent advances in high throughput sequencing provide essential information regarding the prevalence of Pseudomonas in rhizospheres and their role in plant health. Cold adapted species of Pseudomonas are also getting recognition for their potential in biodegradation and bioremediation of environmental contaminants. Production of enzymes and bioactive compounds (primarily as an adaptation mechanism) gives way to their applications in various industries. Exopolysaccharides and various biotechnologically important enzymes, produced by cold adapted species of Pseudomonas, are making their way in food, textiles, and pharmaceuticals. The present review, therefore, aims to summarize the functional versatility of Pseudomonas with particular reference to its peculiarities along with the ecological and biotechnological applications.
Collapse
Affiliation(s)
- Mansi Chauhan
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Ayushi Kimothi
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Avinash Sharma
- National Centre for Cell Science, Pune, Maharashtra, India
| | - Anita Pandey
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| |
Collapse
|
13
|
Balducci E, Papi F, Capialbi DE, Del Bino L. Polysaccharides' Structures and Functions in Biofilm Architecture of Antimicrobial-Resistant (AMR) Pathogens. Int J Mol Sci 2023; 24:ijms24044030. [PMID: 36835442 PMCID: PMC9965654 DOI: 10.3390/ijms24044030] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Bacteria and fungi have developed resistance to the existing therapies such as antibiotics and antifungal drugs, and multiple mechanisms are mediating this resistance. Among these, the formation of an extracellular matrix embedding different bacterial cells, called biofilm, is an effective strategy through which bacterial and fungal cells are establishing a relationship in a unique environment. The biofilm provides them the possibility to transfer genes conferring resistance, to prevent them from desiccation and to impede the penetration of antibiotics or antifungal drugs. Biofilms are formed of several constituents including extracellular DNA, proteins and polysaccharides. Depending on the bacteria, different polysaccharides form the biofilm matrix in different microorganisms, some of them involved in the first stage of cells' attachment to surfaces and to each other, and some responsible for giving the biofilm structure resistance and stability. In this review, we describe the structure and the role of different polysaccharides in bacterial and fungal biofilms, we revise the analytical methods to characterize them quantitatively and qualitatively and finally we provide an overview of potential new antimicrobial therapies able to inhibit biofilm formation by targeting exopolysaccharides.
Collapse
Affiliation(s)
| | | | - Daniela Eloisa Capialbi
- GSK, 53100 Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | | |
Collapse
|
14
|
Razvi E, Whitfield GB, Reichhardt C, Dreifus JE, Willis AR, Gluscencova OB, Gloag ES, Awad TS, Rich JD, da Silva DP, Bond W, Le Mauff F, Sheppard DC, Hatton BD, Stoodley P, Reinke AW, Boulianne GL, Wozniak DJ, Harrison JJ, Parsek MR, Howell PL. Glycoside hydrolase processing of the Pel polysaccharide alters biofilm biomechanics and Pseudomonas aeruginosa virulence. NPJ Biofilms Microbiomes 2023; 9:7. [PMID: 36732330 PMCID: PMC9894940 DOI: 10.1038/s41522-023-00375-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Pel exopolysaccharide biosynthetic loci are phylogenetically widespread biofilm matrix determinants in bacteria. In Pseudomonas aeruginosa, Pel is crucial for cell-to-cell interactions and reducing susceptibility to antibiotic and mucolytic treatments. While genes encoding glycoside hydrolases have long been linked to biofilm exopolysaccharide biosynthesis, their physiological role in biofilm development is unclear. Here we demonstrate that the glycoside hydrolase activity of P. aeruginosa PelA decreases adherent biofilm biomass and is responsible for generating the low molecular weight secreted form of the Pel exopolysaccharide. We show that the generation of secreted Pel contributes to the biomechanical properties of the biofilm and decreases the virulence of P. aeruginosa in Caenorhabditis elegans and Drosophila melanogaster. Our results reveal that glycoside hydrolases found in exopolysaccharide biosynthetic systems can help shape the soft matter attributes of a biofilm and propose that secreted matrix components be referred to as matrix associated to better reflect their influence.
