1
|
Sousa J, Martins LC, Moura J, Pereira A, Vasconcelos B, Ferro G, Vasconcelos P, Quaresma J. Endoplasmic Reticulum Stress in Tuberculosis: Molecular Bases and Pathophysiological Implications in the Immunopathogenesis of the Disease. Int J Mol Sci 2025; 26:4522. [PMID: 40429667 PMCID: PMC12111063 DOI: 10.3390/ijms26104522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/29/2025] [Accepted: 05/03/2025] [Indexed: 05/29/2025] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a severe pulmonary disease with high mortality, particularly in low-income countries. Early diagnosis and timely treatment, including both intensive and maintenance phases, are critical for controlling the disease and preventing its transmission. In Brazil, where TB incidence remains high, thousands of new cases are reported annually. Transmission occurs primarily through airborne droplets expelled by infected individuals. The immune response involves various cell types, such as lymphocytes and macrophages, which form granulomas to limit the spread of the bacillus. Upon entering the lungs, Mtb is phagocytosed by immune cells, where it evades destruction by blocking phagolysosome formation and inhibiting phagosome acidification. In response, the immune system forms granulomas that contain the infection, although these can become reactivated if immune function deteriorates. Mtb also interferes with host cellular organelles, particularly the endoplasmic reticulum (ER) and mitochondria, inducing cellular stress and apoptosis, which aids in its survival. Key Mtb-secreted proteins, such as BAG2 and CdhM, modulate autophagy and apoptosis pathways, influencing pathogen survival within immune cells. A deeper understanding of these molecular mechanisms, particularly the role of ER stress and its impact on immune responses, is essential for developing novel therapeutic strategies for TB prevention and treatment.
Collapse
Affiliation(s)
- Jorge Sousa
- Departamento de Patologia, Universidade do Estado do Pará, Belém 66050-540, Brazil;
| | - Lívia Caricio Martins
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua 67030-000, Brazil;
| | - Julia Moura
- Faculdade de Medicina, Universidade do Estado do Pará, Belém 66050-540, Brazil; (J.M.); (A.P.); (G.F.)
| | - Amanda Pereira
- Faculdade de Medicina, Universidade do Estado do Pará, Belém 66050-540, Brazil; (J.M.); (A.P.); (G.F.)
| | | | - Gustavo Ferro
- Faculdade de Medicina, Universidade do Estado do Pará, Belém 66050-540, Brazil; (J.M.); (A.P.); (G.F.)
| | - Pedro Vasconcelos
- Departamento de Patologia, Universidade do Estado do Pará, Belém 66050-540, Brazil;
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua 67030-000, Brazil;
- Faculdade de Medicina, Universidade do Estado do Pará, Belém 66050-540, Brazil; (J.M.); (A.P.); (G.F.)
| | - Juarez Quaresma
- Departamento de Patologia, Universidade do Estado do Pará, Belém 66050-540, Brazil;
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua 67030-000, Brazil;
- Faculdade de Medicina, Universidade do Estado do Pará, Belém 66050-540, Brazil; (J.M.); (A.P.); (G.F.)
| |
Collapse
|
2
|
Lin H, Wang D, Wang Q, Mao J, Yang L, Bai Y, Qu J. Epigenetic modifications and metabolic gene mutations drive resistance evolution in response to stimulatory antibiotics. Mol Syst Biol 2025; 21:294-314. [PMID: 39820016 PMCID: PMC11876630 DOI: 10.1038/s44320-025-00087-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025] Open
Abstract
The antibiotic resistance crisis, fueled by misuse and bacterial evolution, is a major global health threat. Traditional perspectives tie resistance to drug target mechanisms, viewing antibiotics as mere growth inhibitors. New insights revealed that low-dose antibiotics may also serve as signals, unexpectedly promoting bacterial growth. Yet, the development of resistance under these conditions remains unknown. Our study investigated resistance evolution under stimulatory antibiotics and uncovered new genetic mechanisms of resistance linked to metabolic remodeling. We documented a shift from a fast, reversible mechanism driven by methylation in central metabolic pathways to a slower, stable mechanism involving mutations in key metabolic genes. Both mechanisms contribute to a metabolic profile transition from glycolysis to rapid gluconeogenesis. In addition, our findings demonstrated that rising environmental temperatures associated with metabolic evolution accelerated this process, increasing the prevalence of metabolic gene mutations, albeit with a trade-off in interspecific fitness. These findings expand beyond the conventional understanding of resistance mechanisms, proposing a broader metabolic mechanism within the selective window of stimulatory sub-MIC antibiotics, particularly in the context of climate change.
