1
|
Zhang C, Wu Q, Tao X, Yan Z, Han Q, Yao X, Chai Y, Chen L, Mao Y, Cheng Z. Sedative-hypnotic effects of Yiyin Anshen Granule on mice models of insomnia by regulating neurotransmitters, cytokines, and gut microbiota. J Pharm Biomed Anal 2025; 263:116949. [PMID: 40347763 DOI: 10.1016/j.jpba.2025.116949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/27/2025] [Accepted: 05/03/2025] [Indexed: 05/14/2025]
Abstract
This study aims to elucidate the pathways through which Yiyin Anshen Granule (YA) exerts sedative-hypnotic effects in a mouse model of sleep deprivation. DL-4-chlorophenylalanine(PCPA)-treated mice received intragastric administration of YA and pentobarbital sodium-induced sleep tests were conducted on days 7, 14, and 29. The levels of key neurotransmitters, cytokines and receptor protein associated with insomnia were measured using enzyme-linked immunosorbent assay (ELISA) and Western blot. Additionally, 16S ribosomal DNA (rDNA) sequencing was performed to assess the impact of YA on gut microbiota, focusing on species abundance and diversity. YA significantly shortened sleep latency (P < 0.01) and prolonged sleep duration (P < 0.01) in sleep-deprived mice, effectively improving circadian rhythm disturbances compared to the model group (MOD). Biochemical analysis revealed that YA restored abnormal neurotransmitter levels in brain tissue, increasing 5-hydroxytryptamine (5-HT), γ-aminobutyric acid (GABA), and γ-aminobutyric acid type A receptor α-1 subunit (GABAARα1) expression (P < 0.01) and reducing the glutamate (Glu)/GABA ratio (P < 0.01). Additionally, the levels of B-cell lymphoma 2 (BCL-2) and interleukin-6 (IL-6) expression were significantly decreased (P < 0.05, 0.01), while interleukin-1 beta (IL-1β) expression increased (P < 0.01). YA treatment also significantly increased gut microbiota abundance and diversity, with microbiome profiles in the YA group being closer than those of diazepam group (DZP) to the control group (CON). Notably, YA reversed the dysbiosis of high-abundance gut microbiota species associated with insomnia at both the family and genus levels (P < 0.05, 0.01). The results of the present study indicated that YA alleviates insomnia symptoms by regulating neurotransmitter and inflammatory cytokines levels, and restoring gut microbia balance. These mechanisms collectively contribute to shortening sleep latency, prolonging sleep duration, and improving sleep quality in a mouse model of insomnia.
Collapse
Affiliation(s)
- Chunge Zhang
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Qi Wu
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xiang Tao
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Zhaowei Yan
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Qiang Han
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xin Yao
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yuying Chai
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lin Chen
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Yeqin Mao
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Zongqi Cheng
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| |
Collapse
|
2
|
Šagud M, Bajs Janović M, Uzun S, Kosanović Rajačić B, Kozumplik O, Pivac N. Could self-reporting sleep duration become an important tool in the prediction of dementia? Expert Rev Neurother 2025:1-15. [PMID: 40369950 DOI: 10.1080/14737175.2025.2506459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/25/2025] [Accepted: 05/12/2025] [Indexed: 05/16/2025]
Abstract
INTRODUCTION Optimal sleep duration is increasingly recognized as an important determinant of overall health, including cognitive functioning. Studies often report a U- or J-shaped relationship between sleep duration and incident dementia or cognitive deterioration, whereas long sleep, the extremes of sleep duration, and the transition to long sleep were particularly detrimental. In preclinical studies, partial or complete sleep deprivation produced inflammation, oxidative stress, as well as increased tau hyperphosphorylation and amyloid-β burden. In humans, although the findings are less pronounced, they still highlight that transitioning to an excessive sleep duration is associated with neurodegeneration. Moreover, the association between sleep duration and dementia is complex and modified by genetic, psychosocial and lifestyle factors, along with psychiatric and somatic comorbidities. AREAS COVERED The purpose of this perspective is to summarize the current knowledge on the association between sleep duration and dementia. It is based on a literature search for meta-analyses of prospective studies with sleep duration as an exposure and dementia as an outcome. EXPERT OPINION Sleep duration is a modifiable risk factor for dementia while long sleep may be an early sign of neurodegeneration. Therefore, self-reported sleep duration is an easy-to-use tool for detecting individuals who may be at risk for cognitive deterioration.
