1
|
Xie L, Chen Q, Xu H, Li C, Lu J, Zhu Y. The research progress on periodontitis by the National Natural Science Foundation of China. Int J Oral Sci 2025; 17:44. [PMID: 40461458 PMCID: PMC12134109 DOI: 10.1038/s41368-025-00371-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 06/11/2025] Open
Abstract
Periodontitis has emerged as one of the most critical oral diseases, and research on this condition holds great importance for the advancement of stomatology. As the most authoritative national scientific research funding institution in China, the National Natural Science Foundation of China (NSFC) has played a pivotal role in driving the progress of periodontal science by supporting research on periodontitis. This article provides a comprehensive review of the research and development progress related to periodontitis in China from 2014 to 2023, highlighting the significant contributions of the NSFC to this field. We have summarized the detailed funding information from the NSFC, including the number of applicant codes, funded programs and the distribution of funded scholars. These data illustrate the efforts of the NSFC in cultivating young scientists and building research groups to address key challenges in national scientific research. This study offers an overview of the current hot topics, recent breakthroughs and future research prospects related to periodontitis in China.
Collapse
Affiliation(s)
- Liang Xie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences & West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China
| | - Qian Chen
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Hao Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cui Li
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China
| | - Jiayu Lu
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China.
| | - Yuangui Zhu
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China.
| |
Collapse
|
2
|
Wu Z, Li C, Yan Y, Zhang L. Causal relationship between cheese intake and periodontal diseases: A two-sample Mendelian randomization study. Medicine (Baltimore) 2025; 104:e42417. [PMID: 40355212 PMCID: PMC12073860 DOI: 10.1097/md.0000000000042417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 04/23/2025] [Indexed: 05/14/2025] Open
Abstract
Dietary habits have been confirmed to affect periodontal disease, but whether cheese intake is associated with periodontal disease remains unclear. This study aims to explore the causal relationship between cheese intake and periodontal disease by Mendelian randomization (MR) analysis. genome-wide association study data from the UK Biobank was utilized. In order to reveal the causal relationship between exposure (cheese intake) and outcome (periodontal disease), and to ensure the reliability of the conclusions, single nucleotide polymorphisms were rigorously selected as instrumental variables to replace the exposure. The following methods were applied for MR analysis: the inverse-variance weighted (IVW), MR-Egger, weighted median, simple mode and weighted mode methods. Sensitivity analyses included heterogeneity test, horizontal pleiotropy test and leave-one-out method. The IVW method indicated that the risk of periodontal diseases decreased as cheese intake increases (OR = 0.545, 95% CI = 0.364-0.816, P = .0032). Sensitivity analyses revealed no statistical evidence of heterogeneity or horizontal pleiotropy, confirming the robustness of the results. Increased cheese intake may reduce the risk of periodontal disease. This study provides genetic evidence supporting the inclusion of cheese in the diet for periodontal disease. Further research is needed to confirm these findings in different populations and to understand the underlying mechanisms.
Collapse
Affiliation(s)
- Zhijie Wu
- School of Stomatology, Hainan Medical University (Hainan Academy of Medical Science), Haikou, China
| | - Chuanzhen Li
- Head and Neck Department, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yujuan Yan
- School of Stomatology, Hainan Medical University (Hainan Academy of Medical Science), Haikou, China
| | - Li Zhang
- School of Stomatology, Hainan Medical University (Hainan Academy of Medical Science), Haikou, China
| |
Collapse
|
3
|
Ye Z, Gao L, Guo Z, Wang Q. Oral and intestinal flora translocation and tumor development. J Cancer Res Ther 2025; 21:323-333. [PMID: 40317136 DOI: 10.4103/jcrt.jcrt_50_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/07/2025] [Indexed: 05/07/2025]
Abstract
ABSTRACT Cancer metastasis is the leading cause of death in patients. In recent years, there has been a growing recognition of the role of tumor-associated microflora in tumor metastasis. The connection between oral and gut microflora and the tumor microenvironment has also been extensively studied. The migration of oral and gut microflora is closely associated with tumor development. Although there is awareness regarding the significant impact of microbial communities on human health, the focus on their relationship with host organisms, particularly those related to tumor-associated microflora, remains inadequate. As an integral part of the body, the host microflora is crucial for regulating the cancer risk and preventing tumor recurrence. The oral-gut axis plays an indispensable role in human immunity, and many types of cancers, such as colorectal, pancreatic, and breast, are significantly influenced by their internal microbial communities. However, further exploration into the mechanisms underlying the role of the intratumoral microflora in cancer is necessary to achieve a comprehensive understanding. We have summarized and analyzed related articles in PubMed. This article reviews the impact of the oral-gut axis on the human immune system, explores the relationship between the translocation of the oral and intestinal flora and the tumor microenvironment, analyzes the specific mechanisms involved in the translocation of the oral and intestinal microflora during the evolution and progression of tumors, and elaborates on the correlations between the occurrence and development of tumors and the changes in the microflora. Finally, a summary of these abovementioned points is provided.
Collapse
Affiliation(s)
- Zhiyuan Ye
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Linglin Gao
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Zhi Guo
- Department of Hematology, The 6 Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Motosugi S, Takahashi N, Mineo S, Sato K, Tsuzuno T, Aoki-Nonaka Y, Nakajima N, Takahashi K, Sato H, Miyazawa H, Taniguchi K, Terai S, Tabeta K. Enrichment of Porphyromonas gingivalis in colonic mucosa-associated microbiota and its enhanced adhesion to epithelium in colorectal carcinogenesis: Insights from in vivo and clinical studies. PLoS One 2025; 20:e0320383. [PMID: 40131980 PMCID: PMC11936212 DOI: 10.1371/journal.pone.0320383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
OBJECTIVES The oral-gut axis is believed to play a role in the pathogenesis of colorectal cancer (CRC). Previous studies have demonstrated the transmission of oral microbiota to the gut, disrupting gut microbial balance and creating a protumorigenic microenvironment conducive to CRC progression. Fusobacterium nucleatum is a putative periodontal pathogen recognized as a specific bacterium that promotes CRC development. However, the possible involvement of other periodontal pathogens in CRC is poorly understood. This study aimed to explore the effects of ingested periodontal pathogens on experimental CRC in mice and elucidate the underlying mechanisms. METHODS In this study, experimental colitis-induced CRC mouse models were used. The mice were orally administered periodontal pathogens (Porphyromonas gingivalis and Prevotella intermedia) three times a week during the experimental period. The CRC severity between the P. gingivalis-treated and P. intermedia-treated groups was compared. Lumen-associated microbiota (LAM) and mucosa-associated microbiota (MAM) were analyzed in both mouse and human samples. In vitro studies were conducted using intestinal epithelial cells to explore the possible mechanisms by which the periodontal pathogens affect the CRC development. RESULTS The P. gingivalis-treated group exhibited significantly increased CRC severity compared to the other groups among azoxymethane/dextran sodium sulfate (AOM/DSS)-induced mouse models. The LAM and MAM exhibited distinct bacterial compositions, and P. gingivalis was enriched more in MAM than in LAM. In vitro adhesion assays revealed that P. gingivalis had higher adhesive capacity to intestinal epithelial cells than P. intermedia and indicated the possible involvement of gingipains in such a capacity. CONCLUSION P. gingivalis is enriched in MAM, and its subsequent adhesion to intestinal epithelial cells is potentially involved in the progression of CRC.