Collapse
Affiliation(s)
- Erum Razvi
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Gregory B Whitfield
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Département de Microbiologie, Infectiologie, et Immunologie, Faculté de Médecine Université de Montréal, Montréal, QC, Canada
| | - Courtney Reichhardt
- Department of Microbiology, University of Washington, Seattle, WA, USA
- Department of Chemistry, Washington University, St. Louis, MO, USA
| | - Julia E Dreifus
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Alexandra R Willis
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Oxana B Gluscencova
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Erin S Gloag
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, VA, 24061, USA
| | - Tarek S Awad
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON, Canada
| | - Jacquelyn D Rich
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Daniel Passos da Silva
- Department of Microbiology, University of Washington, Seattle, WA, USA
- BioVectra Inc. 11 Aviation, Charlottetown, PE, Canada
| | - Whitney Bond
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - François Le Mauff
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Infectious Disease and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, QC, Canada
| | - Donald C Sheppard
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Infectious Disease and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, QC, Canada
| | - Benjamin D Hatton
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON, Canada
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
- Department of Orthopedics, The Ohio State University, Columbus, OH, 43210, USA
- National Biofilm Innovation Centre (NBIC) and National Centre for Advanced Tribology at Southampton (nCATS), University of Southampton, Southampton, SO17 1BJ, UK
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
| | - Aaron W Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Gabrielle L Boulianne
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
| | - Joe J Harrison
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Matthew R Parsek
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - P Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
15
|
Kolpen M, Jensen PØ, Faurholt-Jepsen D, Bjarnsholt T. Prevalence of biofilms in acute infections challenges a longstanding paradigm. Biofilm 2022; 4:100080. [PMID: 35721391 PMCID: PMC9198313 DOI: 10.1016/j.bioflm.2022.100080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/16/2022] [Accepted: 06/06/2022] [Indexed: 10/29/2022] Open
Abstract
The significance of bacterial biofilm formation in chronic bacterial lung infections has long been recognized [1]. Likewise, chronic biofilm formation on medical devices is well accepted as a nidus for recurrent bacteremia [2,3]. Even though the prevailing paradigm relies on the dominance of planktonic bacteria in acute endobronchial infections, our understanding of the bacterial organization during acute infection is, so far, limited - virtually absent. However, by comparing similar clinical samples, we have recently demonstrated massive bacterial biofilm formation during acute lung infections resembling the immense bacterial biofilm formation during chronic lung infections. These findings pose major challenges to the basic paradigm of chronic infections being dominated by biofilm forming bacteria while acute infections are dominated by planktonic bacteria. As opposed to the similar high amount of bacterial biofilm found in chronic and acute lung infections, we found that the fast bacterial growth in acute lung infections differed from the slow bacterial growth in chronic lung infections. By highlighting these new findings, we review modes of improved treatment of biofilm infections and the relevance of bacterial growth rates for other bacterial biofilm infections than human lung infections.
Collapse
Affiliation(s)
- Mette Kolpen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Costerton Biofilm Center, Institute of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Thomas Bjarnsholt
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Costerton Biofilm Center, Institute of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Hoque MN, Jahan MI, Hossain MA, Sultana M. Genomic diversity and molecular epidemiology of a multidrug-resistant Pseudomonas aeruginosa DMC30b isolated from a hospitalized burn patient in Bangladesh. J Glob Antimicrob Resist 2022; 31:110-118. [PMID: 36058512 DOI: 10.1016/j.jgar.2022.08.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Pseudomonas aeruginosa is a key opportunistic pathogen causing a wide range of community- and hospital-acquired infections in immunocompromised or catheterized patients. Here, we report the complete genome sequence of a multidrug-resistant (MDR) P. aeruginosa DMC30b to elucidate the genetic diversity, molecular epidemiology, and underlying mechanisms for antimicrobial resistance and virulence. METHODS P. aeruginosa DMC30b was isolated from septic wound swab of a severe burn patient. Whole-genome sequencing was performed under Ion Torrent platform. The genome was assembled using the SPAdes v. 3.12.01 in an integrated Genome Analysis Platform for Ion Torrent sequence data. The genome was annotated using the National Center for Biotechnology Information (NCBI) Prokaryotic Genome Annotation Pipeline. In-silico predictions of antimicrobial resistance genes, virulence factor genes, and metabolic functional potentials were performed using different curated bioinformatics tools. RESULTS P. aeruginosa DMC30b was found as a MDR strain and belonged to sequence type 244 (ST244). The complete genome size is 6 994 756 bp with a coverage of 76.76x, guanine-cytosine content of 65.7% and a Benchmarking Universal Single-Copy Orthologs score of 100. The genome of P. aeruginosa DMC30b harboured two predicted plasmid replicons (e,g. IncP-6; 78 007 bp and ColRNAI; 9359 bp), 35 resistomes (antimicrobial resistance genes) conferring resistance to 18 different antibiotics (including four beta-lactam classes), and 214 virulence factor genes. It was identified as the 167th ST244 strain among ∼ 5800 whole-genome sequences of P. aeruginosa available in the NCBI database. CONCLUSION The MDR P. aeruginosa DMC30b was identified as the 167th ST244 complete genome to be submitted to the NCBI, and the first ST244 isolate sequenced from Bangladesh. The complete genome data with high genetic diversity and underlying mechanisms for antimicrobial resistance and virulence of P. aeruginosa DMC30b will aid in understanding the evolution and phylogeny of such high-risk clones and provide a solid basis for further research on MDR or extensively drug resistant strains.