Collapse
Affiliation(s)
- Marina Šagud
- Department of Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Maja Bajs Janović
- Department of Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Suzana Uzun
- School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapče, Zagreb, Croatia
| | - Biljana Kosanović Rajačić
- Department of Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Oliver Kozumplik
- Department of Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapče, Zagreb, Croatia
| | - Nela Pivac
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
3
|
Chhibba T, Gros B, King JA, Windsor JW, Gorospe J, Leibovitzh H, Xue M, Turpin W, Croitoru K, Ananthakrishnan AN, Gearry RB, Kaplan GG. Environmental risk factors of inflammatory bowel disease: toward a strategy of preventative health. J Crohns Colitis 2025; 19:jjaf042. [PMID: 40065502 PMCID: PMC12010164 DOI: 10.1093/ecco-jcc/jjaf042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
The pathogenesis of inflammatory bowel disease (IBD) involves a complex interplay between genetic, environmental, and microbial factors. Many of these environmental determinants are modifiable, offering opportunities to prevent disease or delay its onset. Advances in the study of preclinical IBD cohorts offer the potential to identify biomarkers that predict individuals at high risk of developing IBD, enabling targeted environmental interventions aimed at reducing IBD incidence. This review summarizes findings from 79 meta-analyses on modifiable environmental factors associated with the development of IBD. Identified risk factors include smoking, Western diets, ultra-processed foods, and early life antibiotic use, while protective factors include breastfeeding, Mediterranean diets rich in fiber, plant-based foods, and fish, along with an active physical lifestyle. Despite the promise shown by observational data, interventional or randomized controlled studies evaluating the efficacy of modifying environmental risk factors remain limited and mostly focus on dietary intervention. This review aims to inform the design of higher quality interventional and randomized controlled studies for disease prevention while providing actionable guidance to healthcare providers on reducing the risk of developing IBD through environmental modifications.
Collapse
Affiliation(s)
- Tarun Chhibba
- Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Beatriz Gros
- Department of Gastroenterology and Hepatology, Reina Sofía University Hospital, IMIBIC, University of Córdoba, Córdoba, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD), Madrid, Spain
| | - James A King
- Departments of Medicine and Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Joseph W Windsor
- Departments of Medicine and Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Julia Gorospe
- Departments of Medicine and Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Haim Leibovitzh
- Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Zane Cohen Centre for Digestive Diseases, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Mingyue Xue
- Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Zane Cohen Centre for Digestive Diseases, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Williams Turpin
- Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Zane Cohen Centre for Digestive Diseases, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Kenneth Croitoru
- Division of Gastroenterology & Hepatology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Zane Cohen Centre for Digestive Diseases, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ashwin N Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Richard B Gearry
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Gilaad G Kaplan
- Departments of Medicine and Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Gao R, Huang Y, Mao S, He H, Yao J, Feng J, Wang Y. Effect of improving sleep quality the night before surgery with zolpidem on postoperative gastrointestinal function in patients undergoing laparoscopic partial colorectal resection: a randomized, double-blind, controlled trial. BMC Anesthesiol 2025; 25:80. [PMID: 39966710 PMCID: PMC11834607 DOI: 10.1186/s12871-025-02959-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Sleep is one of the basic physiological needs of human beings. Preoperative sleep disorders are associated with poor prognosis in surgical patients, and sleep disorders have been shown to be one of the risk factors for gastrointestinal dysfunction. However, there are now few studies to investigate whether improving preoperative sleep disorders can promote the recovery of postoperative gastrointestinal function. This study aimed to investigate the effects and significance of improving preoperative sleep quality with zolpidem on postoperative gastrointestinal function. METHODS In this prospective, randomized, double-blind clinical trial, 76 patients undergoing elective laparoscopic partial colorectal resection and with a Pittsburgh Sleep Quality Index (PSQI) score > 5, were randomly divided into two groups. The zolpidem group (Group Z, n = 38) was given a capsule containing 10 mg of zolpidem the night before the operation, and the control group (Group C, n = 38) was given an empty capsule the night before the operation. Follow-up visits were performed on the 1st, 3rd, and 7th postoperative days, respectively. The primary outcome of this study was the I-FEED (Intake, Feeling nauseated, Emesis, Physical Exam, and Duration of symptoms) score on the third postoperative day (POD3). Secondary outcomes included time to postoperative first flatus, first feces, and first food intake (semi-liquid diet), I-FEED scores, visual analog scores (VAS) during coughing and at rest, times of patient-controlled intravenous analgesia (PCIA) effective presses, sufentanil dosage, number of remedial analgesia in the 24-hour postoperative period, and changes in inflammatory markers (TNF-α). RESULTS Compared with Group C, Group Z had a lower I-FEED score on POD1 (P < 0.05) and shorter time to first flatus and first food intake (P < 0.05); there were significant differences between the two groups in VAS scores during coughing and at rest on POD1, VAS score during coughing on POD3, times of PCIA effective presses and sufentanil dosage in the 24-hour postoperative period, and patient satisfaction (P < 0.05). CONCLUSION For patients with sleep disorders, the use of zolpidem to improve sleep the night before surgery is beneficial in partially improving postoperative gastrointestinal function, relieving postoperative pain, and increasing patient satisfaction. TEST REGISTRATION ChiCTR2300077566 November 13, 2023.
