1
|
Recchia D, Stelitano G, Egorova A, Batisti Biffignandi G, Savková K, Kafková R, Huszár S, Marino Cerrato A, Slayden RA, Cummings JE, Whittel N, Bauman AA, Robertson GT, Rank L, Urbina F, Lane TR, Ekins S, Riabova O, Kazakova E, Mikušová K, Sassera D, Degiacomi G, Chiarelli LR, Makarov V, Pasca MR. Mycobacterium tuberculosis Sulfate Ester Dioxygenase Rv3406 Is Able to Inactivate the RCB18350 Compound. ACS Infect Dis 2025; 11:986-997. [PMID: 40111403 PMCID: PMC11998004 DOI: 10.1021/acsinfecdis.4c01030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Among the critical priority pathogens listed by the World Health Organization, Mycobacterium tuberculosis strains resistant to rifampicin present a significant global threat. Consequently, the study of the mechanisms of resistance to new antitubercular drugs and the discovery of new effective molecules are two crucial points in tuberculosis drug discovery. In this study, we discovered a compound named RCB18350, which is active against M. tuberculosis growth and exhibits a minimum inhibitory concentration (MIC) of 1.25 μg/mL. It was also effective against multidrug-resistant isolates. We deeply studied the mechanism of resistance/action of RCB18350 by using several approaches. We found that Rv3406, an iron- and α-ketoglutarate-dependent sulfate ester dioxygenase, is capable of metabolizing the compound into its inactive metabolite. This finding highlights the role of this enzyme in the mechanism of resistance to RCB18350.
Collapse
Affiliation(s)
- Deborah Recchia
- Department
of Biology and Biotechnology “Lazzaro Spallanzani,”, University of Pavia, 27100 Pavia, Italy
| | - Giovanni Stelitano
- Department
of Biology and Biotechnology “Lazzaro Spallanzani,”, University of Pavia, 27100 Pavia, Italy
| | - Anna Egorova
- Research
Centre of Biotechnology RAS, Moscow 119071, Russia
| | | | - Karin Savková
- Department
of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 814 99 Bratislava, Slovakia
| | - Radka Kafková
- Department
of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 814 99 Bratislava, Slovakia
| | - Stanislav Huszár
- Department
of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 814 99 Bratislava, Slovakia
| | - Antonio Marino Cerrato
- Department
of Biology and Biotechnology “Lazzaro Spallanzani,”, University of Pavia, 27100 Pavia, Italy
| | - Richard A. Slayden
- Mycobacteria
Research Laboratories, Department of Microbiology, Immunology and
Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Jason E. Cummings
- Mycobacteria
Research Laboratories, Department of Microbiology, Immunology and
Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Nicholas Whittel
- Mycobacteria
Research Laboratories, Department of Microbiology, Immunology and
Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Allison A. Bauman
- Colorado
State University, 1682
Campus Delivery, 200 West Lake Street, Fort
Collins, Colorado 80523-1782, United States
| | - Gregory T. Robertson
- Mycobacteria
Research Laboratories, Department of Microbiology, Immunology and
Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Laura Rank
- Collaborations
Pharmaceuticals, Inc., Raleigh, North Carolina 27606, United States
| | - Fabio Urbina
- Collaborations
Pharmaceuticals, Inc., Raleigh, North Carolina 27606, United States
| | - Thomas R. Lane
- Collaborations
Pharmaceuticals, Inc., Raleigh, North Carolina 27606, United States
| | - Sean Ekins
- Collaborations
Pharmaceuticals, Inc., Raleigh, North Carolina 27606, United States
| | - Olga Riabova
- Research
Centre of Biotechnology RAS, Moscow 119071, Russia
| | - Elena Kazakova
- Research
Centre of Biotechnology RAS, Moscow 119071, Russia
| | - Katarína Mikušová
- Department
of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 814 99 Bratislava, Slovakia
| | - Davide Sassera
- Department
of Biology and Biotechnology “Lazzaro Spallanzani,”, University of Pavia, 27100 Pavia, Italy
- Fondazione
IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giulia Degiacomi
- Department
of Biology and Biotechnology “Lazzaro Spallanzani,”, University of Pavia, 27100 Pavia, Italy
| | - Laurent Robert Chiarelli
- Department
of Biology and Biotechnology “Lazzaro Spallanzani,”, University of Pavia, 27100 Pavia, Italy
| | - Vadim Makarov
- Research
Centre of Biotechnology RAS, Moscow 119071, Russia
| | - Maria Rosalia Pasca
- Department
of Biology and Biotechnology “Lazzaro Spallanzani,”, University of Pavia, 27100 Pavia, Italy
- Fondazione
IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
2
|
Hailemariam TG, Ayele A, Gelanew T, Atnafu A, Brennan M, Tilahun M, Alemayehu DH, Debella ZA, Merid Y, Shibeshi W, Aseffa A, Bobosha K, Hirutu Y, Waddell SJ, Engidawork E. Integrating genomic, transcriptomic, and phenotypic information to explore drug resistance in Mycobacterium tuberculosis sub-lineage 4.2.2.2. J Appl Microbiol 2025; 136:lxaf063. [PMID: 40074543 PMCID: PMC11940716 DOI: 10.1093/jambio/lxaf063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 03/14/2025]
