1
|
Fadhillah FS, Habibah K, Juniarto AZ, Sobirin MA, Maharani N, Pramono A. Diet and the gut microbiota profiles in individuals at risk of chronic heart failure - A review on the Asian population. Asia Pac J Clin Nutr 2025; 34:141-152. [PMID: 40134053 PMCID: PMC11937497 DOI: 10.6133/apjcn.202504_34(2).0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/22/2024] [Accepted: 07/09/2024] [Indexed: 03/27/2025]
Abstract
BACKGROUND AND OBJECTIVES Chronic Heart Failure (CHF) is one of the leading cardiovascular diseases (CVDs), particularly in the Asian population. Individuals with specific health risks, such as obesity, type 2 diabetes, hypertension, dyslipidemia, and coronary artery disease (CAD), are more susceptible to developing CHF. Current evidence is limited to understanding the link between gut microbiota dysbiosis and CHF. Therefore, this review aims to explore the potential connection between dietary patterns, gut microbiota, and its metabolites in individuals at risk of CHF in the Asian population. METHODS AND STUDY DESIGN A literature review of cross-sectional studies was conducted using primary keywords such as "Asian", "obesity", "type 2 diabetes", "hypertension", "dyslipidemia", "coronary artery disease", and "chronic heart failure". There was no restriction on sample size. RESULTS Several gut microbiotas were found to correlate with CHF risk factors. There were increased levels of Prevotella, Klebsiella, Romboutsia, Catenibacterium, Clostridium, Holdemanella, Ruminococcus, Coprococcus, Parabacteroides, Bacteroides, Lachnoclostridium, Streptococcus, and Megamonas, while decreased levels of Oscillibacter, Bifidobacterium, Lactobacillus, Akkermansia, Roseburia, Faecalibacterium, Pseudobutyrivibrio, and Eubacterium were reported. These microbiota shifts were linked to increased TMAO production and impaired short-chain fatty acids (SCFAs) production. Dietary intake and microbial metabolites were also identified as contributors to the gut microbiota associated with CHF. CONCLUSIONS A potential link exists between the gut microbiota profile and CHF risk factors, possibly mediated by microbial metabolites. Dietary patterns may influence CHF-associated gut microbiota and me-tabolites. Future research is needed to investigate how dietary modifications can modulate gut microbiota and its metabolites in CHF patients.
Collapse
Affiliation(s)
- Farhan S Fadhillah
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Kona'atul Habibah
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Achmad Z Juniarto
- Department of Medical Study, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
- Center of Biomedical Research, Diponegoro University, Semarang, Indonesia
| | - Mochamad A Sobirin
- Department of Medical Study, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Nani Maharani
- Department of Medical Study, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Adriyan Pramono
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang, Indonesia. ;
- Center of Nutrition Research, Diponegoro University, Semarang, Indonesia
| |
Collapse
|
2
|
Hong MG, Song EJ, Yoon HJ, Chung WH, Seo HY, Kim D, Lee D, Seo JG, Lee H, Kim SI, Kim GJ, Kim KN, Lee SN, Kim KS, Nam YD. Clade-specific extracellular vesicles from Akkermansia muciniphila mediate competitive colonization via direct inhibition and immune stimulation. Nat Commun 2025; 16:2708. [PMID: 40108178 PMCID: PMC11923206 DOI: 10.1038/s41467-025-57631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/26/2025] [Indexed: 03/22/2025] Open
Abstract
Akkermansia muciniphila, a promising candidate for next-generation probiotics, exhibits significant genomic diversity, classified into several distinct clades (AmI to AmIV). Notably, a single Akkermansia clade tends to predominate within individual hosts, with co-occurrence of different clades being rare. The mechanisms driving such clade-specific exclusion remain unclear. Here, we show that extracellular vesicles (EVs) derived from AmII clade inhibit the growth of clade I (AmI), conferring a competitive advantage to AmII. Moreover, we observe clade-specific immunoglobulin A (IgA) responses, where AmII clade-specific IgAs, induced by EVs from AmII, facilitate niche occupancy and competitive exclusion of AmI. These findings provide insights into the competitive dynamics of A. muciniphila clades and suggest that future personalized microbiome interventions could be optimized by considering the clade composition of A. muciniphila in individual hosts.