Collapse
Affiliation(s)
- Ruijia Gao
- Department of Anesthesiology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, No. 6 Zhenhua East Road, Lianyungang, 222002, Jiangsu, China
| | - Yu Huang
- Department of Anesthesiology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, No.6 Zhenhua East Road, Lianyungang, 222002, Jiangsu, China
| | - Shimeng Mao
- Department of Anesthesiology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, No. 6 Zhenhua East Road, Lianyungang, 222002, Jiangsu, China
| | - Hongyan He
- Department of Anesthesiology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, No. 6 Zhenhua East Road, Lianyungang, 222002, Jiangsu, China
| | - Jinliang Yao
- Department of Anesthesiology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, No. 6 Zhenhua East Road, Lianyungang, 222002, Jiangsu, China
| | - Jiying Feng
- Department of Anesthesiology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, No. 6 Zhenhua East Road, Lianyungang, 222002, Jiangsu, China.
| | - Ying Wang
- Department of Gynecology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, No. 6 Zhenhua East Road, Lianyungang, 222002, Jiangsu, China.
| |
Collapse
|
5
|
Lim CR, Ogawa S, Kumari Y. Exploring β-caryophyllene: a non-psychotropic cannabinoid's potential in mitigating cognitive impairment induced by sleep deprivation. Arch Pharm Res 2025; 48:1-42. [PMID: 39653971 DOI: 10.1007/s12272-024-01523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
Sleep deprivation or sleep loss, a prevalent issue in modern society, is linked to cognitive impairment, leading to heightened risks of errors and accidents. Chronic sleep deprivation affects various cognitive functions, including memory, attention, and decision-making, and is associated with an increased risk of neurodegenerative diseases, cardiovascular issues, and metabolic disorders. This review examines the potential of β-caryophyllene, a dietary non-psychotropic cannabinoid, and FDA-approved flavoring agent, as a therapeutic solution for sleep loss-induced cognitive impairment. It highlights β-caryophyllene's ability to mitigate key contributors to sleep loss-induced cognitive impairment, such as inflammation, oxidative stress, neuronal death, and reduced neuroplasticity, by modulating various signaling pathways, including TLR4/NF-κB/NLRP3, MAPK, Nrf2/HO-1, PI3K/Akt, and cAMP/PKA/CREB. As a naturally occurring, non-psychotropic compound with low toxicity, β-caryophyllene emerges as a promising candidate for further investigation. The review underscores the therapeutic potential of β-caryophyllene for sleep loss-induced cognitive impairment and provides mechanistic insights into its action on crucial pathways, suggesting that β-caryophyllene could be a valuable addition to strategies aimed at combating cognitive impairment and other health issues due to sleep loss.
Collapse
Affiliation(s)
- Cher Ryn Lim
- Neurological Disorder and Aging Research Group (NDA), Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Satoshi Ogawa
- Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Yatinesh Kumari
- Neurological Disorder and Aging Research Group (NDA), Neuroscience Research Strength (NRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia.
| |
Collapse
|
6
|
Singh A, Negi PS. Appraising the role of biotics and fermented foods in gut microbiota modulation and sleep regulation. J Food Sci 2025; 90:e17634. [PMID: 39750017 DOI: 10.1111/1750-3841.17634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025]
Abstract
Sleep disturbances are increasingly prevalent, significantly impacting physical and mental health. Recent research reveals a bidirectional relationship between gut microbiota and sleep, mediated through the microbiota-gut-brain axis. This review examines the role of gut microbiota in sleep physiology and explores how biotics, including probiotics, prebiotics, synbiotics, postbiotics, and fermented foods, can enhance sleep quality. Drawing from animal and human studies, we discuss neurobiological mechanisms by which biotics may influence sleep, including modulation of neurotransmitters, immune responses, and hormonal regulation. Key microbial metabolites, such as short-chain fatty acids, are highlighted for their role in supporting sleep-related neurochemical processes. Additionally, this review presents dietary strategies and food processing technologies, like fermentation, as innovative approaches for sleep enhancement. Although promising, the available research has limitations, including small sample sizes, variability in biotic strains and dosages, and reliance on subjective sleep assessments. This review underscores the need for standardized protocols, objective assessments such as polysomnography, and personalized biotic interventions. Emerging findings highlight the therapeutic potential of gut microbiota modulation for sleep improvement, though further large-scale human trials are essential to refine strain selection, dosage, and formulation. This interdisciplinary exploration seeks to advance food-based interventions and holistic strategies for managing sleep disorders and improving quality of life.
Collapse
Affiliation(s)
- Akanksha Singh
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Pradeep Singh Negi
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
| |
Collapse
|
7
|
Yang P, Zhu T, Ma Y, Cao Z, Gao P, Jiang H, Zhang X. The involvement of amyloid-β in the central nervous system regulation underlying sleep deprivation-induced rapid ejaculation in rats. Andrology 2024. [PMID: 39704063 DOI: 10.1111/andr.13826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Although some studies suggest that sleep deprivation may affect ejaculation regulation, related research is limited, and the mechanisms remain unclear. AIM This study aimed to explore whether sleep deprivation influences ejaculation regulation through amyloid-beta and to investigate its potential mechanisms. MATERIALS AND METHODS Normal ejaculating rats were randomly distributed into three separate groups for the study, and treated with sleep deprivation combined with saline gavage, sleep deprivation combined with sodium butyrate gavage, and control with saline gavage. The levels of amyloid-beta and 5-HT1A receptors were assessed through Western blotting, PCR, and immunohistochemical techniques. The levels of interleukin-4 and serotonin (5-hydroxytryptamine) in the brain were determined by enzyme-linked immunosorbent assay. RESULTS The experiment showed that the rats in the sleep deprivation combined with saline gavage group rats had a significantly faster ejaculation compared to the control combined with saline gavage group rats. Meanwhile, sleep deprivation combined with saline gavage group had the highest levels of amyloid-beta oligomers in the brain tissue. Correlation results revealed that the levels of amyloid-beta oligomers in brain tissue were inversely related to ejaculation latency and positively associated with ejaculation frequency. Furthermore, we found that elevated levels of amyloid-beta oligomers in brain tissue led to upregulation of 5-HT1A receptor expression. Additionally, elevated levels of amyloid-beta oligomers in brain tissue were found to increase interleukin-4 levels, thereby reducing 5-hydroxytryptamine levels. DISCUSSION Sleep deprivation indeed accelerates ejaculation, and this acceleration is closely related to amyloid-beta. Sleep deprivation can increase amyloid-beta levels in brain tissue, mediating a decrease in 5-hydroxytryptamine levels and overexpression of 5-HT1A receptors, thereby accelerating ejaculation. CONCLUSION There is a significant correlation between elevated amyloid-beta levels in brain tissue because of sleep deprivation and accelerated ejaculation. This study's main findings offer insights into the development of acquired premature ejaculation linked to poor sleep and establish a theoretical framework for investigating potential treatments for this condition.