Abstract
AIMS Mycobacterium tuberculosis (Mtb) remains a major global health challenge, particularly due to increasing drug resistance. Beyond the well-characterized mutations, the mechanisms involved in driving resistance appear to be more complex. This study investigated the differential gene expression of Ethiopian drug-resistant Mtb sub-lineage 4.2.2.2 clinical isolates through an integrated approach combining phenotypic, transcriptomic, and genomic analyses. METHOD AND RESULTS RNA sequencing was performed by isolating RNA from six Mtb strains (three drug-sensitive and three drug-resistant) during mid-logarithmic phase growth. Drug resistance was assessed through whole-genome analysis and phenotypic testing using the BACTEC Mycobacteria growth indicator tube (MGIT)™ 960 system. RNA profiling revealed significantly reduced expression of six genes: Rv0096, Rv2780, Rv3136, Rv3136A, Rv3137, and Rv3230c in drug-resistant isolates. These genes are not associated with known drug targets nor resistance mechanisms. Additionally, a discrepancy was noted between phenotypic resistance profiles and whole genome-based predictions, with the latter suggesting broader resistance. For instance, the missense mutation in rpoB p.Ser450Leu and katG p.Ser315Thr were identified with no change in phenotypic drug sensitivity to rifampicin and isoniazid, respectively. CONCLUSION Identification of these differentially expressed genes and their networks could be useful in unraveling the complexities of Mtb drug resistance and in understanding the impact that drug resistance conferring mutations have on the physiology of drug-resistant Mtb.
Collapse
Affiliation(s)
- Tesfaye Gebreyohannis Hailemariam
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Science, Addis Ababa University, P.O.Box 9086, Addis Ababa, Ethiopia
- Armauer Hansen Research Institute, P.O.Box 1005, Addis Ababa, Ethiopia
| | - Abaysew Ayele
- Armauer Hansen Research Institute, P.O.Box 1005, Addis Ababa, Ethiopia
| | - Tesfaye Gelanew
- Armauer Hansen Research Institute, P.O.Box 1005, Addis Ababa, Ethiopia
| | - Abay Atnafu
- Armauer Hansen Research Institute, P.O.Box 1005, Addis Ababa, Ethiopia
| | - Michael Brennan
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, BN1 9PX, Brighton, United Kingdom
| | - Melaku Tilahun
- Armauer Hansen Research Institute, P.O.Box 1005, Addis Ababa, Ethiopia
| | | | - Zemedkun Abebe Debella
- Addis Ababa Institute of Technology, Addis Ababa Univeristy, P.O. Box 1000, Addis Ababa, Ethiopia
| | - Yared Merid
- Hawassa University College of Medicine and Health Sciences, P.O.Box 1560, Hawassa, Ethiopia
| | - Workineh Shibeshi
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Science, Addis Ababa University, P.O.Box 9086, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, P.O.Box 1005, Addis Ababa, Ethiopia
| | - Kidist Bobosha
- Armauer Hansen Research Institute, P.O.Box 1005, Addis Ababa, Ethiopia
| | - Yonas Hirutu
- Armauer Hansen Research Institute, P.O.Box 1005, Addis Ababa, Ethiopia
| | - Simon J Waddell
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, BN1 9PX, Brighton, United Kingdom
| | - Ephrem Engidawork
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Science, Addis Ababa University, P.O.Box 9086, Addis Ababa, Ethiopia
| |
Collapse
|
3
|
Sury A, Maex M, Baulard A, Bhattacharyya RP, Depickère S, Hung DT, Cos P, Sayes F, Frigui W, Brosch R, Mathys V, Streicher EM, De Keersmaeker F, Rigouts L, Ceyssens PJ, Van den Bossche A. Speeding up drug susceptibility testing in Mycobacterium tuberculosis using RNA biomarkers. EBioMedicine 2025; 113:105611. [PMID: 40010155 PMCID: PMC11905850 DOI: 10.1016/j.ebiom.2025.105611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/25/2025] [Accepted: 02/07/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Efficient management of drug-resistant tuberculosis relies on fast diagnostics. To accelerate phenotypic drug susceptibility testing [pDST] for Mycobacterium tuberculosis [TB], we introduce TRACeR-TB, a test that infers drug resistance from antibiotic-specific mRNA biomarkers. METHODS To develop TRACeR-TB, target genes were first identified through RNA sequencing experiments conducted on two drug-exposed, susceptible strains for four antitubercular drugs. Based on these findings, we designed drug-specific multiplex Quantigene panels to quantify mRNA levels of 8-9 biomarkers per drug (class), directly from crude cell lysates. The performance of TRACeR-TB was compared to the widely used Mycobacteria Growth Indicator Tube [MGIT] pDST by subjecting 238 strains with diverse drug resistance profiles to both