Collapse
Affiliation(s)
- Shunya Motosugi
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoki Takahashi
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shuhei Mineo
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Keisuke Sato
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takahiro Tsuzuno
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yukari Aoki-Nonaka
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Nao Nakajima
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazuya Takahashi
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroki Sato
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Haruna Miyazawa
- Clinical and Translational Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Koji Taniguchi
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Koichi Tabeta
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
5
|
Fan Y, Chen X, Shan T, Wang N, Han Q, Ren B, Cheng L. Polymicrobial interactions of Helicobacter pylori and its role in the process of oral diseases. J Oral Microbiol 2025; 17:2469896. [PMID: 40013013 PMCID: PMC11864007 DOI: 10.1080/20002297.2025.2469896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/12/2025] [Accepted: 02/14/2025] [Indexed: 02/28/2025] Open
Abstract
Objective Helicobacter pylori (H. pylori) infection affects approximately 50% of the global population. The predominant route of H. pylori transmission is through the oral pathway, making the oral cavity highly significant in its infection. This review focuses on the relationship between H. pylori and oral diseases, the influence of H. pylori infection on the oral microbiota, and the potential mechanisms involving certain oral pathogens. Method To identify relevant studies, we conducted searches in PubMed, Google Scholar using keywords such as "Helicobacter pylori," "oral diseases, " "oral microorganisms, " without any date restrictions. The retrieved publications were subject to a review. Results H. pylori infection is positively correlated with the occurrence of various oral diseases, such as dental caries, periodontitis, and oral lichen planus. H. pylori may affect the oral microbiota through various mechanisms, and there exists an interactive relationship between H. pylori and oral bacteria, including Streptococcus, Porphyromonas gingivalis (P. gingivalis), and Candida albicans (C. albicans). Conclusions H. pylori infection has a close relationship with certain oral diseases. H. pylori modulates oral microflora diversity and structure, while eradication therapy and medications have varying impacts on oral microbiota.
Collapse
Affiliation(s)
- Yufei Fan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xi Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tiantian Shan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Nanxi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qi Han
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Feng Z, Chen Z, Wang X, Zhou M, Liu S. Immune-Mediated Bidirectional Causality Between Inflammatory Bowel Disease and Chronic Periodontitis: Evidence from Mendelian Randomization and Integrative Bioinformatics Analysis. Biomedicines 2025; 13:476. [PMID: 40002889 PMCID: PMC11853167 DOI: 10.3390/biomedicines13020476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: A bidirectional association between inflammatory bowel disease (IBD) and periodontitis has been observed, yet their causal relationship remains unclear. This study aimed to investigate the potential causal links between these two inflammatory conditions through comprehensive genetic and molecular analyses. Methods: We conducted a bidirectional Mendelian randomization (MR) analysis integrated with bioinformatics approaches. The causal relationships were primarily evaluated using inverse variance weighting (IVW), complemented by multiple sensitivity analyses to assess the robustness of the findings. Additionally, we performed differential gene expression analysis using RNA sequencing data to identify co-expressed genes and shared inflammatory mediators between IBD and periodontitis, followed by pathway enrichment analysis. Results: Bidirectional MR analysis revealed significant causal associations between IBD and periodontitis (p-value < 0.05). Sensitivity analyses demonstrated the consistency of these findings, with no evidence of significant heterogeneity or horizontal pleiotropy (p-value > 0.05). Integrated bioinformatics analysis identified key immune regulators, particularly interleukin 1 beta (IL1B) and C-X-C motif chemokine receptor 4 (CXCR4), and inflammatory signaling pathways, including tumor necrosis factor (TNF-α) and interleukin 17 (IL17), as potential molecular mechanisms underlying the bidirectional relationship between these conditions. Conclusions: Our findings provide genetic evidence supporting a bidirectional causal relationship between IBD and periodontitis. Transcriptomic analysis revealed shared pathological mechanisms and identified crucial immune regulatory factors common to both diseases. These insights enhance our understanding of the molecular interplay between IBD and periodontitis, potentially informing new therapeutic strategies for both conditions.
Collapse
Affiliation(s)
| | | | | | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Z.F.); (Z.C.); (X.W.)
| | - Shupeng Liu
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Z.F.); (Z.C.); (X.W.)
| |
Collapse
|
7
|
Dong L, Ji Z, Hu J, Jiang Q, Wei W. Oral microbiota shifts following tooth loss affect gut health. BMC Oral Health 2025; 25:213. [PMID: 39930446 PMCID: PMC11808984 DOI: 10.1186/s12903-025-05581-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/30/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Tooth loss not only impairs oral function but also affects gut health by altering the host microbiota. Understanding the oral-gut axis can provide insights into systemic health implications following tooth loss. METHODS Using an animal model, we extracted the molars of C57 mice. Saliva and fecal samples were collected for 16S rRNA and metagenomic sequencing to analyze changes in the oral and gut microbiota. Pearson correlation analysis assessed the relationship between altered microbial communities. RESULTS The study found a significant reduction in oral microbiota diversity following tooth loss, with increased Proteobacteria and decreased Muribacter. Gut microbiota showed increased Firmicutes and decreased Bacteroidota. Correlations between oral and gut microbiota changes were observed, indicating a potential link between tooth loss and alterations in intestinal microbial balance. CONCLUSION In the mouse model, tooth loss disrupted the balance of the oral-gut microbiota, with potential implications for intestinal health. Although these findings are from a murine model, considering the existence of the oral-gut axis balance in the human body, it is reasonable to postulate that following tooth loss in humans, the health of the intestinal microecology may also warrant attention.
