1
|
Kojom Foko LP, Moun A, Singh V. Addressing low-density malaria infections in India and other endemic part of the world-the opportune time? Crit Rev Microbiol 2025; 51:229-245. [PMID: 38632931 DOI: 10.1080/1040841x.2024.2339267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/23/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024]
Abstract
Shifting from high- to low-malaria transmission accompanies a higher proportion of asymptomatic low-density malaria infections (LDMI). Currently, several endemic countries, such as India, are experiencing this shift as it is striving to eliminate malaria. LDMI is a complex concept for which there are several important questions yet unanswered on its natural history, infectiousness, epidemiology, and pathological and clinical impact. India is on the right path to eliminating malaria, but it is facing the LDMI problem. A brief discussion on the concept and definitions of LDMI is beforehand presented. Also, an exhaustive review and critical analysis of the existing literature on LDMI in malaria-endemic areas, including India, are included in this review. Finally, we opine that addressing LDMI in India is ethically and pragmatically achievable, and a pool of sine qua non conditions is required to efficiently and sustainably eliminate malaria.
Collapse
Affiliation(s)
- Loick P Kojom Foko
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Amit Moun
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Vineeta Singh
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
2
|
Guarnizo SAG, Basma L, Equilia S, Condori BJ, Malaga E, Defazio S, Arteaga E, Velarde JK, Obregón M, Takyar A, Duque C, Hakim J, Tinajeros F, Gilman RH, Bowman N, Mugnier MR. A specific, stable, and accessible LAMP assay targeting the HSP70 gene of Trypanosoma cruzi. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.12.25320185. [PMID: 39867377 PMCID: PMC11759593 DOI: 10.1101/2025.01.12.25320185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Diagnostic delays prevent most Chagas disease patients from receiving timely therapy during the acute phase when treatment is effective. qPCR-based diagnostic methods provide high sensitivity during this phase but require specialized equipment and complex protocols. More simple and cost-effective tools are urgently needed to optimize early Chagas disease diagnosis in low-income endemic regions. Here, we present a loop-mediated isothermal amplification (LAMP) that targets a highly conserved region in the HSP70 gene of Trypanosoma cruzi, the causative agent of Chagas disease. This assay demonstrates species-specific amplification across multiple parasite genetic lineages while maintaining stability after 2 hours of incubation and at least 8 months of storage at -20°C. Moreover, the assay is at least 12 times less expensive than the TaqMan qPCR that is currently routinely used for acute Chagas diagnostics. Population-based validation in 100 infants born to Chagas-positive mothers in Santa Cruz, Bolivia, yielded a specificity of 100% and sensitivity exceeding 77% when compared to a TaqMan qPCR that targets satellite DNA. This cost-effective assay holds promise for large-scale diagnosis of Chagas disease in endemic regions with limited resources.
Collapse
Affiliation(s)
| | - Luciana Basma
- Hospital Percy Boland Rodríguez, Ministerio de Salud Bolivia, Santa Cruz, Bolivia
| | - Shirley Equilia
- Hospital Percy Boland Rodríguez, Ministerio de Salud Bolivia, Santa Cruz, Bolivia
| | - Beth Jessy Condori
- Infectious Diseases Research Laboratory, Department of Cellular and Molecular Sciences, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Edith Malaga
- Infectious Diseases Research Laboratory, Department of Cellular and Molecular Sciences, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Siena Defazio
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Emily Arteaga
- Hospital Percy Boland Rodríguez, Ministerio de Salud Bolivia, Santa Cruz, Bolivia
| | - Jean Karla Velarde