Collapse
Affiliation(s)
- Hui Lin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Donglin Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Qiaojuan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jie Mao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Lutong Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yaohui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.
| | - Jiuhui Qu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| |
Collapse
|
3
|
Ma X, Li H, Ji J, Zeng L, Tang M, Lei C, Zuo Y, Li H. Overexpression of outer membrane protein A (OmpA) increases aminoglycoside sensitivity in mycobacteria. BMC Microbiol 2024; 24:472. [PMID: 39533170 PMCID: PMC11558991 DOI: 10.1186/s12866-024-03632-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) complex infection, is a leading cause of death worldwide from a single infectious agent. The emergence of drug resistance Mtb clinical strains makes the situation more serious. The role of Mtb outer membrane protein A (OmpA) in antimicrobial resistance remains unclear. This study aimed to evaluate the effect of OmpA expression on mycobacterial drug resistance. In this study, a Mycobacterium smegmatis (Ms) strain overexpressing OmpA (Ms-OmpA) and a Mycobacterium bovis (Mb) strain overexpressing OmpA (Mb-OmpA) were constructed, and their susceptibility to anti-TB drugs was determined by performing the minimal inhibitory concentrations (MICs), the plate assay and the macrophage infection assays. RESULTS The streptomycin MIC of the overexpressing strain was 2-fold lower than those of the wide-type (Ms) and empty plasmid strains (pMV-261) as well as amikacin and gentamicin. Moreover, both the plate and the macrophage infection assays indicate that overexpression of OmpA increases streptomycin sensitivity in Mycobacteria. The other aminoglycosides like amikacin and gentamicin have the same phenotypes as streptomycin on the plates for the virulent strain Mb-OmpA. The porin inhibitor spermidine can increase streptomycin tolerance in the overexpressing strain, and overexpressing OmpA can increase the intracellular accumulation of hydrophilic ethidium bromide, which indicates that porin protein OmpA contributes to aminoglycosides sensitivity in Mycobacteria. CONCLUSIONS In this study, we have characterized the contribution of OmpA in the antimicrobial resistance phenotype of Mycobacteria, which may provide valuable insights for understanding antibiotic resistance and designing new strategies for TB treatment.
Collapse
Affiliation(s)
- Xiuling Ma
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Huoming Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiahong Ji
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lingyuan Zeng
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Minghui Tang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chengrui Lei
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - You Zuo
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hao Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
4
|
Eoh H, Lee JJ, Swanson D, Lee SK, Dihardjo S, Lee GY, Sree G, Maskill E, Taylor Z, Van Nieuwenhze M, Singh A, Lee JS, Eum SY, Cho SN, Swarts B. Trehalose catalytic shift is an intrinsic factor in Mycobacterium tuberculosis that enhances phenotypic heterogeneity and multidrug resistance. RESEARCH SQUARE 2024:rs.3.rs-4999164. [PMID: 39315249 PMCID: PMC11419184 DOI: 10.21203/rs.3.rs-4999164/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Drug-resistance (DR) in many bacterial pathogens often arises from the repetitive formation of drug-tolerant bacilli, known as persisters. However, it is unclear whether Mycobacterium tuberculosis (Mtb), the bacterium that causes tuberculosis (TB), undergoes a similar phenotypic transition. Recent metabolomics studies have identified that a change in trehalose metabolism is necessary for Mtb to develop persisters and plays a crucial role in metabolic networks of DR-TB strains. The present study used Mtb mutants lacking the trehalose catalytic shift and showed that the mutants exhibited a significantly lower frequency of the emergence of DR mutants compared to wildtype, due to reduced persister formation. The trehalose catalytic shift enables Mtb persisters to survive under bactericidal antibiotics by increasing metabolic heterogeneity and drug tolerance, ultimately leading to development of DR. Intriguingly, rifampicin (RIF)-resistant bacilli exhibit cross-resistance to a second antibiotic, due to a high trehalose catalytic shift activity. This phenomenon explains how the development of multidrug resistance (MDR) is facilitated by the acquisition of RIF resistance. In this context, the heightened risk of MDR-TB in the lineage 4 HN878 W-Beijing strain can be attributed to its greater trehalose catalytic shift. Genetic and pharmacological inactivation of the trehalose catalytic shift significantly reduced persister formation, subsequently decreasing the incidence of MDR-TB in HN878 W-Beijing strain. Collectively, the trehalose catalytic shift serves as an intrinsic factor of Mtb responsible for persister formation, cross-resistance to multiple antibiotics, and the emergence of MDR-TB. This study aids in the discovery of new TB therapeutics by targeting the trehalose catalytic shift of Mtb.