Collapse
Affiliation(s)
- Ling Dong
- Department of Prosthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhaoxin Ji
- Department of Prosthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Jiangqi Hu
- Department of Prosthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Qingsong Jiang
- Department of Prosthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China.
| | - Wei Wei
- Department of Prosthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
8
|
Zhu J, He M, Li S, Lei Y, Xiang X, Guo Z, Wang Q. Shaping oral and intestinal microbiota and the immune system during the first 1,000 days of life. Front Pediatr 2025; 13:1471743. [PMID: 39906673 PMCID: PMC11790674 DOI: 10.3389/fped.2025.1471743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025] Open
Abstract
The first 1, 000 days of life, from the fetal stage of a woman's pregnancy to 2 years of age after the baby is born, is a critical period for microbial colonization of the body and development of the immune system. The immune system and microbiota exhibit great plasticity at this stage and play a crucial role in subsequent development and future health. Two-way communication and interaction between immune system and microbiota is helpful to maintain human microecological balance and immune homeostasis. Currently, there is a growing interest in the important role of the microbiota in the newborn, and it is believed that the absence or dysbiosis of human commensal microbiota early in life can have lasting health consequences. Thus, this paper summarizes research advances in the establishment of the oral and intestinal microbiome and immune system in early life, emphasizing the substantial impact of microbiota diversity in the prenatal and early postnatal periods, and summarizes that maternal microbes, mode of delivery, feeding practices, antibiotics, probiotics, and the environment shape the oral and intestinal microbiota of infants in the first 1, 000 days of life and their association with the immune system.
Collapse
Affiliation(s)
- Jie Zhu
- Institute of Infection, Immunology and Tumor Microenvironment, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Mingxin He
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Simin Li
- Institute of Infection, Immunology and Tumor Microenvironment, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Yumeng Lei
- Institute of Infection, Immunology and Tumor Microenvironment, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaochen Xiang
- Institute of Infection, Immunology and Tumor Microenvironment, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Zhi Guo
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Mayta-Tovalino F, Espinoza-Carhuancho F, Huaman-De la Cruz M, Rodríguez AC, Calderon KLM. Scientometric Analysis of Research on Oral and Gut Microbiota and Periodontitis: Collaborative Networks, Emerging Patterns, Thematic Evolution. J Contemp Dent Pract 2025; 26:86-92. [PMID: 40254875 DOI: 10.5005/jp-journals-10024-3814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
AIM To perform a scientometric analysis of scientific literature related to microbiota and periodontitis. MATERIALS AND METHODS A search strategy was applied on 21 July 2024, identifying 1,069 papers from 408 different sources. However, nine articles could not be exported to SciVal due to incomplete metadata. The documents, including 722 articles, 282 reviews, 44 book chapters, among others, showed an annual growth rate of 7.53%. Bibliometrix and SciVal were used for data extraction and analysis. RESULTS A total of 1,069 papers from 408 different sources, published between 2019 and 2024, were identified. The most frequent terms in the research were "periodontitis", "oral microbiome", "microbiome", "periodontal disease", and "dysbiosis". According to Lotka's Law, most authors in the field contributed a small number of papers. The most cited journals in this field were "Frontiers in Cellular and Infection Microbiology", "Journal of Oral Microbiology", and "Periodontology 2000". Analysis of the thematic evolution shows an increasing intersection of topics in recent research, reflecting the multifaceted nature of periodontitis and its interaction with a variety of other health factors. CONCLUSION Research on periodontitis and microbiota is multifaceted, interacts with a variety of health factors, and shows a growing intersection of topics in recent research. CLINICAL SIGNIFICANCE This study presents a detailed review of the literature on gut microbiota and periodontitis, notes on current developments, and gives hints regarding still emerging themes. Its findings may serve to continue with future guidelines or research and to understand the relationship of gut microbiota with periodontitis. How to cite this article: Mayta-Tovalino F, Espinoza-Carhuancho F, Huaman-De la Cruz M, et al. Scientometric Analysis of Research on Oral and Gut Microbiota and Periodontitis: Collaborative Networks, Emerging Patterns, Thematic Evolution. J Contemp Dent Pract 2025;26(1):86-92.
Collapse
Affiliation(s)
- Frank Mayta-Tovalino
- Academic Department, Vicerectorado de Investigacion, Universidad San Ignacio de Loyola, Lima, Peru, Phone: +51 1 317 1023, e-mail:
| | - Fran Espinoza-Carhuancho
- Academic Department, Bibliometrics, Evidence Assessment and Systematic Reviews (BEERS) Group, Human Medicine Career, Universidad Cientifica del Sur, Lima, Peru
| | - Mabel Huaman-De la Cruz
- Academic Department, Faculty of Dentistry, Universidad Nacional Federico Villarreal, Lima, Peru
| | | | | |
Collapse
|
10
|
Wu Z, Chen J, Kong F, Zhang Y, Yi J, Li Y, Hu M, Wang D. Polypeptide of Inonotus hispidus extracts alleviates periodontitis through suppressing inflammatory bone loss. Int J Biol Macromol 2025; 287:138350. [PMID: 39645101 DOI: 10.1016/j.ijbiomac.2024.138350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
This study aimed to characterize and evaluate the effects of a novel polypeptide isolated from Inonotus hispidus (IH) against periodontitis. The polypeptides extracted and purified from the fruiting body of IH had a uniform molar mass, including 23 types of peptides. IH polypeptide (IHP) exerted antimicrobial activity against Porphyromonas gingivalis (P. gingivalis) by damaging the cell walls and membranes of microorganisms, disturbing energy metabolism, and regulating the expression of virulence factors. IHP significantly inhibited inflammation in lipopolysaccharides (LPS)-stimulated Raw264.7 cells evidenced by the regulation of inflammatory cytokine levels. In rats with ligature-induced periodontitis, IHP treatment ameliorated alveolar bone destruction and preserved the balance between oral flora and gut microbes. The interaction between oral and intestinal flora possibly affected the relevant metabolites. Proteomics combined with confirmation experiment revealed that the β-catenin/ nuclear factor-kappa B (NF-κB) signaling may be involved in IHP-mediated anti-periodontitis in rats, which helps reduce the secretion of pro-inflammatory factors and inhibit inflammatory osteoclastic response in the periodontal tissue. Additionally, IHP improved clinical parameters, including the plaque index (PLI), pocket depth (PD), bleeding on probing (BOP), and average probing depth in individuals with periodontitis. These findings augment the understanding of the potential role of IHP in treating periodontitis.