- Hospital Percy Boland Rodríguez, Ministerio de Salud Bolivia, Santa Cruz, Bolivia
| | - Martín Obregón
- Infectious Diseases Research Laboratory, Department of Cellular and Molecular Sciences, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Anshule Takyar
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Carolina Duque
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jill Hakim
- Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Freddy Tinajeros
- Hospital Percy Boland Rodríguez, Ministerio de Salud Bolivia, Santa Cruz, Bolivia
| | - Robert H Gilman
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Natalie Bowman
- Division of Infectious Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Monica R Mugnier
- Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
3
|
de Queiroz LT, Baptista BDO, de Abreu-Fernandes R, Pereira CDSF, Lemos JADS, de Souza HADS, Martorano RM, Riccio EKP, Totino PRR, Oliveira-Ferreira J, Lima-Junior JDC, Daniel-Ribeiro CT, Pratt-Riccio LR. Novel isothermal nucleic acid amplification method for detecting malaria parasites. Appl Microbiol Biotechnol 2024; 108:544. [PMID: 39729108 PMCID: PMC11680615 DOI: 10.1007/s00253-024-13357-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 12/28/2024]
Abstract
Malaria, a parasitic disease caused by Plasmodium spp. and transmitted by Anopheles mosquitoes, remains a major global health issue, with an estimated 249 million cases and 608,000 deaths in 2022. Rapid and accurate diagnosis and treatment are crucial for malaria control and elimination. However, limited access to sensitive molecular tests means that microscopic examination and rapid diagnostic tests (RDT) are the most used methods in endemic areas, despite their lower diagnostic accuracy. Therefore, there is a need for developing sensitive, simple, accurate, and rapid diagnostic tools suitable for field conditions. Herein, we aimed to explore the potential of the enzymatic recombinase amplification assay (ERA® Technology) as a remote laboratory test by evaluating and validating the GENEYE® ERA Plasmodium detection kit in Brazilian endemic areas. A cross-sectional cohort study was conducted between June and August of 2023 in the Brazilian Amazon. The study enrolled 323 participants residing in three malaria-affected regions: Cruzeiro do Sul and Mâncio Lima (Acre State) and Guajará (Amazonas State). The participants were tested for malaria by microscopy, rapid diagnostic tests (RDT), nested PCR (nPCR), quantitative real-time PCR (qPCR), and ERA. The sensitivity, specificity, and predictive values were assessed using nPCR as a gold standard. Plasmodium prevalence was 21.7%, 18.8%, 19.2%, 21.7%, and 21.7% by nPCR, microscopy, RDT, qPCR, and ERA respectively. Using nPCR as the standard, qPCR, and ERA showed a sensitivity of 100%. In comparison, microscopy and RDT showed a sensitivity of 87.1% and 88.6%, a negative predictive value (NPV) of 96.56 and 96.93, and kappa values of 0.91 and 0.92, respectively. For Plasmodium falciparum, the sensitivity of qPCR and ERA was 100% while the sensitivity of microscopy and RDT was 96.9% and 93.7%, and the NPV was 99.66 and 99.32, respectively. For Plasmodium vivax, only ERA showed the same sensitivity of nPCR. The sensitivity, NPV, and kappa values were 78.85%, 97.27, and 0.87 for qPCR and microscopy, and 84.21%, 97.94, and 0.9 for RDT. The data presented here show that the GENEYE® ERA Plasmodium detection kit offers a promising alternative to traditional malaria diagnostic methods. Its high sensitivity, specificity, fast processing time, and operational simplicity position it as a valuable point-of-care diagnostic tool, particularly in resource-limited and remote malaria-endemic areas. KEY POINTS: • GENEYE® ERA kit detects Plasmodium in under 25 min, no DNA purification needed. • The kit matches or exceeds the compared methods in sensitivity and specificity. • The kit is suitable for accurate testing in low-infrastructure, point-of-care settings.