Collapse
Affiliation(s)
- Moon-Gi Hong
- R&D Center, Enterobiome Inc., 814 Siksa-dong, Ilsandong-gu, Goyang-si, Republic of Korea
| | - Eun-Ji Song
- Research Group of Personalized Diet, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Hye Jin Yoon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Won-Hyong Chung
- Research Group of Personalized Diet, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Hae Yeong Seo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Dohak Kim
- R&D Center, Enterobiome Inc., 814 Siksa-dong, Ilsandong-gu, Goyang-si, Republic of Korea
| | - Dokyung Lee
- R&D Center, Enterobiome Inc., 814 Siksa-dong, Ilsandong-gu, Goyang-si, Republic of Korea
| | - Jae-Gu Seo
- R&D Center, Enterobiome Inc., 814 Siksa-dong, Ilsandong-gu, Goyang-si, Republic of Korea
| | - Hayoung Lee
- Digital Omics Research Center, Korea Basic Science Institute, Cheongju, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Seung Il Kim
- Digital Omics Research Center, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Gwang Joong Kim
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, Republic of Korea
| | - Kil-Nam Kim
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, Republic of Korea
| | - Sang-Nam Lee
- R&D Center, Enterobiome Inc., 814 Siksa-dong, Ilsandong-gu, Goyang-si, Republic of Korea.
| | - Kwang Soon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
| | - Young-Do Nam
- Research Group of Personalized Diet, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
3
|
Yang T, Li G, Xu Y, He X, Song B, Cao Y. Characterization of the gut microbiota in polycystic ovary syndrome with dyslipidemia. BMC Microbiol 2024; 24:169. [PMID: 38760705 PMCID: PMC11100065 DOI: 10.1186/s12866-024-03329-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 05/10/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is an endocrinopathy in childbearing-age females which can cause many complications, such as diabetes, obesity, and dyslipidemia. The metabolic disorders in patients with PCOS were linked to gut microbial dysbiosis. However, the correlation between the gut microbial community and dyslipidemia in PCOS remains unillustrated. Our study elucidated the different gut microbiota in patients with PCOS and dyslipidemia (PCOS.D) compared to those with only PCOS and healthy women. RESULTS In total, 18 patients with PCOS, 16 healthy females, and 18 patients with PCOS.D were enrolled. The 16 S rRNA sequencing in V3-V4 region was utilized for identifying the gut microbiota, which analyzes species annotation, community diversity, and community functions. Our results showed that the β diversity of gut microbiota did not differ significantly among the three groups. Regarding gut microbiota dysbiosis, patients with PCOS showed a decreased abundance of Proteobacteria, and patients with PCOS.D showed an increased abundance of Bacteroidota compared to other groups. With respect to the gut microbial imbalance at genus level, the PCOS.D group showed a higher abundance of Clostridium_sensu_stricto_1 compared to other two groups. Furthermore, the abundances of Faecalibacterium and Holdemanella were lower in the PCOS.D than those in the PCOS group. Several genera, including Faecalibacterium and Holdemanella, were negatively correlated with the lipid profiles. Pseudomonas was negatively correlated with luteinizing hormone levels. Using PICRUSt analysis, the gut microbiota community functions suggested that certain metabolic pathways (e.g., amino acids, glycolysis, and lipid) were altered in PCOS.D patients as compared to those in PCOS patients. CONCLUSIONS The gut microbiota characterizations in patients with PCOS.D differ from those in patients with PCOS and controls, and those might also be related to clinical parameters. This may have the potential to become an alternative therapy to regulate the clinical lipid levels of patients with PCOS in the future.
Collapse
Affiliation(s)
- Tianjin Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Guanjian Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032, China
| | - Yuping Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032, China
| | - Xiaojin He
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China.
- Reproductive Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Bing Song
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China.
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032, China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China.
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, China.
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032, China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032, China.