methods, and aligning results to genotypic data. Furthermore, we explored TRACeR-TB's potential for evaluating molecules that enhance antibiotic efficacy, and investigated its applicability in macrophage models to assess Mtb's intracellular stress responses to drugs. FINDINGS Antituberculosis drugs trigger distinct transcriptional stress responses in susceptible, but not resistant bacilli, enabling a differentiation of the antibiotic phenotype in only 6 h. Validation on 238 strains showed TRACeR-TB had 100% (95% CI: 93·1-100%) sensitivity and 89·5% (95% CI: 74·7-97·2%) specificity compared to, respectively, 82·3% (95% CI: 69·2%-91·5%) and 94·8% (95% CI: 81·9%-99·4%) for MGIT pDST. TRACeR-TB specificity is likely underestimated due to the inclusion of isolates harbouring uncharacterised mutations. TRACeR-TB demonstrated 100% concordance with MGIT for drugs with reliable MGIT outcomes (moxifloxacin and isoniazid). Additionally, its sensitivity outperformed current rifampicin testing, detecting resistance in all borderline-resistant strains that MGIT missed, and bedaquiline testing. Furthermore, the assay detected the predicted effect of a novel drug booster and the intracellular drug-induced stress in macrophage models, highlighting its potential for drug optimisation. INTERPRETATION TRACeR-TB is a complementary addition to current DSTs and can have a substantial impact on the TB diagnostics field. This tool can also play a vital role in identifying resistance mutations, thereby closing gaps in genotypic knowledge, and contribute to drug discovery and development. FUNDING Institut Pasteur, Agence Nationale de la Recherche.
Collapse
Affiliation(s)
- Amandine Sury
- Scientific Service Bacterial Diseases - Infectious Diseases in Humans, Sciensano, Juliette Wytsmanstraat 14, Brussels, 1050, Belgium; National Reference Centre of Mycobacteria and Tuberculosis - Infectious Diseases in Humans, Sciensano, Juliette Wytsmanstraat 14, Brussels, 1050, Belgium
| | - Margo Maex
- Scientific Service Bacterial Diseases - Infectious Diseases in Humans, Sciensano, Juliette Wytsmanstraat 14, Brussels, 1050, Belgium; National Reference Centre of Mycobacteria and Tuberculosis - Infectious Diseases in Humans, Sciensano, Juliette Wytsmanstraat 14, Brussels, 1050, Belgium
| | - Alain Baulard
- Univ. Lille, CNRS, Inserm, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, 59000, France; Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, Lille, 59000, France
| | - Roby P Bhattacharyya
- The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA; Division of Infectious Diseases, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Stéphanie Depickère
- Platform for Interventional Studies, Scientific Direction Infectious Diseases in Humans, Sciensano, Rue Juliette Wytsmanstraat 14, Brussels, 1050, Belgium
| | - Deborah T Hung
- The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA; Department of Molecular Biology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsbaan 212, Antwerp, 2610, Belgium
| | - Fadel Sayes
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, 75015, France
| | - Wafa Frigui
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, 75015, France
| | - Roland Brosch
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Unit for Integrated Mycobacterial Pathogenomics, Paris, 75015, France
| | - Vanessa Mathys
- Scientific Service Bacterial Diseases - Infectious Diseases in Humans, Sciensano, Juliette Wytsmanstraat 14, Brussels, 1050, Belgium; National Reference Centre of Mycobacteria and Tuberculosis - Infectious Diseases in Humans, Sciensano, Juliette Wytsmanstraat 14, Brussels, 1050, Belgium
| | - Elizabeth M Streicher
- Division of Molecular Biology and Human Genetics, SAMRC Centre for Tuberculosis Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
| | - Frederik De Keersmaeker
- Department of Epidemiology and Public Health, Sciensano, Juliette Wytsmanstraat 14, Brussel, 1050, Belgium
| | - Leen Rigouts
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, Antwerp, 2000, Belgium; Mycobacteria Culture Collection of the Belgian Belgian Coordinated Collections of Microorganisms, Nationalestraat 155, Antwerp, 2000, Belgium
| | - Pieter-Jan Ceyssens
- Scientific Service Bacterial Diseases - Infectious Diseases in Humans, Sciensano, Juliette Wytsmanstraat 14, Brussels, 1050, Belgium; National Reference Centre of Mycobacteria and Tuberculosis - Infectious Diseases in Humans, Sciensano, Juliette Wytsmanstraat 14, Brussels, 1050, Belgium
| | - An Van den Bossche
- Scientific Service Bacterial Diseases - Infectious Diseases in Humans, Sciensano, Juliette Wytsmanstraat 14, Brussels, 1050, Belgium; National Reference Centre of Mycobacteria and Tuberculosis - Infectious Diseases in Humans, Sciensano, Juliette Wytsmanstraat 14, Brussels, 1050, Belgium.