Collapse
Affiliation(s)
- Lucas Tavares de Queiroz
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil
| | - Barbara de Oliveira Baptista
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil
| | - Rebecca de Abreu-Fernandes
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil
| | - Carolina de Souza Faria Pereira
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil
| | - Juliana Aline de Souza Lemos
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil
| | - Hugo Amorim Dos Santos de Souza
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil
| | | | - Evelyn Kety Pratt Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil
| | - Paulo Renato Rivas Totino
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil
| | | | | | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil
| | - Lilian Rose Pratt-Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Alsharksi AN, Sirekbasan S, Gürkök-Tan T, Mustapha A. From Tradition to Innovation: Diverse Molecular Techniques in the Fight Against Infectious Diseases. Diagnostics (Basel) 2024; 14:2876. [PMID: 39767237 PMCID: PMC11674978 DOI: 10.3390/diagnostics14242876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/15/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
Infectious diseases impose a significant burden on global health systems due to high morbidity and mortality rates. According to the World Health Organization, millions die from infectious diseases annually, often due to delays in accurate diagnosis. Traditional diagnostic methods in clinical microbiology, primarily culture-based techniques, are time-consuming and may fail with hard-to-culture pathogens. Molecular biology advancements, notably the polymerase chain reaction (PCR), have revolutionized infectious disease diagnostics by allowing rapid and sensitive detection of pathogens' genetic material. PCR has become the gold standard for many infections, particularly highlighted during the COVID-19 pandemic. Following PCR, next-generation sequencing (NGS) has emerged, enabling comprehensive genomic analysis of pathogens, thus facilitating the detection of new strains and antibiotic resistance tracking. Innovative approaches like CRISPR technology are also enhancing diagnostic precision by identifying specific DNA/RNA sequences. However, the implementation of these methods faces challenges, particularly in low- and middle-income countries due to infrastructural and financial constraints. This review will explore the role of molecular diagnostic methods in infectious disease diagnosis, comparing their advantages and limitations, with a focus on PCR and NGS technologies and their future potential.
Collapse
Affiliation(s)
- Ahmed Nouri Alsharksi
- Department of Microbiology, Faculty of Medicine, Misurata University, Misrata 93FH+66F, Libya;
| | - Serhat Sirekbasan
- Department of Medical Laboratory Techniques, Şabanözü Vocational School, Çankırı Karatekin University, Çankırı 18650, Turkey
| | - Tuğba Gürkök-Tan
- Department of Field Crops, Food and Agriculture Vocational School, Çankırı Karatekin University, Çankırı 18100, Turkey;
| | - Adam Mustapha
- Department of Microbiology, Faculty of Life Sciences, University of Maiduguri, Maiduguri 600104, Nigeria;
| |
Collapse
|
5
|
Khanal S, Pillai M, Biswas D, Torequl Islam M, Verma R, Kuca K, Kumar D, Najmi A, Zoghebi K, Khalid A, Mohan S. A paradigm shift in the detection of bloodborne pathogens: conventional approaches to recent detection techniques. EXCLI JOURNAL 2024; 23:1245-1275. [PMID: 39574968 PMCID: PMC11579516 DOI: 10.17179/excli2024-7392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/04/2024] [Indexed: 11/24/2024]
Abstract
Bloodborne pathogens (BBPs) pose formidable challenges in the realm of infectious diseases, representing significant risks to both human and animal health worldwide. The review paper provides a thorough examination of bloodborne pathogens, highlighting the serious worldwide threat they pose and the effects they have on animal and human health. It addresses the potential dangers of exposure that healthcare workers confront, which have affected 3 million people annually, and investigates the many pathways by which these viruses can spread. The limitations of traditional detection techniques like PCR and ELISA have been criticized, which has led to the investigation of new detection methods driven by advances in sensor technology. The objective is to increase the amount of knowledge that is available regarding bloodborne infections as well as effective strategies for their management and detection. This review provides a thorough overview of common bloodborne infections, including their patterns of transmission, and detection techniques.