Collapse
Affiliation(s)
- Peng Yang
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tianle Zhu
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yukuai Ma
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhi Cao
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Pan Gao
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hui Jiang
- Peking University Andrology Center, Peking University First Hospital, Beijing, China
| | - Xiansheng Zhang
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
Zhu S, Wang Y, Li Y, Li N, Zheng Y, Li Q, Guo H, Sun J, Zhai Q, Zhu Y. TMAO is involved in sleep deprivation-induced cognitive dysfunction through regulating astrocytic cholesterol metabolism via SREBP2. Front Mol Neurosci 2024; 17:1499591. [PMID: 39669439 PMCID: PMC11634841 DOI: 10.3389/fnmol.2024.1499591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024] Open
Abstract
Sleep deprivation (SD) contributes to cognitive impairment. Astrocytic cholesterol biosynthesis is crucial for brain cholesterol homeostasis and cognitive function. However, the underlying mechanism of astrocytic cholesterol metabolism in SD-induced cognitive impairment has not been fully explored. Trimethylamine N-oxide (TMAO), a product of liver flavin-containing monooxygenase-3 (FMO3), has been shown to be increased in the urine of sleep-deprived humans and implicated with peripheral cholesterol metabolism. Nevertheless, how TMAO affects brain cholesterol metabolism remains unclear. In our study, increased FMO3 and brain TMAO levels were observed in the SD mice, and elevated levels of TMAO were confirmed to lead to SD-induced cognitive dysfunction. In addition, we found that the expression of sterol regulatory element-binding protein 2 (SREBP2) is decreased in the brain of SD mice, resulting in the reduction in brain cholesterol content, which in turn causes synaptic damage. Moreover, we demonstrated that TMAO inhibits the expression of SREBP2. In contrast, FMO3 inhibitor 3,3'-diindolylmethane (DIM) alleviates SD-induced cognitive impairment by targeting the liver-brain axis. In conclusion, our study revealed that the TMAO pathway is involved in memory impairment in SD mice through deregulating astrocytic cholesterol metabolism.
Collapse
Affiliation(s)
- Shan Zhu
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yue Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yansong Li
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Na Li
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yige Zheng
- The Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Qiao Li
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Hongyan Guo
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianyu Sun
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qian Zhai
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yaomin Zhu
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
9
|
Hakkak R, Korourian S, Li W, Spray B, Twaddle NC, Randolph CE, Børsheim E, Robeson II MS. Dietary soy protein reverses obesity-induced liver steatosis and alters fecal microbial composition independent of isoflavone level. Front Nutr 2024; 11:1487859. [PMID: 39529929 PMCID: PMC11551038 DOI: 10.3389/fnut.2024.1487859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major public health concern that is exacerbated by the obesity pandemic. Dietary interventions have the potential to alleviate obesity-associated MASLD through variable mechanisms, including optimizing the gut microbiota. Previously, we reported that soy protein concentrate (SPC) with low or high levels of isoflavone (LIF or HIF) protected young obese Zucker rats from developing liver steatosis. The current study was designed to test whether SPC-LIF and SPC-HIF diets would reverse liver steatosis and alter fecal microbial composition in adult obese Zucker rats with existing steatosis. Methods Six-week-old male obese Zucker rats (n = 26) were fed a casein control diet (CAS) for 8 weeks and 7 rats were randomly selected and sacrificed to confirm liver steatosis. The remaining rats were randomly assigned to receive CAS, SPC-LIF, or SPC-HIF diet (n = 6-7/group) for an additional 10 weeks. Results Compared to CAS diet, feeding SPC-LIF and SPC-HIF diets resulted in significantly lower liver weight, liver steatosis score, and liver microvesicular score (p < 0.05), but did not lead to difference in body weight, liver macrovesicular score, serum ALT, or serum AST. Isoflavone levels (e.g., LIF vs. HIF) did not affect any of these measurements except in the SPC-HIF group, which had an additional decrease in liver weight (p < 0.05) compared to the SPC-LIF group. The SPC-HIF group also had significantly higher levels of the aglycone forms of daidzein, genistein, and equol as well as the total levels of daidzein, genistein, and equol compared to SPC-LIF or CAS diet fed rats (p < 0.05). The distribution of microbial communities based on measures of beta diversity of both SPC-LIF and SPC-HIF groups were significantly different to that of the CAS group (p ≤ 0.005). Alpha-diversity did not differ between any of the groups. Conclusion Taken together, dietary soy protein can reverse liver steatosis in adult Zucker rats, and the reversal of steatosis is accompanied by alterations in gut microbial composition.