Collapse
|
5
|
Hop HT, Liao PC, Wu HY. Enhancement of mycobacterial pathogenesis by host interferon-γ. Cell Mol Life Sci 2024; 81:380. [PMID: 39222120 PMCID: PMC11368887 DOI: 10.1007/s00018-024-05425-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The cytokine IFNγ is a principal effector of macrophage activation and immune resistance to mycobacterial infection; however, pathogenic mycobacteria are capable of surviving in IFNγ-activated macrophages by largely unknown mechanisms. In this study, we find that pathogenic mycobacteria, including M. bovis BCG and M. tuberculosis can sense IFNγ to promote their proliferative activity and virulence phenotype. Moreover, interaction with the host intracellular environment increases the susceptibility of mycobacteria to IFNγ through upregulating expression of mmpL10, a mycobacterial IFNγ receptor, thereby facilitating IFNγ-dependent survival and growth of mycobacteria in macrophages. Transmission electron microscopy analysis reveals that IFNγ triggers the secretion of extracellular vesicles, an essential virulence strategy of intracellular mycobacteria, while proteomics identifies numerous pivotal IFNγ-induced effectors required for mycobacterial infection in macrophages. Our study suggests that sensing host IFNγ is a crucial virulence mechanism used by pathogenic mycobacteria to survive and proliferate inside macrophages.
Collapse
Affiliation(s)
- Huynh Tan Hop
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Hsin-Yi Wu
- Instrumentation Center, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
6
|
Liu R, Dang JN, Lee R, Lee JJ, Kesavamoorthy N, Ameri H, Rao N, Eoh H. Mycobacterium dormancy and antibiotic tolerance within the retinal pigment epithelium of ocular tuberculosis. Microbiol Spectr 2024; 12:e0078824. [PMID: 38916325 PMCID: PMC11302011 DOI: 10.1128/spectrum.00788-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/23/2024] [Indexed: 06/26/2024] Open
Abstract
Tuberculosis (TB) is a leading cause of death among infectious diseases worldwide due to latent TB infection, which is the critical step for the successful pathogenic cycle. In this stage, Mycobacterium tuberculosis resides inside the host in a dormant and antibiotic-tolerant state. Latent TB infection can also lead to multisystemic diseases because M. tuberculosis invades virtually all organs, including ocular tissues. Ocular tuberculosis (OTB) occurs when the dormant bacilli within the ocular tissues reactivate, originally seeded by hematogenous spread from pulmonary TB. Histological evidence suggests that retinal pigment epithelium (RPE) cells play a central role in immune privilege and in protection from antibiotic effects, making them an anatomical niche for invading M. tuberculosis. RPE cells exhibit high tolerance to environmental redox stresses, allowing phagocytosed M. tuberculosis bacilli to maintain viability in a dormant state. However, the microbiological and metabolic mechanisms determining the interaction between the RPE intracellular environment and phagocytosed M. tuberculosis are largely unknown. Here, liquid chromatography-mass spectrometry metabolomics were used to illuminate the metabolic state within RPE cells reprogrammed to harbor dormant M. tuberculosis bacilli and enhance antibiotic tolerance. Timely and accurate diagnosis as well as efficient chemotherapies are crucial in preventing the poor visual outcomes of OTB patients. Unfortunately, the efficacy of current methods is highly limited. Thus, the results will lead to propose a novel therapeutic option to synthetically kill the dormant M. tuberculosis inside the RPE cells by modulating the phenotypic state of M. tuberculosis and laying the foundation for a new, innovative regimen for treating OTB. IMPORTANCE Understanding the metabolic environment within the retinal pigment epithelium (RPE) cells altered by infection with Mycobacterium tuberculosis and mycobacterial dormancy is crucial to identify new therapeutic methods to cure ocular tuberculosis. The present study showed that RPE cellular metabolism is altered to foster intracellular M. tuberculosis to enter into the dormant and drug-tolerant state, thereby blunting the efficacy of anti-tuberculosis chemotherapy. RPE cells serve as an anatomical niche as the cells protect invading bacilli from antibiotic treatment. LC-MS metabolomics of RPE cells after co-treatment with H2O2 and M. tuberculosis infection showed that the intracellular environment within RPE cells is enriched with a greater level of oxidative stress. The antibiotic tolerance of intracellular M. tuberculosis within RPE cells can be restored by a metabolic manipulation strategy such as co-treatment of antibiotic with the most downstream glycolysis metabolite, phosphoenolpyruvate.