Collapse
Affiliation(s)
- Sonali Khanal
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Manjusha Pillai
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Deblina Biswas
- Instrumentation and Control Engineering, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Punjab, 144011, India
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj 8100, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Bangladesh
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
- Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, 50003 Hradec Kralove, Czech Republic
- Center for Advanced Innovation Technologies, VSB-Technical University of Ostrava,70800, Ostrava-Poruba, Czech Republic
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Asaad Khalid
- Health Research Center, Jazan University, P. O. Box 114, Jazan, 82511, Saudi Arabia
| | - Syam Mohan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| |
Collapse
|
6
|
Matsuo T, Wurster S, Hoenigl M, Kontoyiannis DP. Current and emerging technologies to develop Point-of-Care Diagnostics in medical mycology. Expert Rev Mol Diagn 2024; 24:841-858. [PMID: 39294931 DOI: 10.1080/14737159.2024.2397515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024]
Abstract
INTRODUCTION Advances in diagnostic technologies, particularly Point-of-Care Diagnostics (POCDs), have revolutionized clinical practice by providing rapid, user-friendly, and affordable testing at or near the patient's location. POCDs have been increasingly introduced in medical mycology and hold promise to improve patient outcomes in a variety of important human fungal diseases. AREAS COVERED This review focuses on validated POCDs, particularly lateral flow assays (LFAs), for various fungal diseases. Additionally, we discuss emerging innovative techniques such as body fluid analysis, imaging methods, loop-mediated isothermal amplification (LAMP), microfluidic systems, clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostics, and the emerging role of artificial intelligence. EXPERT OPINION Compact and user-friendly POCDs have been increasingly introduced in medical mycology, and some of these tests (e.g. Cryptococcus and Histoplasma antigen LFAs) have become mainstream diagnostics, while others, such as LFA in invasive aspergillosis show promise to become part of our routine diagnostic armamentarium. POCDs offer immense benefits such as timely and accurate diagnostic results, reduced patient discomfort, and lower healthcare costs and might contribute to antifungal stewardship. Integrated fluidics combined with microtechnology having multiplex capabilities will be pivotal in medical mycology.
Collapse
Affiliation(s)
- Takahiro Matsuo
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sebastian Wurster
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Martin Hoenigl
- Division of Infectious Diseases, ECMM Excellence Center, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Translational Medical Mycology Research Group, Medical University of Graz, Graz, Austria
- Bio TechMed, Graz, Austria
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
7
|
Nguyen TK, Jun H, Louis JM, Mazigo E, Lee WJ, Youm HC, Shin J, Lungu DK, Kanyemba C, Ahmed MA, Muh F, Lee SJ, Na S, Chun W, Park WS, No JH, Kim MJ, Han ET, Han JH. Enhancing malaria detection in resource-limited areas: A high-performance colorimetric LAMP assay for Plasmodium falciparum screening. PLoS One 2024; 19:e0298087. [PMID: 38335219 PMCID: PMC10857711 DOI: 10.1371/journal.pone.0298087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Malaria eradication efforts in resource-limited areas require a rapid, economical, and accurate tool for detecting of the low parasitemia. The malaria rapid diagnostic test (mRDT) is the most suitable for on-site detection of the deadliest form of malaria, Plasmodium falciparum. However, the deletions of histidine rich protein 2 and 3 genes are known to compromise the effectiveness of mRDT. One of the approaches that have been explored intensively for on-site diagnostics is the loop-mediated isothermal amplification (LAMP). LAMP is a one-step amplification that allows the detection of Plasmodium species in less than an hour. Thus, this study aims to present a new primer set to enhance the performance of a colorimetric LAMP (cLAMP) for field application. The primer binding regions were selected within the A-type of P. falciparum 18S rRNA genes, which presents a dual gene locus in the genome. The test result of the newly designed primer indicates that the optimal reaction condition for cLAMP was 30 minutes incubation at 65°C, a shorter incubation time compared to previous LAMP detection methods that typically takes 45 to 60 minutes. The limit of detection (LoD) for the cLAMP using our designed primers and laboratory-grown P. falciparum (3D7) was estimated to be 0.21 parasites/μL which was 1,000-fold higher than referencing primers. Under optimal reaction condition, the new primer sets showed the sensitivity (100%, 95% CI: 80.49-100%) and specificity (100%, 95% CI: 94.64-100%) with 100% (95% CI: 95.70-100%) accuracy on the detection of dried blood spots from Malawi (n = 84). Briefly, the newly designed primer set for P. falciparum detection exhibited high sensitivity and specificity compared to referenced primers. One great advantage of this tool is its ability to be detected by the naked eye, enhancing field approaches. Thus, this tool has the potential to be effective for accurate early parasite detection in resource-limited endemic areas.