Collapse
Affiliation(s)
- Reza Hakkak
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Arkansas Children’s Research Institute, Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Soheila Korourian
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Wei Li
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Beverly Spray
- Division of Biostatistics Core, Arkansas Children’s Research Institute, Little Rock, AR, United States
| | - Nathan C. Twaddle
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| | | | - Elisabet Børsheim
- Arkansas Children’s Research Institute, Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
| | - Michael S. Robeson II
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
10
|
Zhang Y, Zhang C, Dai Q, Ma R. Continuous Theta Burst Stimulation Inhibits Oxidative Stress-Induced Inflammation and Autophagy in Hippocampal Neurons by Activating Glutathione Synthesis Pathway, Improving Cognitive Impairment in Sleep-Deprived Mice. Neuromolecular Med 2024; 26:40. [PMID: 39388015 DOI: 10.1007/s12017-024-08807-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024]
Abstract
Sleep deprivation (SD) has been reported to have a negative impact on cognitive function. Continuous theta burst stimulation (cTBS) shows certain effects in improving sleep and neurological diseases, and its molecular or cellular role in SD-induced cognition impairment still need further exploration. In this study, C57BL/6 mice were subjected to 48 h of SD and cTBS treatment, and cTBS treatment significantly improved SD-triggered impairment of spatial learning and memory abilities in mice. Additionally, cTBS reduced malondialdehyde levels, increased superoxide dismutase activities, and inhibited the production of inflammatory cytokines, alleviating oxidative stress and inflammation levels in hippocampal tissues of SD model mice. cTBS decreased LC3II/LC3I ratio, Beclin1 protein levels, and LC3B puncta intensity, and elevated p62 protein levels to suppress excessive autophagy in hippocampal tissues of SD-stimulated mice. Then, we proved that inhibiting oxidative stress alleviated inflammation, autophagy, and death of hippocampal neuron cells through an in vitro cellular model for oxidative stress, and cTBS treatment promoted the production of glutathione (GSH), the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and the mRNA expression of GSH synthesis-related genes to enhance antioxidant capacity in hippocampal tissues of SD mice. An Nrf2 inhibitor ML385 or a GSH synthesis inhibitor BSO reversed the alleviating effects of cTBS treatment on oxidative stress-associated damage of hippocampal tissues and cognitive impairment in SD model mice. Altogether, our study demonstrated that cTBS mitigates oxidative stress-associated inflammation and autophagy through activating the Nrf2-mediated GSH synthesis pathway, improving cognitive impairment in SD mice.
Collapse
Affiliation(s)
- Yi Zhang
- Clinical Psychology Department, the People's Hospital of Xinjiang Uygur Autonomous Region, 91 Tianchi Road, Urumqi, 830001, China
| | - Cheng Zhang
- Clinical Psychology Department, the People's Hospital of Xinjiang Uygur Autonomous Region, 91 Tianchi Road, Urumqi, 830001, China
| | - Qing Dai
- Anesthesiology Department, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Rui Ma
- Clinical Psychology Department, the People's Hospital of Xinjiang Uygur Autonomous Region, 91 Tianchi Road, Urumqi, 830001, China.
| |
Collapse
|
11
|
Chen YJ, Ho HJ, Tseng CH, Chen YF, Wang ST, Shieh JJ, Wu CY. Short-chain fatty acids ameliorate imiquimod-induced skin thickening and IL-17 levels and alter gut microbiota in mice: a metagenomic association analysis. Sci Rep 2024; 14:17495. [PMID: 39079980 PMCID: PMC11289318 DOI: 10.1038/s41598-024-67325-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Short-chain fatty acids (SCFAs) have been proposed to have anti-inflammatory effects and improve immune homeostasis. We aimed to examine the effects of SCFAs on skin phenotype, systemic inflammation, and gut microbiota in mice with psoriasis-like inflammation. Imiquimod (IMQ)-treated C57BL/6 mice served as the study model. We conducted a metagenomic association study of IMQ-mice treated with SCFAs or anti-IL-17 antibody using whole-genome shotgun sequencing. The associations among SCFA supplements, skin thickness, circulating inflammatory profiles, and fecal microbiota profiles were investigated. The microbiome study was performed using pipelines for phylogenetic analysis, functional gene analysis, and pathway analysis. In IMQ-treated mice, there were increases in skin thickness and splenic weight, as well as unique fecal microbial profiles. SCFAs ameliorated IMQ-induced skin thickening, splenic weight gain, and serum IL-17F levels, with results that were comparable with those receiving anti-IL-17 treatment. IMQ-treated mice receiving SCFAs had greater microbial diversity than mice treated with IMQ alone. SCFAs and anti-IL17 treatment were associated with alteration of gut microbiota, with increased prevalences of Oscillospiraceae and Lachnopiraceae and decreased prevalences of Muribaculaceae and Bacteroides, which have been predicted to be associated with increased glycan degradation, phenylalanine metabolism, and xylene degradation. SCFAs may mitigate IMQ-induced skin thickening and IL-17F levels and alter fecal microbiota profiles in IMQ-treated mice.