| |
Collapse
|
4
|
Singh S, Dutta T. A virulence-associated small RNA MTS1338 activates an ABC transporter CydC for rifampicin efflux in Mycobacterium tuberculosis. Front Microbiol 2024; 15:1469280. [PMID: 39364170 PMCID: PMC11446857 DOI: 10.3389/fmicb.2024.1469280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024] Open
Abstract
The efficacy of the tuberculosis treatment is restricted by innate drug resistance of Mycobacterial tuberculosis and its ability to acquire resistance to all anti-tuberculosis drugs in clinical use. A profound understanding of bacterial ploys that decrease the effectiveness of drugs would identify new mechanisms for drug resistance, which would subsequently lead to the development of more potent TB therapies. In the current study, we identified a virulence-associated small RNA (sRNA) MTS1338-driven drug efflux mechanism in M. tuberculosis. The treatment of a frontline antitubercular drug rifampicin upregulated MTS1338 by >4-fold. Higher intrabacterial abundance of MTS1338 increased the growth rate of cells in rifampicin-treated conditions. This fact was attributed by the upregulation of an efflux protein CydC by MTS1338. Gel-shift assay identified a stable interaction of MTS1338 with the coding region of cydC mRNA thereby potentially stabilizing it at the posttranscriptional level. The drug efflux measurement assays revealed that cells with higher MTS1338 abundance accumulate less drug in the cells. This study identified a new regulatory mechanism of drug efflux controlled by an infection-induced sRNA in M. tuberculosis.
Collapse
Affiliation(s)
| | - Tanmay Dutta
- RNA Biology Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
5
|
Taboada-Castro H, Hernández-Álvarez AJ, Escorcia-Rodríguez JM, Freyre-González JA, Galán-Vásquez E, Encarnación-Guevara S. Rhizobium etli CFN42 and Sinorhizobium meliloti 1021 bioinformatic transcriptional regulatory networks from culture and symbiosis. FRONTIERS IN BIOINFORMATICS 2024; 4:1419274. [PMID: 39263245 PMCID: PMC11387232 DOI: 10.3389/fbinf.2024.1419274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/24/2024] [Indexed: 09/13/2024] Open
Abstract
Rhizobium etli CFN42 proteome-transcriptome mixed data of exponential growth and nitrogen-fixing bacteroids, as well as Sinorhizobium meliloti 1021 transcriptome data of growth and nitrogen-fixing bacteroids, were integrated into transcriptional regulatory networks (TRNs). The one-step construction network consisted of a matrix-clustering analysis of matrices of the gene profile and all matrices of the transcription factors (TFs) of their genome. The networks were constructed with the prediction of regulatory network application of the RhizoBindingSites database (http://rhizobindingsites.ccg.unam.mx/). The deduced free-living Rhizobium etli network contained 1,146 genes, including 380 TFs and 12 sigma factors. In addition, the bacteroid R. etli CFN42 network contained 884 genes, where 364 were TFs, and 12 were sigma factors, whereas the deduced free-living Sinorhizobium meliloti 1021 network contained 643 genes, where 259 were TFs and seven were sigma factors, and the bacteroid Sinorhizobium meliloti 1021 network contained 357 genes, where 210 were TFs and six were sigma factors. The similarity of these deduced condition-dependent networks and the biological E. coli and B. subtilis independent condition networks segregates from the random Erdös-Rényi networks. Deduced networks showed a low average clustering coefficient. They were not scale-free, showing a gradually diminishing hierarchy of TFs in contrast to the hierarchy role of the sigma factor rpoD in the E. coli K12 network. For rhizobia networks, partitioning the genome in the chromosome, chromids, and plasmids, where essential genes are distributed, and the symbiotic ability that is mostly coded in plasmids, may alter the structure of these deduced condition-dependent networks. It provides potential TF gen-target relationship data for constructing regulons, which are the basic units of a TRN.