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
4
|
Zhou J, Zhu D, Xu Y, Chen C, Wang K. Genetically predicted gut microbiota mediate the association between plasma lipidomics and primary sclerosing cholangitis. BMC Gastroenterol 2024; 24:158. [PMID: 38720308 PMCID: PMC11080140 DOI: 10.1186/s12876-024-03246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Primary sclerosing cholangitis (PSC) is a complex disease with pathogenic mechanisms that remain to be elucidated. Previous observational studies with small sample sizes have reported associations between PSC, dyslipidemia, and gut microbiota dysbiosis. However, the causality of these associations is uncertain, and there has been no systematic analysis to date. METHODS The datasets comprise data on PSC, 179 lipid species, and 412 gut microbiota species. PSC data (n = 14,890) were sourced from the International PSC Study Group, while the dataset pertaining to plasma lipidomics originated from a study involving 7174 Finnish individuals. Data on gut microbiota species were derived from the Dutch Microbiome Project study, which conducted a genome-wide association study involving 7738 participants. Furthermore, we employed a two-step Mendelian randomization (MR) analysis to quantify the proportion of the effect of gut microbiota-mediated lipidomics on PSC. RESULTS Following a rigorous screening process, our MR analysis revealed a causal relationship between higher levels of gene-predicted Phosphatidylcholine (O-16:1_18:1) (PC O-16:1_18:1) and an increased risk of developing PSC (inverse variance-weighted method, odds ratio (OR) 1.30, 95% confidence interval (CI) 1.03-1.63). There is insufficient evidence to suggest that gene-predicted PSC impacts the levels of PC O-16:1_18:1 (OR 1.01, 95% CI 0.98-1.05). When incorporating gut microbiota data into the analysis, we found that Eubacterium rectale-mediated genetic prediction explains 17.59% of the variance in PC O-16:1_18:1 levels. CONCLUSION Our study revealed a causal association between PC O-16:1_18:1 levels and PSC, with a minor portion of the effect mediated by Eubacterium rectale. This study aims to further explore the pathogenesis of PSC and identify promising therapeutic targets. For patients with PSC who lack effective treatment options, the results are encouraging.
Collapse
Affiliation(s)
- Jie Zhou
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, No. 2, Yongning North Road, Changzhou, 213003, Jiangsu Province, China
- Department of General Surgery, The Wujin Clinical college of Xuzhou Medical University, Changzhou, 213003, China
| | - Dagang Zhu
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, No. 2, Yongning North Road, Changzhou, 213003, Jiangsu Province, China.
- Department of General Surgery, The Wujin Clinical college of Xuzhou Medical University, Changzhou, 213003, China.
| | - Yixin Xu
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, No. 2, Yongning North Road, Changzhou, 213003, Jiangsu Province, China
- Department of General Surgery, The Wujin Clinical college of Xuzhou Medical University, Changzhou, 213003, China
| | - Chao Chen
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, No. 2, Yongning North Road, Changzhou, 213003, Jiangsu Province, China
- Department of General Surgery, The Wujin Clinical college of Xuzhou Medical University, Changzhou, 213003, China
| | - Kun Wang
- Department of General Surgery, Wujin Hospital Affiliated with Jiangsu University, No. 2, Yongning North Road, Changzhou, 213003, Jiangsu Province, China
- Department of General Surgery, The Wujin Clinical college of Xuzhou Medical University, Changzhou, 213003, China
| |
Collapse
|
5
|
Miyajima Y, Karashima S, Mizoguchi R, Kawakami M, Ogura K, Ogai K, Koshida A, Ikagawa Y, Ami Y, Zhu Q, Tsujiguchi H, Hara A, Kurihara S, Arakawa H, Nakamura H, Tamai I, Nambo H, Okamoto S. Prediction and causal inference of hyperuricemia using gut microbiota. Sci Rep 2024; 14:9901. [PMID: 38688923 PMCID: PMC11061287 DOI: 10.1038/s41598-024-60427-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Hyperuricemia (HUA) is a symptom of high blood uric acid (UA) levels, which causes disorders such as gout and renal urinary calculus. Prolonged HUA is often associated with hypertension, atherosclerosis, diabetes mellitus, and chronic kidney disease. Studies have shown that gut microbiota (GM) affect these chronic diseases. This study aimed to determine the relationship between HUA and GM. The microbiome of 224 men and 254 women aged 40 years was analyzed through next-generation sequencing and machine learning. We obtained GM data through 16S rRNA-based sequencing of the fecal samples, finding that alpha-diversity by Shannon index was significantly low in the HUA group. Linear discriminant effect size analysis detected a high abundance of the genera Collinsella and Faecalibacterium in the HUA and non-HUA groups. Based on light gradient boosting machine learning, we propose that HUA can be predicted with high AUC using four clinical characteristics and the relative abundance of nine bacterial genera, including Collinsella and Dorea. In addition, analysis of causal relationships using a direct linear non-Gaussian acyclic model indicated a positive effect of the relative abundance of the genus Collinsella on blood UA levels. Our results suggest abundant Collinsella in the gut can increase blood UA levels.