Collapse
Affiliation(s)
- Tuyet Kha Nguyen
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Hojong Jun
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Johnsy Mary Louis
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Ernest Mazigo
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Wang-Jong Lee
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | | | - Jieun Shin
- Noul Co., Ltd., Yongin, Gyeonggi-do, Republic of Korea
| | | | | | - Md Atique Ahmed
- ICMR-Regional Medical Research Centre, NER, Dibrugarh, Assam, India
| | - Fauzi Muh
- Faculty of Public Health, Department of Epidemiology and Tropical Diseases, Universitas Diponegoro, Semarang, Indonesia
| | - Se Jin Lee
- Department of Obstetrics and Gynecology, Kangwon National University Hospital, Chuncheon, Gangwon-do, Republic of Korea
| | - Sunghun Na
- Department of Obstetrics and Gynecology, Kangwon National University Hospital, Chuncheon, Gangwon-do, Republic of Korea
| | - Wanjoo Chun
- Department of Pharmacology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Won Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Joo Hwan No
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam, Gyeonggi-do, Republic of Korea
| | - Min-Jae Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| |
Collapse
|
8
|
Martín Ramírez A, Barón Argos L, Lanza Suárez M, Carmona Rubio C, Pérez-Ayala A, Hisam SR, Rubio JM. Malaria diagnosis using a combined system of a simple and fast extraction method with a lyophilised Dual-LAMP assay in a non-endemic setting. Pathog Glob Health 2024; 118:80-90. [PMID: 37415348 PMCID: PMC10769111 DOI: 10.1080/20477724.2023.2232595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023] Open
Abstract
Malaria is a parasitic disease distributed in tropical areas but with a high number of imported cases in non-endemic countries. The most specific and sensitive malaria diagnostic methods are PCR and LAMP. However, both require specific equipment, extraction procedures and a cold chain. This study aims to solve some limitations of LAMP method with the optimization and validation of six LAMP assays, genus and species-specific, using an easy and fast extraction method, the incorporation of a reaction control assay, two ways (Dual) of result reading and reagent lyophilization. The Dual-LAMP assays were validated against the Nested-Multiplex Malaria PCR. A conventional column and saline extraction methods, and the use of lyophilized reaction tubes were also assessed. A new reaction control Dual-LAMP-RC assay was designed. Dual-LAMP-Pspp assay showed no cross-reactivity with other parasites, repeatability and reproducibility of 100%, a significant correlation between parasite concentration and time to amplification and a LoD of 1.22 parasites/µl and 5.82 parasites/µl using column and saline extraction methods, respectively. Sensitivity and specificity of the six Dual-LAMP assays reach values of 100% or close to this, being lower for the Dual-LAMP-Pm. The Dual-LAMP-RC assay worked as expected. Lyophilized Dual-LAMP results were concordant with the reference method. Dual-LAMP malaria assays with the addition of a new reaction control LAMP assay and the use of a fast and easy saline extraction method, provided low limit of detection, no cross-reactivity, and good sensitivity and specificity. Furthermore, the reagent lyophilization and the dual result reading allow their use in most settings.