Collapse
Affiliation(s)
| | | | | | | | - Edgardo Galán-Vásquez
- Institute of Applied Mathematics and in Systems (IIMAS), National Autonomous University of México, Mexico City, Mexico
| | | |
Collapse
|
6
|
Pidot SJ, Klatt S, Ates LS, Frigui W, Sayes F, Majlessi L, Izumi H, Monk IR, Porter JL, Bennett-Wood V, Seemann T, Otter A, Taiaroa G, Cook GM, West N, Tobias NJ, Fuerst JA, Stutz MD, Pellegrini M, McConville M, Brosch R, Stinear TP. Marine sponge microbe provides insights into evolution and virulence of the tubercle bacillus. PLoS Pathog 2024; 20:e1012440. [PMID: 39207937 PMCID: PMC11361433 DOI: 10.1371/journal.ppat.1012440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Reconstructing the evolutionary origins of Mycobacterium tuberculosis, the causative agent of human tuberculosis, has helped identify bacterial factors that have led to the tubercle bacillus becoming such a formidable human pathogen. Here we report the discovery and detailed characterization of an exceedingly slow growing mycobacterium that is closely related to M. tuberculosis for which we have proposed the species name Mycobacterium spongiae sp. nov., (strain ID: FSD4b-SM). The bacterium was isolated from a marine sponge, taken from the waters of the Great Barrier Reef in Queensland, Australia. Comparative genomics revealed that, after the opportunistic human pathogen Mycobacterium decipiens, M. spongiae is the most closely related species to the M. tuberculosis complex reported to date, with 80% shared average nucleotide identity and extensive conservation of key M. tuberculosis virulence factors, including intact ESX secretion systems and associated effectors. Proteomic and lipidomic analyses showed that these conserved systems are functional in FSD4b-SM, but that it also produces cell wall lipids not previously reported in mycobacteria. We investigated the virulence potential of FSD4b-SM in mice and found that, while the bacteria persist in lungs for 56 days after intranasal infection, no overt pathology was detected. The similarities with M. tuberculosis, together with its lack of virulence, motivated us to investigate the potential of FSD4b-SM as a vaccine strain and as a genetic donor of the ESX-1 genetic locus to improve BCG immunogenicity. However, neither of these approaches resulted in superior protection against M. tuberculosis challenge compared to BCG vaccination alone. The discovery of M. spongiae adds to our understanding of the emergence of the M. tuberculosis complex and it will be another useful resource to refine our understanding of the factors that shaped the evolution and pathogenesis of M. tuberculosis.
Collapse
Affiliation(s)
- Sacha J. Pidot
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Stephan Klatt
- Department of Molecular Biology and Biochemistry, Bio21 Institute, University of Melbourne, Parkville, Australia
| | - Louis S. Ates
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Wafa Frigui
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Fadel Sayes
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Laleh Majlessi
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Hiroshi Izumi
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Ian R. Monk
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Jessica L. Porter
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Vicki Bennett-Wood
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Torsten Seemann
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Ashley Otter
- UK Health Security Agency, Porton Down, Salisbury, United Kingdom
| | - George Taiaroa
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Gregory M. Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Nicholas West
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Nicholas J. Tobias
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - John A. Fuerst
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Michael D. Stutz
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Marc Pellegrini
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Malcolm McConville
- Department of Molecular Biology and Biochemistry, Bio21 Institute, University of Melbourne, Parkville, Australia
| | - Roland Brosch
- Institut Pasteur, Université Paris Cité, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| |
Collapse
|
7
|
Filipek J, Chalaskiewicz K, Kosmider A, Nielipinski M, Michalak A, Bednarkiewicz M, Goslawski-Zeligowski M, Prucnal F, Sekula B, Pietrzyk-Brzezinska AJ. Comprehensive structural overview of the C-terminal ligand-binding domains of the TetR family regulators. J Struct Biol 2024; 216:108071. [PMID: 38401830 DOI: 10.1016/j.jsb.2024.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
TetR family regulators (TFRs) represent a large group of one-component bacterial signal transduction systems which recognize environmental signals, like the presence of antibiotics or other bactericidal compounds, and trigger the cell response by regulating the expression of genes that secure bacterial survival in harsh environmental conditions. TFRs act as homodimers, each protomer is composed of a conserved DNA-binding N-terminal domain (NTD) and a variable ligand-binding C-terminal domain (CTD). Currently, there are about 500 structures of TFRs available in the Protein Data Bank and one-fourth of them represent the structures of TFR-ligand complexes. In this review, we summarized information on the ligands interacting with TFRs and based on structural data, we compared the CTDs of the TFR family members, as well as their ligand-binding cavities. Additionally, we divided the whole TFR family, including more than half of a million sequences, into subfamilies according to calculated multiple sequence alignment and phylogenetic tree. We also highlighted structural elements characteristic of some of the subfamilies. The presented comprehensive overview of the TFR CTDs provides good bases and future directions for further studies on TFRs that are not only important targets for battling multidrug resistance but also good candidates for many biotechnological approaches, like TFR-based biosensors.
Collapse
Affiliation(s)
- Jakub Filipek
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Katarzyna Chalaskiewicz
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland; Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, Lodz 90-537, Poland
| | - Aleksandra Kosmider
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Maciej Nielipinski
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland; Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, Lodz 90-537, Poland
| | - Agnieszka Michalak
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Maria Bednarkiewicz
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Mieszko Goslawski-Zeligowski
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Filip Prucnal
- Biotechnology Students Association Ferment, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Bartosz Sekula
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, Lodz 90-537, Poland
| | - Agnieszka J Pietrzyk-Brzezinska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, Lodz 90-537, Poland.
