1
|
Fierros CH, Faucillion ML, Hahn BL, Anderson P, Bonde M, Kessler JR, Surdel MC, Crawford KS, Gao Y, Zhu J, Bergström S, Coburn J. Borrelia burgdorferi tolerates alteration to P66 porin function in a murine infectivity model. Front Cell Infect Microbiol 2025; 14:1528456. [PMID: 39906208 PMCID: PMC11790652 DOI: 10.3389/fcimb.2024.1528456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/26/2024] [Indexed: 02/06/2025] Open
Abstract
Borrelia burgdorferi exists in a complex enzootic life cycle requiring differential gene regulation. P66, a porin and adhesin, is upregulated and essential during mammalian infection, but is not produced or required within the tick vector. We sought to determine whether the porin function of P66 is essential for infection. Vancomycin treatment of B. burgdorferi cultures was used to screen for P66 porin function and found to generate spontaneous mutations in p66 (bb0603). Three novel, spontaneous, missense P66 mutants (G175V, T176M, and G584R) were re-created by site-directed mutagenesis in an infectious strain background and tested for infectivity in mice by ID50 experiments. Two of the three mutants retained infectivity comparable to the isogenic control, suggesting that B. burgdorferi can tolerate alteration to P66 porin function during infection. The third mutant exhibited highly attenuated infectivity and produced low levels of P66 protein. Interestingly, four isolates that were recovered for p66 sequencing from mouse tissues revealed novel secondary point mutations in genomic p66. However, these secondary mutations did not rescue P66 porin function. New structural modeling of P66 is presented and consistent with these experimental results. This is the first work to assess the contribution of P66 porin function to B. burgdorferi pathogenesis.
Collapse
Affiliation(s)
- Christa H. Fierros
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Beth L. Hahn
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Phillip Anderson
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Mari Bonde
- Department of Molecular Biology, Umeå University, Umea, Sweden
| | - Julie R. Kessler
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Matthew C. Surdel
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kyler S. Crawford
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yan Gao
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jieqing Zhu
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biochemistry, Medical College of Wisconsin, Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Sven Bergström
- Department of Molecular Biology, Umeå University, Umea, Sweden
| | - Jenifer Coburn
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
2
|
Bowen HG, Kenedy MR, Johnson DK, MacKerell AD, Akins DR. Identification of a novel transport system in Borrelia burgdorferi that links the inner and outer membranes. Pathog Dis 2023; 81:ftad014. [PMID: 37385817 PMCID: PMC10353723 DOI: 10.1093/femspd/ftad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023] Open
Abstract
Borrelia burgdorferi, the spirochete that causes Lyme disease, is a diderm organism that is similar to Gram-negative organisms in that it contains both an inner and outer membrane. Unlike typical Gram-negative organisms, however, B. burgdorferi lacks lipopolysaccharide (LPS). Using computational genome analyses and structural modeling, we identified a transport system containing six proteins in B. burgdorferi that are all orthologs to proteins found in the lipopolysaccharide transport (LPT) system that links the inner and outer membranes of Gram-negative organisms and is responsible for placing LPS on the surface of these organisms. While B. burgdorferi does not contain LPS, it does encode over 100 different surface-exposed lipoproteins and several major glycolipids, which like LPS are also highly amphiphilic molecules, though no system to transport these molecules to the borrelial surface is known. Accordingly, experiments supplemented by molecular modeling were undertaken to determine whether the orthologous LPT system identified in B. burgdorferi could transport lipoproteins and/or glycolipids to the borrelial outer membrane. Our combined observations strongly suggest that the LPT transport system does not transport lipoproteins to the surface. Molecular dynamic modeling, however, suggests that the borrelial LPT system could transport borrelial glycolipids to the outer membrane.
Collapse
Affiliation(s)
- Hannah G Bowen
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 1053 Oklahoma City, OK 73104, United States
| | - Melisha R Kenedy
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 1053 Oklahoma City, OK 73104, United States
| | - David K Johnson
- Shenkel Structural Biology Center, Molecular Graphics and Modeling Laboratory and the Computational Biology Core, University of Kansas, 2034 Becker Drive Lawrence, Kansas 66047, United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore 20 North Pine Street Baltimore, Maryland 21201, United States
| | - Darrin R Akins
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 1053 Oklahoma City, OK 73104, United States
| |
Collapse
|
3
|
Golidonova K, Korenberg E, Krupinskaya E, Matrosova V, Gintsburg A. Allelic Variants of P66 Gene in Borrelia bavariensis Isolates from Patients with Ixodid Tick-Borne Borreliosis. Microorganisms 2022; 10:microorganisms10122509. [PMID: 36557762 PMCID: PMC9782215 DOI: 10.3390/microorganisms10122509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Protein P66 is one of the crucial virulence factors of Borrelia, inducing the production of specific antibodies in patients with ixodid tick-borne borreliosis (ITBB). Various species of Borrelia are characterized by genetic variability of the surface-exposed loop of P66. However, little is known about this variability in Borrelia bavariensis. Here we describe the variability of the nucleotide sequences of P66 gene locus in isolates of B. bavariensis. Analysis of nucleotide sequences of P66 in 27 isolates of B. bavariensis from ITBB patients revealed three allelic variants of this gene. The alignment score of amino acid sequences in the isolates showed amino acid replacements in various positions confirming the presence of three allelic variants. Two of them are characteristic only for some isolates of B. bavariensis of the Eurasian gene pool from various parts of the geographic ranges of B. bavariensis from various samples. At least three allelic variants of P66 B. bavariensis have been identified, which have different amino acid expression, occur with different frequency in ITBB patients and, presumably, can have different effects on the course of the infection.
Collapse
Affiliation(s)
- Kristina Golidonova
- N. F. Gamaleya National Research Centre for Epidemiology and Microbiology, 123098 Moscow, Russia
- Correspondence: ; Tel.: +7-985-337-01-85
| | - Eduard Korenberg
- N. F. Gamaleya National Research Centre for Epidemiology and Microbiology, 123098 Moscow, Russia
| | - Ekaterina Krupinskaya
- N. F. Gamaleya National Research Centre for Epidemiology and Microbiology, 123098 Moscow, Russia
| | - Vera Matrosova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander Gintsburg
- N. F. Gamaleya National Research Centre for Epidemiology and Microbiology, 123098 Moscow, Russia
| |
Collapse
|