Collapse
Affiliation(s)
- Yuna Miyajima
- Department of Clinical Laboratory Science, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Shigehiro Karashima
- Institute of Liberal Arts and Science, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan.
| | - Ren Mizoguchi
- Department of Health Promotion and Medicine of the Future, Kanazawa University, Kanazawa, Japan
| | - Masaki Kawakami
- School of Electrical Information Communication Engineering, College of Science and Engineering, Kanazawa University, Kanazawa, Japan
| | - Kohei Ogura
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Kazuhiro Ogai
- Department of Bio-Engineering Nursing, Graduate School of Nursing, Ishikawa Prefectural Nursing University, Kahoku, Ishikawa, Japan
| | - Aoi Koshida
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Yasuo Ikagawa
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Yuta Ami
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, Japan
| | - Qiunan Zhu
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiromasa Tsujiguchi
- Department of Hygiene and Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Akinori Hara
- Department of Hygiene and Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shin Kurihara
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, Japan
| | - Hiroshi Arakawa
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Nakamura
- Department of Hygiene and Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hidetaka Nambo
- School Introduction School of Entrepreneurial and Innovation Studies, College of Transdisciplinary Sciences for Innovation, Kanazawa University, Kanazawa, Japan
| | - Shigefumi Okamoto
- Laboratory of Medical Microbiology and Microbiome, Department of Clinical Laboratory and Biomedical Sciences, Division of Health Sciences, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
6
|
Teng D, Jia W, Wang W, Liao L, Xu B, Gong L, Dong H, Zhong L, Yang J. Causality of the gut microbiome and atherosclerosis-related lipids: a bidirectional Mendelian Randomization study. BMC Cardiovasc Disord 2024; 24:138. [PMID: 38431594 PMCID: PMC10909291 DOI: 10.1186/s12872-024-03804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
AIMS Recent studies have indicated an association between intestinal flora and lipids. However, observational studies cannot indicate causality. In this study, we aimed to investigate the potentially causal relationships between the intestinal flora and blood lipids. METHODS We performed a bidirectional two-sample Mendelian Randomization (MR) analysis to investigate the causal relationship between intestinal flora and blood lipids. Summary statistics of genome-wide association studies (GWASs) for the 211 intestinal flora and blood lipid traits (n = 5) were obtained from public datasets. Five recognized MR methods were applied to assess the causal relationship with lipids, among which, the inverse-variance weighted (IVW) regression was used as the primary MR method. A series of sensitivity analyses were performed to test the robustness of the causal estimates. RESULTS The results indicated a potential causal association between 19 intestinal flora and dyslipidemia in humans. Genus Ruminococcaceae, Christensenellaceae, Parasutterella, Terrisporobacter, Parabacteroides, Class Erysipelotrichia, Family Erysipelotrichaceae, and order Erysipelotrichales were associated with higher dyslipidemia, whereas genus Oscillospira, Peptococcus, Ruminococcaceae UCG010, Ruminococcaceae UCG011, Dorea, and Family Desulfovibrionaceae were associated with lower dyslipidemia. After using the Bonferroni method for multiple testing correction, Only Desulfovibrionaceae [Estimate = -0.0418, 95% confidence interval [CI]: 0.9362-0.9826, P = 0.0007] exhibited stable and significant negative associations with ApoB levels. The inverse MR analysis did not find a significant causal effect of lipids on the intestinal flora. Additionally, no significant heterogeneity or horizontal pleiotropy for IVs was observed in the analysis. CONCLUSION The study suggested a causal relationship between intestinal flora and dyslipidemia. These findings will provide a meaningful reference to discover dyslipidemia for intervention to address the problems in the clinic.