Collapse
Affiliation(s)
- Yi-Ju Chen
- Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan.
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan.
| | - Hsiu J Ho
- Institute of Bioinformatics and Biomedicine, National Yang Ming Chao Tung University, Taipei, Taiwan
| | - Ching-Hung Tseng
- Germark Biotechnology Ltd., No. 21, Keyuan Rd., Situn Dist., Taichung, Taiwan
| | - Yu-Feng Chen
- Institute of Bioinformatics and Biomedicine, National Yang Ming Chao Tung University, Taipei, Taiwan
| | - Sin-Ting Wang
- Institute of Bioinformatics and Biomedicine, National Yang Ming Chao Tung University, Taipei, Taiwan
| | - Jeng-Jer Shieh
- Institute of Biomedicine, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Ying Wu
- Institute of Bioinformatics and Biomedicine, National Yang Ming Chao Tung University, Taipei, Taiwan.
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
- Faculty of Medicine and Graduate Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Public Health and Graduate Institute of Clinical Medical Sciences, China Medical University, Taichung, Taiwan.
| |
Collapse
|
12
|
Lin Z, Jiang T, Chen M, Ji X, Wang Y. Gut microbiota and sleep: Interaction mechanisms and therapeutic prospects. Open Life Sci 2024; 19:20220910. [PMID: 39035457 PMCID: PMC11260001 DOI: 10.1515/biol-2022-0910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/23/2024] Open
Abstract
Sleep is crucial for wellness, and emerging research reveals a profound connection to gut microbiota. This review explores the bidirectional relationship between gut microbiota and sleep, exploring the mechanisms involved and the therapeutic opportunities it presents. The gut-brain axis serves as a conduit for the crosstalk between gut microbiota and the central nervous system, with dysbiosis in the microbiota impairing sleep quality and vice versa. Diet, circadian rhythms, and immune modulation all play a part. Specific gut bacteria, like Lactobacillus and Bifidobacterium, enhance sleep through serotonin and gamma-aminobutyric acid production, exemplifying direct microbiome influence. Conversely, sleep deprivation reduces beneficial bacteria, exacerbating dysbiosis. Probiotics, prebiotics, postbiotics, and fecal transplants show therapeutic potential, backed by animal and human research, yet require further study on safety and long-term effects. Unraveling this intricate link paves the way for tailored sleep therapies, utilizing microbiome manipulation to improve sleep and health. Accelerated research is essential to fully tap into this promising field for sleep disorder management.
Collapse
Affiliation(s)
- Zhonghui Lin
- Department of Neurology Medical, Xiamen Hospital of Traditional Chinese Medicine, Fujian, Xiamen, China
- Jimsar County of Xinjiang Chinese Medicine Hospital, Xinjiang, Changji, China
| | - Tao Jiang
- Department of Neurology Medical, Xiamen Hospital of Traditional Chinese Medicine, Fujian, Xiamen, China
| | - Miaoling Chen
- Department of Neurology Medical, Xiamen Hospital of Traditional Chinese Medicine, Fujian, Xiamen, China
| | - Xudong Ji
- Jimsar County of Xinjiang Chinese Medicine Hospital, Xinjiang, Changji, China
| | - Yunsu Wang
- Department of Cardiology Medical, Xiamen Hospital of Traditional Chinese Medicine, Fujian, Xiamen, China
| |
Collapse
|
13
|
Zulkifli S, Mohd Nor NS, Sheikh Abdul Kadir SH, Mohd Ranai N, Abdul Khalil K. Distinct gut flora profile induced by postnatal trans-fat diet in gestationally bisphenol A-exposed rats. PLoS One 2024; 19:e0306741. [PMID: 38980850 PMCID: PMC11233015 DOI: 10.1371/journal.pone.0306741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/22/2024] [Indexed: 07/11/2024] Open
Abstract
There has been much evidence showing the repercussions of prenatal bisphenol A (BPA) exposure with a postnatal high fat-diet (HFD) on offspring's health. However, the information on how the interaction between these two variables affects the gut microbiome is rather limited. Hence, we investigated the impact of a postnatal trans fat diet (TFD) on the gut microbiome of offspring exposed to BPA during the prenatal period in an animal model. Pregnant rats were divided into 5 mg/kg/day BPA, vehicle Tween80 (P80) or control (CTL) drinking water until delivery (N = 6 per group). Then, weaned male pups were further subdivided into three normal diet (ND) groups (CTLND, P80ND, and BPAND) and three TFD groups (CTLTFD, P80TFD, and BPATFD) (n = 6 per group). 180-250 g of faecal samples were collected on days 50 and 100 to assess the composition of the offspring's intestinal flora using next-generation sequencing. The alpha diversity indices of TFD offspring with and without BPA were markedly lower than their ND counterparts (p<0.001-p<0.05). The beta diversity, hierarchical cluster and network analyses of the offspring's microbiome demonstrated that the microbiome species of the TFD group with and without BPA were distinctly different compared to the ND group. Consistently, TFD and ND offspring pairings exhibited a higher number of significantly different species (p<0.0001-p<0.05) compared to those exposed to prenatal BPA exposure and different life stages comparisons, as shown by the multivariate parametric analysis DESeq2. Predictive functional profiling of the offspring's intestinal flora demonstrated altered expressions of genes involved in metabolic pathways. In summary, the gut flora composition of the rat offspring may be influenced by postnatal diet instead of prenatal exposure to BPA. Our data indicate the possibility of perturbed metabolic functions and epigenetic modifications, in offspring that consumed TFD, which may theoretically lead to metabolic diseases in middle or late adulthood. Further investigation is necessary to fully understand these implications.