Collapse
Affiliation(s)
- Zhina Wu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Jianai Chen
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Fange Kong
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China 2 National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Yaqin Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | | | - Yutong Li
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China; School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Min Hu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
11
|
Zhong Y, Kang X, Bai X, Pu B, Smerin D, Zhao L, Xiong X. The Oral-Gut-Brain Axis: The Influence of Microbes as a Link of Periodontitis With Ischemic Stroke. CNS Neurosci Ther 2024; 30:e70152. [PMID: 39675010 DOI: 10.1111/cns.70152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/03/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024] Open
Abstract
Periodontitis, a non-communicable chronic inflammation disease resulting from dysbiosis of the oral microbiota, has been demonstrated to have a positive association with the risk of ischemic stroke (IS). The major periodontal pathogens contribute to the progression of stroke-related risk factors such as obesity, diabetes, atherosclerosis, and hypertension. Transcriptional changes in periodontitis pathogens have been detected in oral samples from stroke patients, suggesting a new conceptual framework involving microorganisms. The bidirectional regulation between the gut and the central nervous system (CNS) is mediated by interactions between intestinal microflora and brain cells. The connection between the oral cavity and gut through microbiota indicates that the oral microbial community may play a role in mediating complex communication between the oral cavity and the CNS; however, underlying mechanisms have yet to be fully understood. In this review, we present an overview of key concepts and potential mechanisms of interaction between the oral-gut-brain axis based on previous research, focusing on how the oral microbiome (especially the periodontal pathogens) impacts IS and its risk factors, as well as the mediating role of immune system homeostasis, and providing potential preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianhui Kang
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaofeng Bai
- Department of Oral and Maxillofacial Surgery, Stomatology Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Bei Pu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Daniel Smerin
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Liang Zhao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Yang C, Chen J, Zhao Y, Wu J, Xu Y, Xu J, Chen F, Chen Y, Chen N. Salivary exosomes exacerbate colitis by bridging the oral cavity and intestine. iScience 2024; 27:111061. [PMID: 39759079 PMCID: PMC11700645 DOI: 10.1016/j.isci.2024.111061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/18/2024] [Accepted: 09/24/2024] [Indexed: 01/07/2025] Open
Abstract
Inflammatory bowel disease (IBD) presents a range of extraintestinal manifestations, notably including oral cavity involvement. The mechanisms underlying oral-gut crosstalk in IBD are not fully understood. Exosomes, found in various body fluids such as saliva, play an unclear role in IBD that requires further exploration. In the dextran sulfate sodium (DSS) mouse model, salivary exosomes from patients with active IBD (active IBD-Sexos) exacerbated colitis, while those from IBD patients in remission (remission IBD-Sexos) did not. Possible reasons may include the regulation of macrophage polarization, disruption of intestinal epithelial function, and alteration of the intestinal flora. During co-culture with active IBD-Sexos, THP-1 cells exhibited inflammatory responses, while Caco-2 cells showed reduced tight junction protein expression. Additionally, 35 differentially expressed miRNAs were identified in active IBD-Sexos. In brief, our findings substantiate an intriguing phenomenon whereby active IBD-Sexos exacerbate colitis by bridging the oral cavity and intestine.
Collapse
Affiliation(s)
- Congyi Yang
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China
| | - Jingyi Chen
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China
| | - Yuzheng Zhao
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China
| | - Jushan Wu
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China
| | - Yalan Xu
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China
| | - Jun Xu
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China
| | - Feng Chen
- Central Laboratory, Peking University School of Stomatology, Beijing 100081, China
| | - Yang Chen
- Center for Precision Medicine Multi-Omics Research, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
| | - Ning Chen
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing 100044, China
| |
Collapse
|
13
|
Villoria GEM, Fischer RG, Tinoco EMB, Meyle J, Loos BG. Periodontal disease: A systemic condition. Periodontol 2000 2024; 96:7-19. [PMID: 39494478 PMCID: PMC11579822 DOI: 10.1111/prd.12616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024]
Abstract
For decades, periodontitis has been considered to be a local inflammatory disease of the periodontal tissues in the oral cavity. Initially, associations of periodontitis with a multitude of noncommunicable diseases were each studied separately, and relationships were shown. The associations of periodontitis with morbidities, such as cardiovascular diseases, rheumatoid arthritis, diabetes mellitus, respiratory diseases, have been demonstrated. As most such studies were cross-sectional in nature, questions about causality cannot be univocally answered. And periodontitis as an independent risk factor for one systemic disease, becomes even more difficult to assess since recently periodontitis has also been associated with multimorbidity. Periodontitis and many systemic diseases share environmental, lifestyle and genetic risk factors, and share immunopathology. Moreover, suffering from one common noncommunicable disease may increase the susceptibility for another such chronic disease; the systemic effects of one condition may be one of various risk factors for another such disease. The overarching effect of any systemic disease is it causing a pro-inflammatory state in the individual; this has also been shown for periodontitis. Moreover, in periodontitis a prothrombotic state and elevated immunological activity have been shown. As such, when we consider periodontal disease as another systemic disease, it can affect the susceptibility and progression of other systemic diseases, and importantly, vice versa. And with this, it is not surprising that periodontitis is associated with a variety of other noncommunicable diseases. The medical definition of a systemic disease includes diseases that affect different organs and systems. Thus, the aim of this opinion paper is to propose that periodontitis should be considered a systemic disease in its own right and that it affects the individual's systemic condition and wellbeing. The dental and medical profession and researchers alike, should adapt this paradigm shift, advancing periodontal disease out of its isolated anatomical location into the total of chronic noncommunicable diseases, being for some conditions a comorbid disease and, vice versa, comorbidities can affect initiation and progression of periodontal disease.
Collapse
Affiliation(s)
- German E. M. Villoria
- Department of Periodontology, School of DentistryRio de Janeiro State UniversityRio de JaneiroBrazil
- Department of Periodontology, School of DentistryFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Ricardo G. Fischer
- Department of Periodontology, School of DentistryRio de Janeiro State UniversityRio de JaneiroBrazil
| | - Eduardo M. B. Tinoco
- Department of Periodontology, School of DentistryRio de Janeiro State UniversityRio de JaneiroBrazil
| | - Joerg Meyle
- Dental SchoolUniversity of BerneBerneSwitzerland
| | - Bruno G. Loos
- Department of Periodontology, Academic Center for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
14
|
Sangalli L, Banday F, Sullivan A, Anjum K. Systemic Factors Affecting Prognosis and Outcomes in Periodontal Disease. Dent Clin North Am 2024; 68:571-602. [PMID: 39244245 DOI: 10.1016/j.cden.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
This review delves into the effects of autoimmune conditions like rheumatoid arthritis, inflammatory disorders such as irritable bowel syndrome, cardiovascular disease, diabetes, infectious ailments like human immunodeficiency virus, and their medications on periodontal therapy outcomes. It also explores the influence of hormones. Understanding these systemic factors is crucial for optimizing periodontal health and treatment efficacy. The review underscores the necessity of considering these variables in periodontal care. Other vital systemic factors are addressed elsewhere in this special edition.