Collapse
Affiliation(s)
- Da Teng
- Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, People's Republic of China
- Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Wenjuan Jia
- Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, People's Republic of China
- Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Wenlong Wang
- Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, People's Republic of China
- Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Lanlan Liao
- Dazhou Central Hospital, Dazhou, Sichuan, People's Republic of China
| | - Bowen Xu
- Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Lei Gong
- Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, People's Republic of China
| | - Haibin Dong
- Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, People's Republic of China
| | - Lin Zhong
- Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, People's Republic of China.
| | - Jun Yang
- Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, People's Republic of China.
| |
Collapse
|
7
|
Kalnina I, Gudra D, Silamikelis I, Viksne K, Roga A, Skinderskis E, Fridmanis D, Klovins J. Variations in the Relative Abundance of Gut Bacteria Correlate with Lipid Profiles in Healthy Adults. Microorganisms 2023; 11:2656. [PMID: 38004667 PMCID: PMC10673050 DOI: 10.3390/microorganisms11112656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
The gut microbiome is a versatile system regulating numerous aspects of host metabolism. Among other traits, variations in the composition of gut microbial communities are related to blood lipid patterns and hyperlipidaemia, yet inconsistent association patterns exist. This study aims to assess the relationships between the composition of the gut microbiome and variations in lipid profiles among healthy adults. This study used data and samples from 23 adult participants of a previously conducted dietary intervention study. Circulating lipid measurements and whole-metagenome sequences of the gut microbiome were derived from 180 blood and faecal samples collected from eight visits distributed across an 11-week study. Lipid-related variables explained approximately 4.5% of the variation in gut microbiome compositions, with higher effects observed for total cholesterol and high-density lipoproteins. Species from the genera Odoribacter, Anaerostipes, and Parabacteroides correlated with increased serum lipid levels, whereas probiotic species like Akkermansia muciniphila were more abundant among participants with healthier blood lipid profiles. An inverse correlation with serum cholesterol was also observed for Massilistercora timonensis, a player in regulating lipid turnover. The observed correlation patterns add to the growing evidence supporting the role of the gut microbiome as an essential regulator of host lipid metabolism.
Collapse
Affiliation(s)
- Ineta Kalnina
- Latvian Biomedical Research and Study Centre 1, LV-1067 Riga, Latvia
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Koshida A, Karashima S, Ogura K, Miyajima Y, Ogai K, Mizoguchi R, Ikagawa Y, Hara S, Mizushima I, Fujii H, Kawano M, Tsujiguchi H, Hara A, Nakamura H, Okamoto S. Impact of gut microbiome on serum IgG4 levels in the general population: Shika-machi super preventive health examination results. Front Cell Infect Microbiol 2023; 13:1272398. [PMID: 37908763 PMCID: PMC10613983 DOI: 10.3389/fcimb.2023.1272398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/29/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction Immunoglobulin G4 (IgG4) is a member of the human immunoglobulin G (IgG) subclass, a protein involved in immunity to pathogens and the body's resistance system. IgG4-related diseases (IgG4-RD) are intractable diseases in which IgG4 levels in the blood are elevated, causing inflammation in organs such as the liver, pancreas, and salivary glands. IgG4-RD are known to be more prevalent in males than in females, but the etiology remains to be elucidated. This study was conducted to investigate the relationship between gut microbiota (GM) and serum IgG4 levels in the general population. Methods In this study, the relationship between IgG4 levels and GM evaluated in male and female groups of the general population using causal inference. The study included 191 men and 207 women aged 40 years or older from Shika-machi, Ishikawa. GM DNA was analyzed for the 16S rRNA gene sequence using next-generation sequencing. Participants were bifurcated into high and low IgG4 groups, depending on median serum IgG4 levels. Results ANCOVA, Tukey's HSD, linear discriminant analysis effect size, least absolute shrinkage and selection operator logistic regression model, and correlation analysis revealed that Anaerostipes, Lachnospiraceae, Megasphaera, and [Eubacterium] hallii group were associated with IgG4 levels in women, while Megasphaera, [Eubacterium] hallii group, Faecalibacterium, Ruminococcus.1, and Romboutsia were associated with IgG4 levels in men. Linear non-Gaussian acyclic model indicated three genera, Megasphaera, [Eubacterium] hallii group, and Anaerostipes, and showed a presumed causal association with IgG4 levels in women. Discussion This differential impact of the GM on IgG4 levels based on sex is a novel and intriguing finding.