Collapse
Affiliation(s)
- Rachel Liu
- Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Joshua N. Dang
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Rhoeun Lee
- Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Jae Jin Lee
- Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Niranjana Kesavamoorthy
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Hossein Ameri
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Narsing Rao
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Hyungjin Eoh
- Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
7
|
Deshpande A, Likhar R, Khan T, Omri A. Decoding drug resistance in Mycobacterium tuberculosis complex: genetic insights and future challenges. Expert Rev Anti Infect Ther 2024; 22:511-527. [PMID: 39219506 DOI: 10.1080/14787210.2024.2400536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/02/2024] [Accepted: 08/31/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Tuberculosis (TB), particularly its drug-resistant forms (MDR-TB and XDR-TB), continues to pose a significant global health challenge. Despite advances in treatment and diagnosis, the evolving nature of drug resistance in Mycobacterium tuberculosis (MTB) complicates TB eradication efforts. This review delves into the complexities of anti-TB drug resistance, its mechanisms, and implications on healthcare strategies globally. AREAS COVERED We explore the genetic underpinnings of resistance to both first-line and second-line anti-TB drugs, highlighting the role of mutations in key genes. The discussion extends to advanced diagnostic techniques, such as Whole-Genome Sequencing (WGS), CRISPR-based diagnostics and their impact on identifying and managing drug-resistant TB. Additionally, we discuss artificial intelligence applications, current treatment strategies, challenges in managing MDR-TB and XDR-TB, and the global disparities in TB treatment and control, translating to different therapeutic outcomes and have the potential to revolutionize our understanding and management of drug-resistant tuberculosis. EXPERT OPINION The current landscape of anti-TB drug resistance demands an integrated approach combining advanced diagnostics, novel therapeutic strategies, and global collaborative efforts. Future research should focus on understanding polygenic resistance and developing personalized medicine approaches. Policymakers must prioritize equitable access to diagnosis and treatment, enhancing TB control strategies, and support ongoing research and augmented government funding to address this critical public health issue effectively.
Collapse
Affiliation(s)
- Amey Deshpande
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Navi Mumbai, India
| | - Rupali Likhar
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
- Department of Pharmaceutical Chemistry, LSHGCT's Gahlot Institute of Pharmacy, Navi Mumbai, India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| |
Collapse
|
8
|
Lu M. Is aromatic plants environmental health engineering (APEHE) a leverage point of the earth system? Heliyon 2024; 10:e30322. [PMID: 38756557 PMCID: PMC11096952 DOI: 10.1016/j.heliyon.2024.e30322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/30/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
It is important to note that every ecological niche in an ecosystem is significant. This study aims to assess the importance of medicinal and aromatic plants (MAPs) in the ecosystem from multiple perspectives. A primary model of Aromatic Plants Environmental Health Engineering (APEHE) has been designed and constructed. The APEHE system was used to collect aerosol compounds, and it was experimentally verified that these compounds have the potential to impact human health by binding to AKT1 as the primary target, and MMP9 and TLR4 as secondary targets. These compounds may indirectly affect human immunity by reversing drug resistance in drug-resistant bacteria in the nasal cavity. This is mainly achieved through combined mutations in sdhA, scrA, and PEP. Our findings are based on Network pharmacology and molecular binding, drug-resistance rescue experiments, as well as combined transcriptomics and metabolomics experiments. It is suggested that APEHE may have direct or indirect effects on human health. We demonstrate APEHE's numerous potential benefits, such as attenuation and elimination of airborne microorganisms in the environment, enhancing carbon and nitrogen storage in terrestrial ecosystems, promoting the formation of low-level clouds and strengthening the virtuous cycle of Earth's ecosystems. APEHE also supports the development of transdisciplinary technologies, including terpene energy production. It facilitates the creation of a sustainable circular economy and provides additional economic advantages through urban optimisation, as well as fresh insights into areas such as the habitability of other planets. APEHE has the potential to serve as a leverage point for the Earth system. We have created a new research direction.