Collapse
Affiliation(s)
- Linda Sangalli
- College of Dental Medicine, Midwestern University, 555 31st, Downers Grove, IL, USA
| | - Fatma Banday
- Rutgers School of Dental Medicine, 110 Bergen Street, Newark, NJ, USA
| | - Andrew Sullivan
- Rutgers School of Dental Medicine, 110 Bergen Street, Newark, NJ, USA
| | - Kainat Anjum
- Rutgers School of Dental Medicine, 110 Bergen Street, Newark, NJ, USA.
| |
Collapse
|
15
|
Sulaiman Y, Pacauskienė IM, Šadzevičienė R, Anuzyte R. Oral and Gut Microbiota Dysbiosis Due to Periodontitis: Systemic Implications and Links to Gastrointestinal Cancer: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1416. [PMID: 39336457 PMCID: PMC11433653 DOI: 10.3390/medicina60091416] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Periodontitis can disrupt oral and gut microbiota, leading to dysbiosis that affects overall systemic health. Besides the spread of periodontal pathogens by the hematogenous route, they can also be translocated into the gastrointestinal tract, possibly intervening in the neoplastic process in the gastrointestinal tract. This manuscript reviews the relationship between oral and gut microbiota due to periodontitis, discussing systemic health implications and potential links to gastrointestinal cancer. This article highlights the significance and effect of dysbiosis in the gut, emphasizing the importance of maintaining oral health to prevent systemic diseases. Lastly, it will go through therapeutic innovations such as probiotics and oral microbiota analysis tools for systemic disease detection. These findings will mark the integration of oral health management in clinical practice to lower systemic disease risk and improve overall patient outcomes. Aim of work: This manuscript aims to unravel the pathological interaction between oral and gut microbiota and their bidirectional effect on systemic diseases. Materials and methods: The review was performed using the MEDLINE and ScienceDirect databases. Reviewed articles were published in English between the year 2015 and 2024. The search used keywords such as ("oral microbiota" AND "periodontal disease") OR ("oral microbiota" AND "gastrointestinal cancer") OR ("Porphyromonas gingivalis" AND "periodontal disease") OR ("Helicobacter pylori" AND "gastric cancer") OR ("gut microbiome" AND "inflammatory bowel disease") OR ("oral microbiome" AND "systemic diseases"). Conclusions: The dysbiotic change in the oral cavity due to periodontitis is linked directly and indirectly to systemic diseases such as IBS, neurodegenerative diseases, muscle joint diseases, respiratory infections, and gastrointestinal cancer; this underscores the importance of maintaining oral hygiene for prophylaxis of oral diseases and the prevention of systemic diseases. A better understanding of the interconnections between oral health and systemic diseases will integrate oral health management to offer new prevention, diagnostic, and treatment opportunities to improve overall patient outcomes.
Collapse
Affiliation(s)
- Yaman Sulaiman
- Clinic of Dental and Oral Pathology, Faculty of Odontology, Medical Academy, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50161 Kaunas, Lithuania
| | - Ingrida Marija Pacauskienė
- Clinic of Dental and Oral Pathology, Faculty of Odontology, Medical Academy, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50161 Kaunas, Lithuania
| | - Renata Šadzevičienė
- Clinic of Dental and Oral Pathology, Faculty of Odontology, Medical Academy, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50161 Kaunas, Lithuania
| | - Rugile Anuzyte
- Clinic of Dental and Oral Pathology, Faculty of Odontology, Medical Academy, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50161 Kaunas, Lithuania
| |
Collapse
|
16
|
Wang A, Zhai Z, Ding Y, Wei J, Wei Z, Cao H. The oral-gut microbiome axis in inflammatory bowel disease: from inside to insight. Front Immunol 2024; 15:1430001. [PMID: 39131163 PMCID: PMC11310172 DOI: 10.3389/fimmu.2024.1430001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
Inflammatory bowel disease (IBD) is an idiopathic and persistent inflammatory illness of the bowels, leading to a substantial burden on both society and patients due to its high incidence and recurrence. The pathogenesis of IBD is multifaceted, partly attributed to the imbalance of immune responses toward the gut microbiota. There is a correlation between the severity of the disease and the imbalance in the oral microbiota, which has been discovered in recent research highlighting the role of oral microbes in the development of IBD. In addition, various oral conditions, such as angular cheilitis and periodontitis, are common extraintestinal manifestations (EIMs) of IBD and are associated with the severity of colonic inflammation. However, it is still unclear exactly how the oral microbiota contributes to the pathogenesis of IBD. This review sheds light on the probable causal involvement of oral microbiota in intestinal inflammation by providing an overview of the evidence, developments, and future directions regarding the relationship between oral microbiota and IBD. Changes in the oral microbiota can serve as markers for IBD, aiding in early diagnosis and predicting disease progression. Promising advances in probiotic-mediated oral microbiome modification and antibiotic-targeted eradication of specific oral pathogens hold potential to prevent IBD recurrence.