Collapse
Affiliation(s)
- Aoi Koshida
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Shigehiro Karashima
- Institute of Liberal Arts and Science, Kanazawa University, Kanazawa, Japan
- Department of Health Promotion and Medicine of the Future, Kanazawa University, Kanazawa, Japan
| | - Kohei Ogura
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Yuna Miyajima
- Department of Clinical Laboratory Science, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kazuhiro Ogai
- Department of Bio-engineering Nursing, Graduate School of Nursing, Ishikawa Prefectural Nursing University, Kahoku, Japan
| | - Ren Mizoguchi
- Department of Health Promotion and Medicine of the Future, Kanazawa University, Kanazawa, Japan
| | - Yasuo Ikagawa
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Satoshi Hara
- Department of Rheumatology, Kanazawa University Hospital, Kanazawa, Japan
| | - Ichiro Mizushima
- Department of Rheumatology, Kanazawa University Hospital, Kanazawa, Japan
| | - Hiroshi Fujii
- Department of Rheumatology, Kanazawa University Hospital, Kanazawa, Japan
| | - Mitsuhiro Kawano
- Department of Rheumatology, Kanazawa University Hospital, Kanazawa, Japan
| | - Hiromasa Tsujiguchi
- Department of Hygiene and Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Akinori Hara
- Department of Hygiene and Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Nakamura
- Department of Hygiene and Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shigefumi Okamoto
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
- Department of Clinical Laboratory Science, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
9
|
Mizoguchi R, Karashima S, Miyajima Y, Ogura K, Kometani M, Aono D, Konishi S, Demura M, Tsujiguchi H, Hara A, Nakamura H, Yoneda T, Okamoto S, Satou K. Impact of gut microbiome on the renin-aldosterone system: Shika-machi Super Preventive Health Examination results. Hypertens Res 2023; 46:2280-2292. [PMID: 37280260 DOI: 10.1038/s41440-023-01334-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/18/2023] [Accepted: 05/07/2023] [Indexed: 06/08/2023]
Abstract
The renin-angiotensin-aldosterone system (RAAS) is a regulatory mechanism of the endocrine system and is associated with various diseases, including hypertension and renal and cardiovascular diseases. The gut microbiota (GM) have been associated with various diseases, mainly in animal models. However, to our knowledge, no studies have examined the relationship between the RAAS and GM in humans. The present study aimed to assess the association between the systemic RAAS and GM genera and their causal relationships. The study participants were 377 members of the general population aged 40 years or older in Shika-machi, Japan. Plasma renin activity (PRA), plasma aldosterone concentration (PAC), aldosterone-renin ratio (ARR), and GM composition were analyzed using the 16S rRNA method. The participants were divided into high and low groups according to the PRA, PAC, and ARR values. U-tests, one-way analysis of covariance, and linear discriminant analysis of effect size were used to identify the important bacterial genera between the two groups, and binary classification modeling using Random Forest was used to calculate the importance of the features. The results showed that Blautia, Bacteroides, Akkermansia, and Bifidobacterium were associated with the RAAS parameters. Causal inference analysis using the linear non-Gaussian acyclic model revealed a causal effect of Blautia on PAC via SBP. These results strengthen the association between the systemic RAAS and GM in humans, and interventions targeting the GM may provide new preventive measures and treatments for hypertension and renal disease.