| |
Collapse
|
8
|
Qian W, Ma N, Zeng X, Shi M, Wang M, Yang Z, Tsui SKW. Identification of novel single nucleotide variants in the drug resistance mechanism of Mycobacterium tuberculosis isolates by whole-genome analysis. BMC Genomics 2024; 25:478. [PMID: 38745294 PMCID: PMC11094924 DOI: 10.1186/s12864-024-10390-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Tuberculosis (TB) represents a major global health challenge. Drug resistance in Mycobacterium tuberculosis (MTB) poses a substantial obstacle to effective TB treatment. Identifying genomic mutations in MTB isolates holds promise for unraveling the underlying mechanisms of drug resistance in this bacterium. METHODS In this study, we investigated the roles of single nucleotide variants (SNVs) in MTB isolates resistant to four antibiotics (moxifloxacin, ofloxacin, amikacin, and capreomycin) through whole-genome analysis. We identified the drug-resistance-associated SNVs by comparing the genomes of MTB isolates with reference genomes using the MuMmer4 tool. RESULTS We observed a strikingly high proportion (94.2%) of MTB isolates resistant to ofloxacin, underscoring the current prevalence of drug resistance in MTB. An average of 3529 SNVs were detected in a single ofloxacin-resistant isolate, indicating a mutation rate of approximately 0.08% under the selective pressure of ofloxacin exposure. We identified a set of 60 SNVs associated with extensively drug-resistant tuberculosis (XDR-TB), among which 42 SNVs were non-synonymous mutations located in the coding regions of nine key genes (ctpI, desA3, mce1R, moeB1, ndhA, PE_PGRS4, PPE18, rpsA, secF). Protein structure modeling revealed that SNVs of three genes (PE_PGRS4, desA3, secF) are close to the critical catalytic active sites in the three-dimensional structure of the coding proteins. CONCLUSION This comprehensive study elucidates novel resistance mechanisms in MTB against antibiotics, paving the way for future design and development of anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Weiye Qian
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Nan Ma
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xi Zeng
- Agricultural Bioinformatics Key Laboratory of Hubei Province and 3D Genomics Research Centre, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mai Shi
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mingqiang Wang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Zhiyuan Yang
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, 310018, China.
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
9
|
Niculescu AG, Mük GR, Avram S, Vlad IM, Limban C, Nuta D, Grumezescu AM, Chifiriuc MC. Novel strategies based on natural products and synthetic derivatives to overcome resistance in Mycobacterium tuberculosis. Eur J Med Chem 2024; 269:116268. [PMID: 38460268 DOI: 10.1016/j.ejmech.2024.116268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/09/2024] [Accepted: 02/18/2024] [Indexed: 03/11/2024]
Abstract
One of the biggest health challenges of today's world is the emergence of antimicrobial resistance (AMR), which renders conventional therapeutics insufficient and urgently demands the generation of novel antimicrobial strategies. Mycobacterium tuberculosis (M. tuberculosis), the pathogen causing tuberculosis (TB), is among the most successful bacteria producing drug-resistant infections. The versatility of M. tuberculosis allows it to evade traditional anti-TB agents through various acquired and intrinsic mechanisms, rendering TB among the leading causes of infectious disease-related mortality. In this context, researchers worldwide focused on establishing novel approaches to address drug resistance in M. tuberculosis, developing diverse alternative treatments with varying effectiveness and in different testing phases. Overviewing the current progress, this paper aims to briefly present the mechanisms involved in M. tuberculosis drug-resistance, further reviewing in more detail the under-development antibiotics, nanotechnological approaches, and natural therapeutic solutions that promise to overcome current treatment limitations.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest, University of Bucharest, 90 Panduri Road, Bucharest, Romania; Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061, Bucharest, Romania.
| | - Georgiana Ramona Mük
- Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, Bucharest, R-050095, Romania; St. Stephen's Pneumoftiziology Hospital, Șoseaua Ștefan cel Mare 11, Bucharest, 020122, Romania.
| | - Speranta Avram
- Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, Bucharest, R-050095, Romania.
| | - Ilinca Margareta Vlad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia, 020956, Bucharest, Romania.
| | - Carmen Limban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia, 020956, Bucharest, Romania.
| | - Diana Nuta
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia, 020956, Bucharest, Romania.
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest, University of Bucharest, 90 Panduri Road, Bucharest, Romania; Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061, Bucharest, Romania.
| | - Mariana-Carmen Chifiriuc
- Research Institute of the University of Bucharest, University of Bucharest, 90 Panduri Road, Bucharest, Romania; Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, Bucharest, R-050095, Romania.