Collapse
Affiliation(s)
- Aili Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
- Department of Gastroenterology and Hepatology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Shandong, China
| | - Zihan Zhai
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
- Department of Gastroenterology and Hepatology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Shandong, China
| | - Yiyun Ding
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Jingge Wei
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Zhiqiang Wei
- Department of Orthodontics, Tianjin Stomatological Hospital School of Medicine, Nankai University, Tianjin, China
- Tianjin Key laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
17
|
Ding J, Li J, Zhang C, Tan L, Zhao C, Gao L. High-Throughput Combined Analysis of Saliva Microbiota and Metabolomic Profile in Chinese Periodontitis Patients: A Pilot Study. Inflammation 2024; 47:874-890. [PMID: 38148454 DOI: 10.1007/s10753-023-01948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023]
Abstract
The onset and progression of periodontitis involves complicated interactions between the dysbiotic oral microbiota and disrupted host immune-inflammatory response, which can be mirrored by the changes in salivary metabolites profile. This pilot study sought to examine the saliva microbiome and metabolome in the Chinese population by the combined approach of 16s rRNA sequencing and high-throughput targeted metabolomics to discover potential cues for host-microbe metabolic interactions. Unstimulated whole saliva samples were collected from eighteen Stage III and IV periodontitis patients and thirteen healthy subjects. Full-mouth periodontal parameters were recorded. The taxonomic composition of microbiota was obtained by 16s rRNA sequencing, and the metabolites were identified and measured by ultra-high performance liquid chromatography and mass spectrometry-based metabolomic analysis. The oral microbiota composition displayed marked changes where the abundance of 93 microbial taxa differed significantly between the periodontitis and healthy group. Targeted metabolomics identified 103 differential metabolites between the patients and healthy individuals. Functional enrichment analysis demonstrated the upregulation of protein digestion and absorption, histidine metabolism, and nicotinate and nicotinamide metabolism pathways in the dysbiotic microbiota, while the ferroptosis, tryptophan metabolism, glutathione metabolism, and carbon metabolism pathways were upregulated in the patients. Correlation analysis confirmed positive relationships between the clinical parameters, pathogen abundances, and disease-related metabolite levels. The integral analysis of the saliva microbiome and metabolome yielded an accurate presentation of the dysbiotic oral microbiome and functional alterations in host-microbe metabolism. The microbial and metabolic profiling of the saliva could be a potential tool in the diagnosis, prognosis evaluation, and pathogenesis study of periodontitis.
Collapse
Affiliation(s)
- Jing Ding
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Jinyu Li
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Chi Zhang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Lingping Tan
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Chuanjiang Zhao
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| | - Li Gao
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
18
|
Hang Z, Rouyi C, Sen L. Genetic evidence strengthens the connection between gut microbiota and gingivitis: a two-sample Mendelian randomization study. Front Cell Infect Microbiol 2024; 14:1380209. [PMID: 38812751 PMCID: PMC11133616 DOI: 10.3389/fcimb.2024.1380209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction The oral cavity and gut tract, being interconnected and rich in microbiota, may have a shared influence on gingivitis. However, the specific role of distinct gut microbiota taxa in gingivitis remains unexplored. Utilizing Mendelian Randomization (MR) as an ideal method for causal inference avoiding reverse causality and potential confounding factors, we conducted a comprehensive two-sample MR study to uncover the potential genetic causal impact of gut microbiota on gingivitis. Methods Instrumental variables were chosen from single nucleotide polymorphisms (SNPs) strongly associated with 418 gut microbiota taxa, involving 14,306 individuals. Gingivitis, with 4,120 cases and 195,395 controls, served as the outcome. Causal effects were assessed using random-effect inverse variance-weighted, weighted median, and MR-Egger methods. For replication and meta-analysis, gingivitis data from IEU OpenGWAS were employed. Sensitivity analyses included Cochran's Q tests, funnel plots, leave-one-out analyses, and MR-Egger intercept tests. This study aimed to assess the genetic correlation between the genetically predicted gut microbiota and gingivitis using linkage disequilibrium score regression (LDSC). Results Three gut microbiota taxa (class Actinobacteria id.419, family Defluviitaleaceae id.1924, genus Defluviitaleaceae UCG011 id.11287) are predicted to causally contribute to an increased risk of gingivitis (P< 0.05). Additionally, four gut microbiota taxa (class Actinobacteria id.419, genus Escherichia Shigella id.3504, genus Ruminococcaceae UCG002 id.11360) potentially exhibit inhibitory causal effects on the risk of gingivitis (P< 0.05). No significant evidence of heterogeneity or pleiotropy is detected. Our findings indicate a suggestive genetic correlation between class Actinobacteria id.419, class Bacteroidia id.912, family Defluviitaleaceae id.1924, genus Escherichia Shigella id.3504 and gingivitis. Conclusion Our study establishes the genetic causal effect of 418 gut microbiota taxa on gingivitis, offering insights for clinical interventions targeting gingivitis. Subsequent research endeavors are essential to corroborate the findings of our present study.
Collapse
Affiliation(s)
- Zhou Hang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Chen Rouyi
- The 1 School of Medicine, School of Information and Engineering, The 1 Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Sen
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
19
|
Shen S, Liu X, Huang J, Sun Y, Liu B, Song W, Meng L, Du M, Feng Q. Efficacy of a mouthwash containing ε-poly-L-lysine, funme peptides and domiphen in reducing halitosis and supragingival plaque: a randomized clinical trial. BMC Oral Health 2024; 24:525. [PMID: 38702623 PMCID: PMC11069150 DOI: 10.1186/s12903-024-04255-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/12/2024] [Indexed: 05/06/2024] Open
Abstract
OBJECTIVE To evaluate the antibacterial effectiveness of a combination of ε-poly-L-lysine (ε-PL), funme peptide (FP) as well as domiphen against oral pathogens, and assess the efficacy of a BOP® mouthwash supplemented with this combination in reducing halitosis and supragingival plaque in a clinical trial. MATERIALS AND METHODS The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the compound against Fusobacterium nucleatum, Porphyromonas gingivalis, Streptococcus mutans, and Aggregatibacter actinomycetemcomitans were determined by the gradient dilution method. Subsequently, the CCK-8 assay was used to detect the toxicity of mouthwash on human gingival fibroblastst, and the effectiveness in reducing halitosis and supragingival plaque of the mouthwash supplemented with the combination was analyzed by a randomized, double-blind, parallel-controlled clinical trial. RESULTS The combination exhibited significant inhibitory effects on tested oral pathogens with the MIC < 1.56% (v/v) and the MBC < 3.13% (v/v), and the mouthwash containing this combination did not inhibit the viability of human gingival fibroblasts at the test concentrations. The clinical trial showed that the test group displayed notably lower volatile sulfur compounds (VSCs) at 0, 10, 24 h, and 7 d post-mouthwash (P < 0.05), compared with the baseline. After 7 days, the VSC levels of the and control groups were reduced by 50.27% and 32.12%, respectively, and notably cutting severe halitosis by 57.03% in the test group. Additionally, the Plaque Index (PLI) of the test and control group decreased by 54.55% and 8.38%, respectively, and there was a significant difference in PLI between the two groups after 7 days (P < 0.01). CONCLUSIONS The combination of ε-PL, FP and domiphen demonstrated potent inhibitory and bactericidal effects against the tested oral pathogens, and the newly formulated mouthwash added with the combination exhibited anti-dental plaque and anti-halitosis properties in a clinical trial and was safe. TRIAL REGISTRATION The randomized controlled clinical trial was registered on Chinese Clinical Trial Registry (No. ChiCTR2300073816, Date: 21/07/2023).