Collapse
Affiliation(s)
- Ren Mizoguchi
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kanazawa, Japan
| | - Shigehiro Karashima
- Institute of Liberal Arts and Science, Kanazawa University, Kanazawa, Japan.
| | - Yuna Miyajima
- Department of Clinical Laboratory Science, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kohei Ogura
- Advanced Health Care Science Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Mitsuhiro Kometani
- Department of Endocrinology and Metabolism, Kanazawa University Hospital, Kanazawa, Japan
| | - Daisuke Aono
- Department of Endocrinology and Metabolism, Kanazawa University Hospital, Kanazawa, Japan
| | - Seigo Konishi
- Department of Endocrinology and Metabolism, Kanazawa University Hospital, Kanazawa, Japan
| | - Masashi Demura
- Department of Hygiene, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiromasa Tsujiguchi
- Department of Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Akinori Hara
- Department of Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Nakamura
- Department of Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Yoneda
- Department of Endocrinology and Metabolism, Kanazawa University Hospital, Kanazawa, Japan
- Department of Health Promotion and Medicine of the Future, Kanazawa University, Kanazawa, Japan
- Faculty of Transdisciplinary Sciences for Innovation, Institute of Transdisciplinary Sciences for Innovation, Kanazawa University, Kanazawa, Japan
| | - Shigefumi Okamoto
- Department of Clinical Laboratory Science, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
- Advanced Health Care Science Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Kenji Satou
- Faculty of Transdisciplinary Sciences for Innovation, Institute of Transdisciplinary Sciences for Innovation, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
10
|
Abstract
Cardiometabolic disease comprises cardiovascular and metabolic dysfunction and underlies the leading causes of morbidity and mortality, both within the United States and worldwide. Commensal microbiota are implicated in the development of cardiometabolic disease. Evidence suggests that the microbiome is relatively variable during infancy and early childhood, becoming more fixed in later childhood and adulthood. Effects of microbiota, both during early development, and in later life, may induce changes in host metabolism that modulate risk mechanisms and predispose toward the development of cardiometabolic disease. In this review, we summarize the factors that influence gut microbiome composition and function during early life and explore how changes in microbiota and microbial metabolism influence host metabolism and cardiometabolic risk throughout life. We highlight limitations in current methodology and approaches and outline state-of-the-art advances, which are improving research and building toward refined diagnosis and treatment options in microbiome-targeted therapies.
Collapse
Affiliation(s)
- Curtis L Gabriel
- Division of Gastroenterology, Hepatology and Nutrition (C.L.G.), Vanderbilt University Medical Center, Nashville
- Tennessee Center for AIDS Research (C.L.G.), Vanderbilt University Medical Center, Nashville
| | - Jane F Ferguson
- Division of Cardiovascular Medicine (J.F.F.), Vanderbilt University Medical Center, Nashville
- Vanderbilt Microbiome Innovation Center (J.F.F.), Vanderbilt University Medical Center, Nashville
- Vanderbilt Institute for Infection, Immunology, and Inflammation (J.F.F.), Vanderbilt University Medical Center, Nashville
| |
Collapse
|
11
|
Guo G, Wu Y, Liu Y, Wang Z, Xu G, Wang X, Liang F, Lai W, Xiao X, Zhu Q, Zhong S. Exploring the causal effects of the gut microbiome on serum lipid levels: A two-sample Mendelian randomization analysis. Front Microbiol 2023; 14:1113334. [PMID: 36876057 PMCID: PMC9978097 DOI: 10.3389/fmicb.2023.1113334] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
Background The gut microbiome was reported to be associated with dyslipidemia in previous observational studies. However, whether the composition of the gut microbiome has a causal effect on serum lipid levels remains unclear. Objective A two-sample Mendelian randomization (MR) analysis was conducted to investigate the potential causal relationships between gut microbial taxa and serum lipid levels, including low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC), and log-transformed triglyceride (TG) levels. Materials and methods Summary statistics of genome-wide association studies (GWASs) for the gut microbiome and four blood lipid traits were obtained from public datasets. Five recognized MR methods were applied to assess the causal estimates, among which, the inverse-variance weighted (IVW) regression was used as the primary MR method. A series of sensitivity analyses were performed to test the robustness of the causal estimates. Results The combined results from the five MR methods and sensitivity analysis showed 59 suggestive causal associations and four significant causal associations. In particular, genus Terrisporobacter was associated with higher LDL-C (P IVW = 3.01 × 10-6) and TC levels (P IVW = 2.11 × 10-4), phylum Actinobacteria was correlated with higher LDL-C level (P IVW = 4.10 × 10-4), and genus Oscillospira was associated with lower TG level (P IVW = 2.19 × 10-6). Conclusion This research may provide novel insights into the causal relationships of the gut microbiome on serum lipid levels and new therapeutic or prevention strategies for dyslipidemia.