Collapse
Affiliation(s)
- Sarah Zulkifli
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sungai Buloh Campus, Selangor, Malaysia
| | - Noor Shafina Mohd Nor
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sungai Buloh Campus, Selangor, Malaysia
- Department of Paediatrics, Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sungai Buloh Campus, Selangor, Malaysia
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sungai Buloh Campus, Selangor, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sungai Buloh Campus, Selangor, Malaysia
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sungai Buloh Campus, Selangor, Malaysia
| | - Norashikin Mohd Ranai
- Department of Paediatrics, Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sungai Buloh Campus, Selangor, Malaysia
| | - Khalilah Abdul Khalil
- Department of Biomolecular Sciences, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM) Shah Alam, Selangor, Malaysia
| |
Collapse
|
14
|
Yu Z, Guo M, Yu B, Wang Y, Yan Z, Gao R. Anorexia nervosa and bulimia nervosa: a Mendelian randomization study of gut microbiota. Front Microbiol 2024; 15:1396932. [PMID: 38784806 PMCID: PMC11111991 DOI: 10.3389/fmicb.2024.1396932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Background Anorexia nervosa (AN) and bulimia nervosa (BN) poses a significant challenge to global public health. Despite extensive research, conclusive evidence regarding the association between gut microbes and the risk of AN and BN remains elusive. Mendelian randomization (MR) methods offer a promising avenue for elucidating potential causal relationships. Materials and methods Genome-wide association studies (GWAS) datasets of AN and BN were retrieved from the OpenGWAS database for analysis. Independent single nucleotide polymorphisms closely associated with 196 gut bacterial taxa from the MiBioGen consortium were identified as instrumental variables. MR analysis was conducted utilizing R software, with outlier exclusion performed using the MR-PRESSO method. Causal effect estimation was undertaken employing four methods, including Inverse variance weighted. Sensitivity analysis, heterogeneity analysis, horizontal multivariate analysis, and assessment of causal directionality were carried out to assess the robustness of the findings. Results A total of 196 bacterial taxa spanning six taxonomic levels were subjected to analysis. Nine taxa demonstrating potential causal relationships with AN were identified. Among these, five taxa, including Peptostreptococcaceae, were implicated as exerting a causal effect on AN risk, while four taxa, including Gammaproteobacteria, were associated with a reduced risk of AN. Similarly, nine taxa exhibiting potential causal relationships with BN were identified. Of these, six taxa, including Clostridiales, were identified as risk factors for increased BN risk, while three taxa, including Oxalobacteraceae, were deemed protective factors. Lachnospiraceae emerged as a common influence on both AN and BN, albeit with opposing effects. No evidence of heterogeneity or horizontal pleiotropy was detected for significant estimates. Conclusion Through MR analysis, we revealed the potential causal role of 18 intestinal bacterial taxa in AN and BN, including Lachnospiraceae. It provides new insights into the mechanistic basis and intervention targets of gut microbiota-mediated AN and BN.
Collapse
Affiliation(s)
- Zongliang Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Manping Guo
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Postdoctoral Research Station, China Academy of Chinese Medical Sciences, Beijing, China
- Postdoctoral Works Station, Yabao Pharmaceutical Group Co., Ltd., Yuncheng, China
| | - Binyang Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiming Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zian Yan
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Li Y, Ning X, Zhao Z, He X, Xue Q, Zhou M, Li W, Li M. Core fucosylation of maternal milk N-glycans imparts early-life immune tolerance through gut microbiota-dependent regulation in RORγt + Treg cells. Food Funct 2024; 15:4140-4153. [PMID: 38445991 DOI: 10.1039/d4fo00230j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Milk glycans play key roles in shaping and maintaining a healthy infant gut microbiota. Core fucosylation catalyzed by fucosyltransferase (Fut8) is the major glycosylation pattern on human milk N-glycan, which was crucial for promoting the colonization and dominant growth of Bifidobacterium and Lactobacillus spp. in neonates. However, the influence of core-fucose in breast milk on the establishment of early-life immune tolerance remains poorly characterized. In this study, we found that the deficiency of core-fucose in the milk of maternal mice caused by Fut8 gene heterozygosity (Fut8+/-) resulted in poor immune tolerance towards the ovalbumin (OVA) challenge, accompanied by a reduced proportion of intestinal RORγt+ Treg cells and the abundance of Lactobacillus spp., especially L. reuteri and L. johnsonii, in their breast-fed neonates. The administration of the L. reuteri and L. johnsonii mixture to neonatal mice compromised the OVA-induced allergy and up-regulated the intestinal RORγt+ Treg cell proportions. However, Lactobacillus mixture supplementation did not alleviate allergic responses in RORγt+ Treg cell-deficient mice caused by Rorc gene heterozygosity (Rorc+/-) post OVA challenge, indicating that the intervention effects depend on the RORγt+ Treg cells. Interestingly, instead of L. reuteri and L. johnsonii, we found that the relative abundance of another Lactobacillus spp., L. murinus, in the gut of the offspring mice was significantly promoted by intervention, which showed enhancing effects on the proliferation of splenic and intestinal RORγt+ Treg cells in in vitro studies. The above results indicate that core fucosylation of breast milk N-glycans is beneficial for the establishment of RORγt+ Treg cell mediated early-life immune tolerance through the manipulation of symbiotic bacteria in mice.