| |
Collapse
|
10
|
Dheda K, Mirzayev F, Cirillo DM, Udwadia Z, Dooley KE, Chang KC, Omar SV, Reuter A, Perumal T, Horsburgh CR, Murray M, Lange C. Multidrug-resistant tuberculosis. Nat Rev Dis Primers 2024; 10:22. [PMID: 38523140 DOI: 10.1038/s41572-024-00504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/26/2024]
Abstract
Tuberculosis (TB) remains the foremost cause of death by an infectious disease globally. Multidrug-resistant or rifampicin-resistant TB (MDR/RR-TB; resistance to rifampicin and isoniazid, or rifampicin alone) is a burgeoning public health challenge in several parts of the world, and especially Eastern Europe, Russia, Asia and sub-Saharan Africa. Pre-extensively drug-resistant TB (pre-XDR-TB) refers to MDR/RR-TB that is also resistant to a fluoroquinolone, and extensively drug-resistant TB (XDR-TB) isolates are additionally resistant to other key drugs such as bedaquiline and/or linezolid. Collectively, these subgroups are referred to as drug-resistant TB (DR-TB). All forms of DR-TB can be as transmissible as rifampicin-susceptible TB; however, it is more difficult to diagnose, is associated with higher mortality and morbidity, and higher rates of post-TB lung damage. The various forms of DR-TB often consume >50% of national TB budgets despite comprising <5-10% of the total TB case-load. The past decade has seen a dramatic change in the DR-TB treatment landscape with the introduction of new diagnostics and therapeutic agents. However, there is limited guidance on understanding and managing various aspects of this complex entity, including the pathogenesis, transmission, diagnosis, management and prevention of MDR-TB and XDR-TB, especially at the primary care physician level.
Collapse
Affiliation(s)
- Keertan Dheda
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa.
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK.
| | - Fuad Mirzayev
- Global Tuberculosis Programme, WHO, Geneva, Switzerland
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute Milan, Milan, Italy
| | - Zarir Udwadia
- Department of Pulmonology, Hinduja Hospital & Research Center, Mumbai, India
| | - Kelly E Dooley
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kwok-Chiu Chang
- Tuberculosis and Chest Service, Centre for Health Protection, Department of Health, Hong Kong, SAR, China
| | - Shaheed Vally Omar
- Centre for Tuberculosis, National & WHO Supranational TB Reference Laboratory, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- Department of Molecular Medicine & Haematology, School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Anja Reuter
- Sentinel Project on Paediatric Drug-Resistant Tuberculosis, Boston, MA, USA
| | - Tahlia Perumal
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - C Robert Horsburgh
- Department of Epidemiology, Boston University Schools of Public Health and Medicine, Boston, MA, USA
| | - Megan Murray
- Department of Epidemiology, Harvard Medical School, Boston, MA, USA
| | - Christoph Lange
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), TTU-TB, Borstel, Germany
- Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany
- Department of Paediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
11
|
Wu Y, Zhu L, Zhang Y, Xu W. Multidimensional Applications and Challenges of Riboswitches in Biosensing and Biotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304852. [PMID: 37658499 DOI: 10.1002/smll.202304852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/15/2023] [Indexed: 09/03/2023]
Abstract
Riboswitches have received significant attention over the last two decades for their multiple functionalities and great potential for applications in various fields. This article highlights and reviews the recent advances in biosensing and biotherapy. These fields involve a wide range of applications, such as food safety detection, environmental monitoring, metabolic engineering, live cell imaging, wearable biosensors, antibacterial drug targets, and gene therapy. The discovery, origin, and optimization of riboswitches are summarized to help readers better understand their multidimensional applications. Finally, this review discusses the multidimensional challenges and development of riboswitches in order to further expand their potential for novel applications.
Collapse
Affiliation(s)
- Yifan Wu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Yangzi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| |
Collapse
|
12
|
Pandey M, Talwar S, Pal R, Nain V, Johri S, Singhal A, Pandey AK. Transcription factor mce3R modulates antibiotics and disease persistence in Mycobacteriumtuberculosis. Res Microbiol 2023; 174:104082. [PMID: 37244349 DOI: 10.1016/j.resmic.2023.104082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
Transcription factors (TFs) of Mycobacterium tuberculosis (Mtb), an etiological agent of tuberculosis, regulate a network of pathways that help prolong the survival of Mtb inside the host. In this study, we have characterized a transcription repressor gene (mce3R) from the TetR family, that encodes for Mce3R protein in Mtb. We demonstrated that the mce3R gene is dispensable for the growth of Mtb on cholesterol. Gene expression analysis suggests that the transcription of genes belonging to the mce3R regulon is independent of the carbon source. We found that, in comparison to the wild type, the mce3R deleted strain (Δmce3R) generated more intracellular ROS and demonstrated reduced susceptibility to oxidative stress. Total lipid analysis suggests that mce3R regulon encoded proteins modulate the biosynthesis of cell wall lipids in Mtb. Interestingly, the absence of Mce3R increased the frequency of generation of antibiotic persisters in Mtb and imparted in-vivo growth advantage phenotype in guinea pigs. In conclusion, genes belonging to the mce3R regulon modulate the frequency of generation of persisters in Mtb. Hence, targeting mce3R regulon encoded proteins could potentiate the current regimen by eliminating persisters during Mtb infection.