Collapse
Affiliation(s)
- Alexandra Martín Ramírez
- Malaria & Parasitic Emerging Diseases Laboratory. National Microbiology Center, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Lourdes Barón Argos
- Malaria & Parasitic Emerging Diseases Laboratory. National Microbiology Center, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Marta Lanza Suárez
- Malaria & Parasitic Emerging Diseases Laboratory. National Microbiology Center, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Claudia Carmona Rubio
- Malaria & Parasitic Emerging Diseases Laboratory. National Microbiology Center, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Ana Pérez-Ayala
- Department of Clinical Microbiology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Shamilah R. Hisam
- Parasitology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institute of Health, Setia Alam, Selangor, Malaysia
| | - José M. Rubio
- Malaria & Parasitic Emerging Diseases Laboratory. National Microbiology Center, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
9
|
Zhang Y, Ke L, Sun T, Liu Y, Wei B, Du M. Rapid Detection of Malaria Based on Hairpin-Mediated Amplification and Lateral Flow Detection. MICROMACHINES 2023; 14:1917. [PMID: 37893354 PMCID: PMC10609466 DOI: 10.3390/mi14101917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
Malaria is listed as one of the three most hazardous infectious diseases worldwide. Travelers and migrants passing through exit and entry ports are important sources of malaria pandemics globally. Developing accurate and rapid detection technology for malaria is important. Here, a novel hairpin-mediated amplification (HMA) technique was proposed for the detection of four Plasmodium species, including P. falciparum, P. vivax, P. malariae, and P. ovale. Based on the conserved nucleotide sequence of Plasmodium, specific primers and probes were designed for the HMA process, and the amplicon can be detected using lateral flow detection (LFD); the results can be read visually without specialized equipment. The specificity of HMA-LFD was evaluated using nucleic acids extracted from four different Plasmodium species and two virus species. The sensitivity of HMA-LFD was valued using 10× serial dilutions of plasmid containing the template sequence. Moreover, 78 blood samples were collected to compare HMA-LFD and qPCR. The HMA-LFD results were all positive for four different Plasmodium species and negative for the other two virus species. The sensitivity of HMA-LFD was tested to be near five copies/μL. The analysis of clinical samples indicated that the consistency of HMA-LFD and qPCR was approximately 96.15%. Based on these results, the HMA-LFD assay was demonstrated to be a rapid, sensitive, and specific technique for the detection of Plasmodium and has great advantages for on-site detection in low-resource areas and exit and entry ports.
Collapse
Affiliation(s)
- Yang Zhang
- Comprehensive Technical Service Center of Xuzhou Customs, Xuzhou Customs, Xuzhou 221000, China;
| | - Lihui Ke
- Department of Thoracic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China;
| | - Tao Sun
- Nanjing Customs, Nanjing 210001, China;
| | - Yang Liu
- Department of Health and Quarantine, Nanjing Customs, Nanjing 210001, China;
| | - Bo Wei
- Department of Thoracic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China;
| | - Minghua Du
- Department of Emergency, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
10
|
Lai MY, Zen LPY, Abdul Hamid MH, Jelip J, Mudin RN, Ivan VJS, Francis LNP, Saihidi I, Lau YL. Point-of-Care Diagnosis of Malaria Using a Simple, Purification-Free DNA Extraction Method Coupled with Loop-Mediated Isothermal Amplification-Lateral Flow. Trop Med Infect Dis 2023; 8:199. [PMID: 37104326 PMCID: PMC10140920 DOI: 10.3390/tropicalmed8040199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/28/2023] Open
Abstract
We propose a protocol suitable for point-of-care diagnosis of malaria utilizing a simple and purification-free DNA extraction method with the combination of loop-mediated isothermal amplification assay and lateral flow (LAMP-LF). The multiplex LAMP-LF platform developed here can simultaneously detect Plasmodium knowlesi, P. vivax, P. falciparum, and Plasmodium genus (for P. malariae and P. ovale). Through the capillary effect, the results can be observed by the red band signal on the test and control lines within 5 min. The developed multiplex LAMP-LF was tested with 86 clinical blood samples on-site at Hospital Kapit, Sarawak, Malaysia. By using microscopy as the reference method, the multiplex LAMP-LF showed 100% sensitivity (95% confidence interval (CI): 91.4 to 100.00%) and 97.8% specificity (95% CI: 88.2% to 99.9%). The high sensitivity and specificity of multiplex LAMP-LF make it ideal for use as a point-of-care diagnostic tool. The simple and purification-free DNA extraction protocol can be employed as an alternative DNA extraction method for malaria diagnosis in resource-limited settings. By combining the simple DNA extraction protocol and multiplex LAMP-LF approach, we aim to develop a simple-to-handle and easy-to-read molecular diagnostic tool for malaria in both laboratory and on-site settings.