Collapse
Affiliation(s)
- M Nazmul Hoque
- Department of Gynaecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - M Ishrat Jahan
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - M Anwar Hossain
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Munawar Sultana
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh.
| |
Collapse
|
17
|
Singkham-In U, Phuengmaung P, Makjaroen J, Saisorn W, Bhunyakarnjanarat T, Chatsuwan T, Chirathaworn C, Chancharoenthana W, Leelahavanichkul A. Chlorhexidine Promotes Psl Expression in Pseudomonas aeruginosa That Enhances Cell Aggregation with Preserved Pathogenicity Demonstrates an Adaptation against Antiseptic. Int J Mol Sci 2022; 23:ijms23158308. [PMID: 35955437 PMCID: PMC9368580 DOI: 10.3390/ijms23158308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Because Pseudomonas aeruginosa is frequently in contact with Chlorhexidine (a regular antiseptic), bacterial adaptations are possible. In comparison with the parent strain, the Chlorhexidine-adapted strain formed smaller colonies with metabolic downregulation (proteomic analysis) with the cross-resistance against colistin (an antibiotic for several antibiotic-resistant bacteria), partly through the modification of L-Ara4N in the lipopolysaccharide at the outer membrane. Chlorhexidine-adapted strain formed dense liquid–solid interface biofilms with enhanced cell aggregation partly due to the Chlorhexidine-induced overexpression of psl (exopolysaccharide-encoded gene) through the LadS/GacSA pathway (c-di-GMP-independence) in 12 h biofilms and maintained the aggregation with SiaD-mediated c-di-GMP dependence in 24 h biofilms as evaluated by polymerase chain reaction (PCR). The addition of Ca2+ in the Chlorhexidine-adapted strain facilitated several Psl-associated genes, indicating an impact of Ca2+ in Psl production. The activation by Chlorhexidine-treated sessile bacteria demonstrated a lower expression of IL-6 and IL-8 on fibroblasts and macrophages than the activation by the parent strain, indicating the less inflammatory reactions from Chlorhexidine-exposed bacteria. However, the 14-day severity of the wounds in mouse caused by Chlorhexidine-treated bacteria versus the parent strain was similar, as indicated by wound diameters and bacterial burdens. In conclusion, Chlorhexidine induced psl over-expression and colistin cross-resistance that might be clinically important.
Collapse
Affiliation(s)
- Uthaibhorn Singkham-In
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok 10330, Thailand; (U.S.-I.); (P.P.); (C.C.)
| | - Pornpimol Phuengmaung
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok 10330, Thailand; (U.S.-I.); (P.P.); (C.C.)
| | - Jiradej Makjaroen
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok 10330, Thailand;
| | - Wilasinee Saisorn
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok 10330, Thailand; (W.S.); (T.B.)
| | - Thansita Bhunyakarnjanarat
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok 10330, Thailand; (W.S.); (T.B.)
| | - Tanittha Chatsuwan
- Antimicrobial Resistance and Stewardship Research Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok 10330, Thailand;
| | - Chintana Chirathaworn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok 10330, Thailand; (U.S.-I.); (P.P.); (C.C.)
| | - Wiwat Chancharoenthana
- Tropical Nephrology Research Unit, Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Correspondence: (W.C.); (A.L.); Tel.: +66-2-306-9130 (W.C.); +66-2-256-4251 (A.L.); Fax: +66-2-354-9150 (W.C.); +66-2-252-6920 (A.L.)
| | - Asada Leelahavanichkul
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok 10330, Thailand; (W.S.); (T.B.)
- Correspondence: (W.C.); (A.L.); Tel.: +66-2-306-9130 (W.C.); +66-2-256-4251 (A.L.); Fax: +66-2-354-9150 (W.C.); +66-2-252-6920 (A.L.)
| |
Collapse
|
18
|
Baishya J, Everett JA, Chazin WJ, Rumbaugh KP, Wakeman CA. The Innate Immune Protein Calprotectin Interacts With and Encases Biofilm Communities of Pseudomonas aeruginosa and Staphylococcus aureus. Front Cell Infect Microbiol 2022; 12:898796. [PMID: 35909964 PMCID: PMC9325956 DOI: 10.3389/fcimb.2022.898796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Calprotectin is a transition metal chelating protein of the innate immune response known to exert nutritional immunity upon microbial infection. It is abundantly released during inflammation and is therefore found at sites occupied by pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus. The metal limitation induced by this protein has previously been shown to mediate P. aeruginosa and S. aureus co-culture. In addition to the transition metal sequestration role of calprotectin, it has also been shown to have metal-independent antimicrobial activity via direct cell contact. Therefore, we sought to assess the impact of this protein on the biofilm architecture of P. aeruginosa and S. aureus in monomicrobial and polymicrobial culture. The experiments described in this report reveal novel aspects of calprotectin's interaction with biofilm communities of P. aeruginosa and S. aureus discovered using scanning electron microscopy and confocal laser scanning microscopy. Our results indicate that calprotectin can interact with microbial cells by stimulating encapsulation in mesh-like structures. This physical interaction leads to compositional changes in the biofilm extracellular polymeric substance (EPS) in both P. aeruginosa and S. aureus.
Collapse
Affiliation(s)
- Jiwasmika Baishya
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Jake A. Everett
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Walter J. Chazin
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | - Kendra P. Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Texas Tech University Health Sciences Center Surgery Burn Center of Research Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Catherine A. Wakeman
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|