Collapse
Affiliation(s)
- Manitosh Pandey
- Mycobacterial Pathogenesis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India; Department of Life Science, ITM University, Gwalior, Madhya Pradesh, India
| | - Sakshi Talwar
- Mycobacterial Pathogenesis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Rahul Pal
- Mycobacterial Pathogenesis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Vaibhav Nain
- Mycobacterial Pathogenesis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Sonia Johri
- Department of Life Science, ITM University, Gwalior, Madhya Pradesh, India
| | - Amit Singhal
- Infectious Diseases Labs (ID Labs), Agency for Science Technology and Research (A∗STAR), Singapore 138648, Republic of Singapore; Singapore Immunology Network (SIgN), A∗STAR, Singapore 138648, Republic of Singapore
| | - Amit Kumar Pandey
- Mycobacterial Pathogenesis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India.
| |
Collapse
|
13
|
Dey U, Olymon K, Banik A, Abbas E, Yella VR, Kumar A. DNA structural properties of DNA binding sites for 21 transcription factors in the mycobacterial genome. Front Cell Infect Microbiol 2023; 13:1147544. [PMID: 37396305 PMCID: PMC10312376 DOI: 10.3389/fcimb.2023.1147544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/19/2023] [Indexed: 07/04/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, has evolved over time into a multidrug resistance strain that poses a serious global pandemic health threat. The ability to survive and remain dormant within the host macrophage relies on multiple transcription factors contributing to virulence. To date, very limited structural insights from crystallographic and NMR studies are available for TFs and TF-DNA binding events. Understanding the role of DNA structure in TF binding is critical to deciphering MTB pathogenicity and has yet to be resolved at the genome scale. In this work, we analyzed the compositional and conformational preference of 21 mycobacterial TFs, evident at their DNA binding sites, in local and global scales. Results suggest that most TFs prefer binding to genomic regions characterized by unique DNA structural signatures, namely, high electrostatic potential, narrow minor grooves, high propeller twist, helical twist, intrinsic curvature, and DNA rigidity compared to the flanking sequences. Additionally, preference for specific trinucleotide motifs, with clear periodic signals of tetranucleotide motifs, are observed in the vicinity of the TF-DNA interactions. Altogether, our study reports nuanced DNA shape and structural preferences of 21 TFs.
Collapse
Affiliation(s)
- Upalabdha Dey
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Kaushika Olymon
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Anikesh Banik
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Eshan Abbas
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Venkata Rajesh Yella
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, India
| | - Aditya Kumar
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| |
Collapse
|
14
|
Vatlin AA, Bekker OB, Shur KV, Ilyasov RA, Shatrov PA, Maslov DA, Danilenko VN. Kanamycin and Ofloxacin Activate the Intrinsic Resistance to Multiple Antibiotics in Mycobacterium smegmatis. BIOLOGY 2023; 12:biology12040506. [PMID: 37106707 PMCID: PMC10135989 DOI: 10.3390/biology12040506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/16/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023]
Abstract
Drug resistance (DR) in Mycobacterium tuberculosis is the main problem in fighting tuberculosis (TB). This pathogenic bacterium has several types of DR implementation: acquired and intrinsic DR. Recent studies have shown that exposure to various antibiotics activates multiple genes, including genes responsible for intrinsic DR. To date, there is evidence of the acquisition of resistance at concentrations well below the standard MICs. In this study, we aimed to investigate the mechanism of intrinsic drug cross-resistance induction by subinhibitory concentrations of antibiotics. We showed that pretreatment of M. smegmatis with low doses of antibiotics (kanamycin and ofloxacin) induced drug resistance. This effect may be caused by a change in the expression of transcriptional regulators of the mycobacterial resistome, in particular the main transcriptional regulator whiB7.
Collapse
|
15
|
Wei W, Jiang X, Zhang L, Yan Y, Yan J, Xu L, Gao CH, Yang M. Regulation of CRISPR-Associated Genes by Rv1776c (CasR) in Mycobacterium tuberculosis. Biomolecules 2023; 13:biom13020400. [PMID: 36830769 PMCID: PMC9953421 DOI: 10.3390/biom13020400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/07/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
The CRISPR-Cas system is an adaptive immune system for many bacteria and archaea to defend against foreign nucleic acid invasion, and this system is conserved in the genome of M. tuberculosis (Mtb). Although the CRISPR-Cas system-mediated immune defense mechanism has been revealed in Mtb, the regulation of cas gene expression is poorly understood. In this study, we identified a transcription factor, CasR (CRISPR-associated protein repressor, encoded by Rv1776c), and it could bind to the upstream DNA sequence of the CRISPR-Cas gene cluster and regulate the expression of cas genes. EMSA and ChIP assays confirmed that CasR could interact with the upstream sequence of the csm6 promoter, both in vivo and in vitro. Furthermore, DNA footprinting assay revealed that CasR recognized a 20 bp palindromic sequence motif and negatively regulated the expression of csm6. In conclusion, our research elucidates the regulatory effect of CasR on the expression of CRISPR-associated genes in mycobacteria, thus providing insight into gene expression regulation of the CRISPR-Cas system.
Collapse
Affiliation(s)
- Wenping Wei
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaofang Jiang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Correspondence: (Y.Y.); (M.Y.)
| | - Jinyong Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chun-Hui Gao
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Correspondence: (Y.Y.); (M.Y.)
| |
Collapse
|