Collapse
Affiliation(s)
- MengYu Lu
- HEFEI XIAODOUKOU HEALTH TECH CO LTD, China
| |
Collapse
|
9
|
Liu R, Dang JN, Lee R, Lee JJ, Kesavamoorthy N, Ameri H, Rao N, Eoh H. Mycobacterium dormancy and antibiotic tolerance within the retinal pigment epithelium of ocular tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585612. [PMID: 38562751 PMCID: PMC10983995 DOI: 10.1101/2024.03.18.585612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Tuberculosis (TB) is a leading cause of death among infectious diseases worldwide due to latent TB infection, which is the critical step for the successful pathogenic cycle. In this stage, Mycobacterium tuberculosis resides inside the host in a dormant and antibiotic-tolerant state. Latent TB infection can lead to a multisystemic diseases because M. tuberculosis invades virtually all organs, including ocular tissues. Ocular tuberculosis (OTB) occurs when the dormant bacilli within ocular tissues reactivate, originally seeded by hematogenous spread from pulmonary TB. Timely and accurate diagnosis as well as efficient chemotherapies are crucial in preventing poor visual outcomes of OTB patients. Histological evidence suggests that retinal pigment epithelium (RPE) cells play a central role in immune privilege and in the protection from the antibiotic effects, making them an anatomical niche for invading M. tuberculosis . RPE cells exhibit high tolerance to environmental redox stresses, allowing phagocytosed M. tuberculosis bacilli to maintain viability in a dormant state. However, the microbiological and metabolic mechanisms determining the interaction between the RPE intracellular environment and phagocytosed M. tuberculosis are largely unknown. Here, liquid chromatography mass spectrometry (LC-MS) metabolomics was used to illuminate the metabolic state within RPE cells reprogrammed to harbor dormant M. tuberculosis bacilli and enhance the antibiotic tolerance. The results have led to propose a novel therapeutic option to synthetically kill the dormant M. tuberculosis inside the RPE cells by modulating the phenotypic state of M. tuberculosis , thus laying the foundation for a new, innovative regimen for treating OTB. Importance Understanding the metabolic environment within the retinal pigment epithelium (RPE) cells altered by infection with M. tuberculosis and mycobacterial dormancy is crucial to identify new therapeutic methods to cure OTB. The present study showed that RPE cellular metabolism is altered to foster intracellular M. tuberculosis to enter into the dormant and drug tolerant state, thereby blunting the efficacy of anti-TB chemotherapy. RPE cells serve as an anatomical niche as the cells protect invading bacilli from antibiotic treatment. LC-MS metabolomics of RPE cells after co-treatment with H2O2 and M. tuberculosis infection showed that intracellular environment within RPE cells is enriched with greater level of oxidative stress. The antibiotic tolerance of intracellular M. tuberculosis within RPE cells can be restored by a metabolic manipulation strategy such as co-treatment of antibiotic with the most downstream glycolysis metabolite, phosphoenolpyruvate.
Collapse
|
10
|
Singha B, Murmu S, Nair T, Rawat RS, Sharma AK, Soni V. Metabolic Rewiring of Mycobacterium tuberculosis upon Drug Treatment and Antibiotics Resistance. Metabolites 2024; 14:63. [PMID: 38248866 PMCID: PMC10820029 DOI: 10.3390/metabo14010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant global health challenge, further compounded by the issue of antimicrobial resistance (AMR). AMR is a result of several system-level molecular rearrangements enabling bacteria to evolve with better survival capacities: metabolic rewiring is one of them. In this review, we present a detailed analysis of the metabolic rewiring of Mtb in response to anti-TB drugs and elucidate the dynamic mechanisms of bacterial metabolism contributing to drug efficacy and resistance. We have discussed the current state of AMR, its role in the prevalence of the disease, and the limitations of current anti-TB drug regimens. Further, the concept of metabolic rewiring is defined, underscoring its relevance in understanding drug resistance and the biotransformation of drugs by Mtb. The review proceeds to discuss the metabolic adaptations of Mtb to drug treatment, and the pleiotropic effects of anti-TB drugs on Mtb metabolism. Next, the association between metabolic changes and antimycobacterial resistance, including intrinsic and acquired drug resistance, is discussed. The review concludes by summarizing the challenges of anti-TB treatment from a metabolic viewpoint, justifying the need for this discussion in the context of novel drug discovery, repositioning, and repurposing to control AMR in TB.