Collapse
Affiliation(s)
- Meng Yee Lai
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (M.Y.L.); (L.P.Y.Z.)
| | - Lee Phone Youth Zen
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (M.Y.L.); (L.P.Y.Z.)
| | | | - Jenarun Jelip
- Vector Borne Disease Sector, Ministry of Health, Putrajaya 62590, Malaysia
| | - Rose Nani Mudin
- Vector Borne Disease Sector, Ministry of Health, Putrajaya 62590, Malaysia
| | | | | | - Izreena Saihidi
- Hospital Kapit, Pathology Unit, Jalan Mamora, Kapit 96800, Malaysia
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (M.Y.L.); (L.P.Y.Z.)
| |
Collapse
|
11
|
Maturana CR, de Oliveira AD, Nadal S, Bilalli B, Serrat FZ, Soley ME, Igual ES, Bosch M, Lluch AV, Abelló A, López-Codina D, Suñé TP, Clols ES, Joseph-Munné J. Advances and challenges in automated malaria diagnosis using digital microscopy imaging with artificial intelligence tools: A review. Front Microbiol 2022; 13:1006659. [PMID: 36458185 PMCID: PMC9705958 DOI: 10.3389/fmicb.2022.1006659] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/26/2022] [Indexed: 09/03/2023] Open
Abstract
Malaria is an infectious disease caused by parasites of the genus Plasmodium spp. It is transmitted to humans by the bite of an infected female Anopheles mosquito. It is the most common disease in resource-poor settings, with 241 million malaria cases reported in 2020 according to the World Health Organization. Optical microscopy examination of blood smears is the gold standard technique for malaria diagnosis; however, it is a time-consuming method and a well-trained microscopist is needed to perform the microbiological diagnosis. New techniques based on digital imaging analysis by deep learning and artificial intelligence methods are a challenging alternative tool for the diagnosis of infectious diseases. In particular, systems based on Convolutional Neural Networks for image detection of the malaria parasites emulate the microscopy visualization of an expert. Microscope automation provides a fast and low-cost diagnosis, requiring less supervision. Smartphones are a suitable option for microscopic diagnosis, allowing image capture and software identification of parasites. In addition, image analysis techniques could be a fast and optimal solution for the diagnosis of malaria, tuberculosis, or Neglected Tropical Diseases in endemic areas with low resources. The implementation of automated diagnosis by using smartphone applications and new digital imaging technologies in low-income areas is a challenge to achieve. Moreover, automating the movement of the microscope slide and image autofocusing of the samples by hardware implementation would systemize the procedure. These new diagnostic tools would join the global effort to fight against pandemic malaria and other infectious and poverty-related diseases.
Collapse
Affiliation(s)
- Carles Rubio Maturana
- Microbiology Department, Vall d’Hebron Research Institute, Vall d’Hebron Hospital Campus, Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Allisson Dantas de Oliveira
- Computational Biology and Complex Systems Group, Physics Department, Universitat Politècnica de Catalunya (UPC), Castelldefels, Spain
| | - Sergi Nadal
- Data Base Technologies and Information Group, Engineering Services and Information Systems Department, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Besim Bilalli
- Data Base Technologies and Information Group, Engineering Services and Information Systems Department, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Francesc Zarzuela Serrat
- Microbiology Department, Vall d’Hebron Research Institute, Vall d’Hebron Hospital Campus, Barcelona, Spain
| | - Mateu Espasa Soley
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Clinical Laboratories, Microbiology Department, Hospital Universitari Parc Taulí, Sabadell, Spain
| | - Elena Sulleiro Igual
- Microbiology Department, Vall d’Hebron Research Institute, Vall d’Hebron Hospital Campus, Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- CIBERINFEC, ISCIII- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Alberto Abelló
- Data Base Technologies and Information Group, Engineering Services and Information Systems Department, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Daniel López-Codina
- Computational Biology and Complex Systems Group, Physics Department, Universitat Politècnica de Catalunya (UPC), Castelldefels, Spain
| | - Tomàs Pumarola Suñé
- Microbiology Department, Vall d’Hebron Research Institute, Vall d’Hebron Hospital Campus, Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Elisa Sayrol Clols
- Image Processing Group, Telecommunications and Signal Theory Group, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Joan Joseph-Munné
- Microbiology Department, Vall d’Hebron Research Institute, Vall d’Hebron Hospital Campus, Barcelona, Spain
| |
Collapse
|