Collapse
Affiliation(s)
- Song Shen
- Department of Human Microbiome & Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, China
| | - Xu Liu
- Shandong University-BOP Joint Oral Microbiome Laboratory, Shandong University, Jinan, 250012, China
| | - Jun Huang
- Shanghai Gemang Bio-Technology Co., Ltd, Shanghai, China
| | - Yi Sun
- Shanghai Gemang Bio-Technology Co., Ltd, Shanghai, China
| | - Bin Liu
- Shanghai Gemang Bio-Technology Co., Ltd, Shanghai, China
| | - Wenzhu Song
- Shandong University-BOP Joint Oral Microbiome Laboratory, Shandong University, Jinan, 250012, China
| | - Lei Meng
- Shandong University-BOP Joint Oral Microbiome Laboratory, Shandong University, Jinan, 250012, China
| | - Mi Du
- Department of Human Microbiome & Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, China.
| | - Qiang Feng
- Department of Human Microbiome & Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, China.
- Shandong University-BOP Joint Oral Microbiome Laboratory, Shandong University, Jinan, 250012, China.
| |
Collapse
|
20
|
Ozayzan FI, Albishri AA, Dallak AE, Al-Qahtani AS, Mushtaq MY, Dallak OE, Altalhi AM. Periodontitis and Inflammatory Bowel Disease: A Review. Cureus 2024; 16:e54584. [PMID: 38523972 PMCID: PMC10958135 DOI: 10.7759/cureus.54584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/26/2024] Open
Abstract
The complex relationship between periodontitis (PD) and inflammatory bowel disease (IBD) has received significant attention in recent studies. Emerging evidence suggests that the oral-gut axis plays a pivotal role in their interaction. This review provides a comprehensive, up-to-date analysis of original research from 2003 to 2023 on the PD-IBD relationship and aims to be a reference for future research. Relevant literature was sourced from the PubMed database using the keywords "periodontitis" and "inflammatory bowel disease". Additionally, a manual library search and a review of bibliographies were conducted. Of the 297 articles retrieved, 27 studies were chosen for final review. Out of these, 21 studies (78%), including both in vitro and in vivo research, indicated an association between PD and IBD. While many studies confirm a bi-directional relationship, others refute it or deem it clinically irrelevant. There is a need for more accessible studies, such as randomized trials, which also investigate the factors that could influence the outcomes to clarify the exact molecular mechanisms and clinical implications of this complex relationship.
Collapse
|
21
|
Ye X, Liu B, Bai Y, Cao Y, Lin S, Lyu L, Meng H, Dai Y, Ye D, Pan W, Wang Z, Mao Y, Chen Q. Genetic evidence strengthens the bidirectional connection between gut microbiota and periodontitis: insights from a two-sample Mendelian randomization study. J Transl Med 2023; 21:674. [PMID: 37770955 PMCID: PMC10537583 DOI: 10.1186/s12967-023-04559-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/22/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Recent research has established the correlation between gut microbiota and periodontitis via oral-gut axis. Intestinal dysbiosis may play a pivotal bridging role in extra-oral inflammatory comorbidities caused by periodontitis. However, it is unclear whether the link is merely correlative or orchestrated by causative mechanistic interactions. This two-sample Mendelian randomization (MR) study was performed to evaluate the potential bidirectional causal relationships between gut microbiota and periodontitis. MATERIALS AND METHODS A two-sample MR analysis was performed using summary statistics from genome-wide association studies (GWAS) for gut microbiota (n = 18,340) and periodontitis (cases = 12,251; controls = 22,845). The inverse-variance weighted (IVW) method was used for the primary analysis, and we employed sensitivity analyses to assess the robustness of the main results. The PhenoScanner database was then searched for pleiotropy SNPs associated with potential confounders. In order to identify the possibly influential SNPs, we further conducted the leave-one-out analysis. Finally, a reverse MR analysis was performed to evaluate the possibility of links between periodontitis and genetically predicted gut microbiota alternation. RESULTS 2,699 single nucleotide polymorphisms (SNPs) associated with 196 microbiota genera were selected as instrumental variables (IVs). IVW method suggested that order Enterobacteriales (OR: 1.35, 95% CI 1.10-1.66), family Bacteroidales S24.7group (OR: 1.22, 95% CI 1.05-1.41), genus Lachnospiraceae UCG008 (OR: 1.16, 95% CI 1.03-1.31), genus Prevotella 7 (OR: 1.11, 95% CI 1.01-1.23), and order Pasteurellales (OR: 1.12, 95% CI 1.00-1.26) may be associated with a higher risk of periodontitis, while genus Ruminiclostridium 6 may be linked to a lower risk (OR: 0.82, 95% CI 0.70-0.95). The sensitivity and heterogeneity analyses yielded no indication of horizontal pleiotropy or heterogeneity. Only the association between order Enterobacteriales and the likelihood of periodontitis remained consistent across all alternative MR approaches. In the reverse MR analysis, four microbiota genera were genetically predicted to be down-regulated in periodontitis, whereas two were predicted to be up-regulated. CONCLUSIONS The present MR analysis demonstrated the potential bidirectional causal relationships between gut microbiota and periodontitis. Our research provided fresh insights for the prevention and management of periodontitis. Future research is required to support the finding of our current study.
Collapse
Affiliation(s)
- Xinjian Ye
- School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, Cancer Center of Zhejiang University, Hangzhou, China
| | - Bin Liu
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yijing Bai
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yue Cao
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Sirui Lin
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Linshuoshuo Lyu
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, USA
| | - Haohao Meng
- School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yuwei Dai
- School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, Cancer Center of Zhejiang University, Hangzhou, China
| | - Ding Ye
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weiyi Pan
- School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, Cancer Center of Zhejiang University, Hangzhou, China
| | - Zhiyong Wang
- School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, Cancer Center of Zhejiang University, Hangzhou, China.
| | - Yingying Mao
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Qianming Chen
- School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, Cancer Center of Zhejiang University, Hangzhou, China.
| |
Collapse
|
22
|
Tada H, Nishioka T, Ishiyama R, Song LT, Onoue S, Kawahara K, Nemoto E, Matsushita K, Sugawara S. Macrophage migration inhibitory factor-mediated mast cell extracellular traps induce inflammatory responses upon Fusobacterium nucleatum infection. Biochem Biophys Res Commun 2023; 674:90-96. [PMID: 37413710 DOI: 10.1016/j.bbrc.2023.06.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/17/2023] [Indexed: 07/08/2023]
Abstract
Mast cell extracellular traps (MCETs) released by mast cells contribute to host defense. In this study, we investigated the effects of MCETs released from mast cells after infection with a periodontal pathogen Fusobacterium nucleatum. We found that F. nucleatum induced MCET release from mast cells, and that MCETs expressed macrophage migration inhibitory factor (MIF). Notably, MIF bound to MCETs induced proinflammatory cytokine production by monocytic cells. These findings suggest that MIF expressed on MCETs, released from mast cells upon infection with F. nucleatum, promotes inflammatory responses that may be associated with the pathogenesis of periodontal disease.