Collapse
Affiliation(s)
- Biplab Singha
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA;
| | - Sumit Murmu
- Regional Centre of Biotechnology, Faridabad 121001, India;
| | - Tripti Nair
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA;
| | - Rahul Singh Rawat
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi 110067, India;
| | - Aditya Kumar Sharma
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Vijay Soni
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
11
|
Brown KL, Krekhno JMC, Xing S, Huan T, Eltis LD. Cholesterol-Mediated Coenzyme A Depletion in Catabolic Mutants of Mycobacteria Leads to Toxicity. ACS Infect Dis 2024; 10:107-119. [PMID: 38054469 DOI: 10.1021/acsinfecdis.3c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Cholesterol is a critical growth substrate for Mycobacterium tuberculosis (Mtb) during infection, and the cholesterol catabolic pathway has been targeted for the development of new antimycobacterial agents. A key metabolite in cholesterol catabolism is 3aα-H-4α(3'-propanoate)-7aβ-methylhexahydro-1,5-indanedione (HIP). Many of the HIP metabolites are acyl-coenzyme A (CoA) thioesters, whose accumulation in deletion mutants can cause cholesterol-mediated toxicity. We used LC-MS/MS analysis to demonstrate that deletion of genes involved in HIP catabolism leads to acyl-CoA accumulation with concomitant depletion of free CoASH, leading to dysregulation of central metabolic pathways. CoASH and acyl-CoAs inhibited PanK, the enzyme that catalyzes the first step in the transformation of pantothenate to CoASH. Inhibition was competitive with respect to ATP with Kic values ranging from 9 μM for CoASH to 57 μM for small acyl-CoAs and 180 ± 30 μM for cholesterol-derived acyl-CoA. These findings link two critical metabolic pathways and suggest that therapeutics targeting cholesterol catabolic enzymes could both prevent the utilization of an important growth substrate and simultaneously sequester CoA from essential cellular processes, leading to bacterial toxicity.
Collapse
Affiliation(s)
- Kirstin L Brown
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Jessica M C Krekhno
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Shipei Xing
- Department of Chemistry, The University of British Columbia, Vancouver V6T 1Z1, Canada
| | - Tao Huan
- Department of Chemistry, The University of British Columbia, Vancouver V6T 1Z1, Canada
| | - Lindsay D Eltis
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| |
Collapse
|
12
|
Larkins-Ford J, Aldridge BB. Advances in the design of combination therapies for the treatment of tuberculosis. Expert Opin Drug Discov 2023; 18:83-97. [PMID: 36538813 PMCID: PMC9892364 DOI: 10.1080/17460441.2023.2157811] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Tuberculosis requires lengthy multi-drug therapy. Mycobacterium tuberculosis occupies different tissue compartments during infection, making drug access and susceptibility patterns variable. Antibiotic combinations are needed to ensure each compartment of infection is reached with effective drug treatment. Despite drug combinations' role in treating tuberculosis, the design of such combinations has been tackled relatively late in the drug development process, limiting the number of drug combinations tested. In recent years, there has been significant progress using in vitro, in vivo, and computational methodologies to interrogate combination drug effects. AREAS COVERED This review discusses the advances in these methodologies and how they may be used in conjunction with new successful clinical trials of novel drug combinations to design optimized combination therapies for tuberculosis. Literature searches for approaches and experimental models used to evaluate drug combination effects were undertaken. EXPERT OPINION We are entering an era richer in combination drug effect and pharmacokinetic/pharmacodynamic data, genetic tools, and outcome measurement types. Application of computational modeling approaches that integrate these data and produce predictive models of clinical outcomes may enable the field to generate novel, effective multidrug therapies using existing and new drug combination backbones.
Collapse
Affiliation(s)
- Jonah Larkins-Ford
- Department of Molecular Biology and Microbiology and Tufts University School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (CIMAR), Tufts University, Boston, MA, USA
- Current address: MarvelBiome Inc, Woburn, MA, USA
| | - Bree B. Aldridge
- Department of Molecular Biology and Microbiology and Tufts University School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (CIMAR), Tufts University, Boston, MA, USA
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA, USA
| |
Collapse
|