Collapse
Affiliation(s)
- Gongjie Guo
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yonglin Wu
- Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yingjian Liu
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zixian Wang
- Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Guifeng Xu
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xipei Wang
- Laboratory of Phase I Clinical Trials, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Feiqing Liang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weihua Lai
- Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao Xiao
- Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Qian Zhu
- Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Shilong Zhong
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Laboratory of Phase I Clinical Trials, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Ul-Haq A, Lee KA, Seo H, Kim S, Jo S, Ko KM, Moon SJ, Kim YS, Choi JR, Song HY, Kim HS. Characteristic alterations of gut microbiota in uncontrolled gout. J Microbiol 2022; 60:1178-1190. [PMID: 36422845 DOI: 10.1007/s12275-022-2416-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Microbiome research has been on the rise recently for a more in-depth understanding of gout. Meanwhile, there is a need to understand the gut microbiome related to uric acid-lowering drug resistance. In this study, 16S rRNA gene-based microbiota analysis was performed for a total of 65 stool samples from 17 healthy controls and 48 febuxostat-treated gout patients (including 28 controlled subjects with decreased uric acid levels and 20 uncontrolled subjects with non-reduced uric acid levels). Alpha diversity of bacterial community decreased in the healthy control, controlled, and uncontrolled groups. In the case of beta diversity, the bacterial community was significantly different among groups (healthy control, controlled, and uncontrolled groups). Taxonomic biomarker analysis revealed the increased population of g-Bifidobacterium in healthy controls and g-Prevotella in uncontrolled patients. PCR further confirmed this result at the species level. Additionally, functional metagenomics predictions led to the exploration of various functional biomarkers, including purine metabolism. The results of this study can serve as a basis for developing potential new strategies for diagnosing and treating gout from microbiome prospects.
Collapse
Affiliation(s)
- Asad Ul-Haq
- Division of Rheumatology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, 04401, Republic of Korea
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Kyung-Ann Lee
- Division of Rheumatology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, 04401, Republic of Korea
| | - Hoonhee Seo
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, 31538, Republic of Korea
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 33151, Republic of Korea
| | - Sukyung Kim
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 33151, Republic of Korea
| | - Sujin Jo
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Kyung Min Ko
- Division of Rheumatology, Department of Internal Medicine, International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon, 22711, Republic of Korea
| | - Su-Jin Moon
- Division of Rheumatology, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 07345, Republic of Korea
| | - Yun Sung Kim
- Division of Rheumatology, Department of Internal Medicine, Chosun University College of Medicine, Gwangju, 61452, Republic of Korea
| | - Jung Ran Choi
- Divison of Rheumatology, Department of Internal Medicine, Pohang St. Mary's Hospital, Pohang, 37661, Republic of Korea
| | - Ho-Yeon Song
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, 31538, Republic of Korea.
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, 33151, Republic of Korea.
| | - Hyun-Sook Kim
- Division of Rheumatology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, 04401, Republic of Korea.
| |
Collapse
|