Collapse
Affiliation(s)
- Hiroyuki Tada
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan.
| | - Takashi Nishioka
- Liaison Center for Innovative Dentistry, Division of Advanced Education Development, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; Oral and Maxillofacial Radiology, Tohoku University Hospital, Sendai 980-8575, Japan
| | - Rina Ishiyama
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Li-Ting Song
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; Hospital of Stomatology, School of Dentistry, Tianjin Medical University, Tianjin 300070, China
| | - Sakura Onoue
- Department of Biosciences, College of Science and Engineering, Kanto Gakuin University, Yokohama 236-8501, Japan
| | - Kazuyoshi Kawahara
- Department of Biosciences, College of Science and Engineering, Kanto Gakuin University, Yokohama 236-8501, Japan
| | - Eiji Nemoto
- Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Kenji Matsushita
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Shunji Sugawara
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| |
Collapse
|
23
|
Luo S, Chen Z, Deng L, Chen Y, Zhou W, Canavese F, Li L. Causal Link between Gut Microbiota, Neurophysiological States, and Bone Diseases: A Comprehensive Mendelian Randomization Study. Nutrients 2023; 15:3934. [PMID: 37764718 PMCID: PMC10534888 DOI: 10.3390/nu15183934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Increasing evidence highlights a robust correlation between the gut microbiota and bone diseases; however, the existence of a causal relationship between them remains unclear. In this study, we thoroughly examined the correlation between gut microbiota and skeletal diseases using genome-wide association studies. Linkage disequilibrium score regression and Mendelian randomization were used to probe genetic causality. Furthermore, the potential mediating role of neuropsychological states (i.e., cognition, depression, and insomnia) between the gut microbiota and bone diseases was evaluated using mediation analysis, with genetic colocalization analysis revealing potential targets. These findings suggest a direct causal relationship between Ruminococcaceae and knee osteoarthritis (OA), which appears to be mediated by cognitive performance and insomnia. Similarly, a causal association was observed between Burkholderiales and lumbar pelvic fractures, mediated by cognitive performance. Colocalization analysis identified a shared causal variant (rs2352974) at the TRAF-interacting protein locus for cognitive ability and knee OA. This study provides compelling evidence that alterations in the gut microbiota can enhance cognitive ability, ameliorate insomnia, and potentially reduce the risk of site-specific fractures and OA. Therefore, strategies targeting gut microbiota optimization could serve as novel and effective preventive measures against fractures and OA.
Collapse
Affiliation(s)
- Shaoting Luo
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, China; (S.L.); (Y.C.); (W.Z.)
| | - Zhiyang Chen
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China;
| | - Linfang Deng
- Department of Nursing, Jinzhou Medical University, Jinzhou 121001, China
| | - Yufan Chen
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, China; (S.L.); (Y.C.); (W.Z.)
| | - Weizheng Zhou
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, China; (S.L.); (Y.C.); (W.Z.)
| | - Federico Canavese
- Department of Pediatric Orthopedic Surgery, Lille University Centre, Jeanne de Flandre Hospital, 59000 Lille, France;
| | - Lianyong Li
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, China; (S.L.); (Y.C.); (W.Z.)
| |
Collapse
|
24
|
Shang J, Liu H, Zheng Y, Zhang Z. Role of oxidative stress in the relationship between periodontitis and systemic diseases. Front Physiol 2023; 14:1210449. [PMID: 37501927 PMCID: PMC10369007 DOI: 10.3389/fphys.2023.1210449] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Periodontitis is a common inflammatory disease. It is characterized by destruction of the supporting structures of the teeth and could lead to tooth loss and systemic inflammation. Bacteria in inflamed gingival tissue and virulence factors are capable of entering the bloodstream to induce systemic inflammatory response, thus influencing the pathological process of many diseases, such as cardiovascular diseases, diabetes, chronic kidney disease, as well as liver injury. An increasing body of evidence show the complex interplay between oxidative stress and inflammation in disease pathogenesis. When periodontitis occurs, increased reactive oxygen species accumulation leads to oxidative stress. Oxidative stress contributes to major cellular components damage, including DNA, proteins, and lipids. In this article, the focus will be on oxidative stress in periodontal disease, the relationship between periodontitis and systemic inflammation, and the impact of periodontal therapy on oxidative stress parameters.
Collapse
Affiliation(s)
- Jiaxin Shang
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Haifeng Liu
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Youli Zheng
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Zheng Zhang
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| |
Collapse
|
25
|
Ustianowski Ł, Ustianowska K, Gurazda K, Rusiński M, Ostrowski P, Pawlik A. The Role of Vitamin C and Vitamin D in the Pathogenesis and Therapy of Periodontitis-Narrative Review. Int J Mol Sci 2023; 24:6774. [PMID: 37047746 PMCID: PMC10094883 DOI: 10.3390/ijms24076774] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Periodontitis is a common disorder affecting the bone and soft tissues of the periodontal complex. When untreated, it may lead to severe mobility or even loss of teeth. The pathogenesis of periodontitis is complex, with crucial factors being chronic inflammation in gingival and periodontal tissues and oral microbiome alterations. However, recent studies highlight the alleged role of vitamins, such as vitamin C (VitC) and vitamin D (VitD), in the development of the disease. VitC regulates numerous biochemical reactions, but foremost, it is involved in synthesizing collagen. It was reported that VitC deficiency could lead to damage to the periodontal ligaments. VitC supplementation improves postoperative outcomes in patients with periodontitis. VitD is a steroid derivative that can be produced in the skin under ultraviolet radiation and later transformed into an active form in other tissues, such as the kidneys. VitD was established to decrease the expression of proinflammatory cytokines in gingiva and regulate the proper mineral density of teeth. Moreover, the supplementation of VitD was associated with better results in the nonsurgical treatment of periodontitis. In this review, we summarize recent knowledge on the role of vitamins C and D in the pathogenesis and treatment of periodontitis.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| |
Collapse
|