Collapse
Affiliation(s)
- Yuyuan Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China.
| | - Xixi Ning
- College of Basic Medical Science, Dalian Medical University, Dalian, China.
| | - Zihui Zhao
- Pelvic Floor Repair Center, Dalian Women and Children's Medical Group, Dalian, China
| | - Xi He
- College of Basic Medical Science, Dalian Medical University, Dalian, China.
| | - Qidi Xue
- College of Basic Medical Science, Dalian Medical University, Dalian, China.
| | - Manlin Zhou
- College of Basic Medical Science, Dalian Medical University, Dalian, China.
| | - Wenzhe Li
- Shantou University Medical College, Shantou, Guangdong, China.
| | - Ming Li
- College of Basic Medical Science, Dalian Medical University, Dalian, China.
| |
Collapse
|
16
|
Zeng Q, Zhang M, Wang R. Causal link between gut microbiome and schizophrenia: a Mendelian randomization study. Psychiatr Genet 2024; 34:43-53. [PMID: 38441075 DOI: 10.1097/ypg.0000000000000361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
OBJECTIVE Some observational studies have shown that gut microbiome is significantly changed in patients with schizophrenia. We aim to identify the genetic causal link between gut microbiome and schizophrenia. METHODS A two-sample Mendelian randomization (MR) study was used to evaluate the causal link between gut microbiome and schizophrenia with 28 gut microbiome-associated genetic instrumental variants chosen from recent MR reports and the largest schizophrenia genome-wide association studies (8-Apr-22 release). RESULTS Inverse variance weighted method showed that genetically increased Bacteroidales_S24-7 (per SD) resulted in increased risk of schizophrenia (OR = 1.110, 95% CI: [1.012-1.217], P = 0.027). Similarly, genetically increased Prevotellaceae promoted schizophrenia risk (OR = 1.124, 95% CI: [1.030-1.228], P = 0.009). However, genetically increased Lachnospiraceae reduced schizophrenia risk (OR = 0.878, 95% CI: [0.785-0.983], P = 0.023). In addition, schizophrenia risk was also suppressed by genetically increased Lactobacillaceae (OR = 0.878, 95% CI: [0.776-0.994], P = 0.040) and Verrucomicrobiaceae (OR = 0.860, 95% CI: [0.749-0.987], P = 0.032). Finally, we did not find any significant results in the causal association of other 23 gut microbiome with schizophrenia. CONCLUSION Our analysis suggests that genetically increased Bacteroidales_S24-7 and Prevotellaceae promotes schizophrenia risk, whereas genetically increased Lachnospiraceae, Lactobacillaceae, and Verrucomicrobiaceae reduces schizophrenia risk. Thus, regulation of the disturbed intestinal microbiota may represent a new therapeutic strategy for patients with schizophrenia.
Collapse
Affiliation(s)
- Qi Zeng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | | | | |
Collapse
|
17
|
Wang ZL, Pang SJ, Zhang KW, Li PY, Li PG, Yang C. Dietary vitamin A modifies the gut microbiota and intestinal tissue transcriptome, impacting intestinal permeability and the release of inflammatory factors, thereby influencing Aβ pathology. Front Nutr 2024; 11:1367086. [PMID: 38606018 PMCID: PMC11008281 DOI: 10.3389/fnut.2024.1367086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/07/2024] [Indexed: 04/13/2024] Open
Abstract
Background Alzheimer's disease (AD) is an age-related neurodegenerative disorder with no effective interventions for curing or modifying its progression. However, emerging research suggests that vitamin A in the diet may play a role in both the prevention and treatment of AD, although the exact mechanisms are not fully understood. Objectives This study aims to investigate the dietary vitamin A modifies the gut microbiota and intestinal tissue transcriptome, impacting intestinal permeability and the release of inflammatory factors, thereby influencing Aβ pathology shedding light on its potential as a dietary intervention for AD prevention and treatment. Methods The APP/PS1-AD mouse model was employed and divided into three dietary groups: vitamin A-deficient (VAD), normal vitamin A (VAN), and vitamin A-supplemented (VAS) for a 12-week study. Neurobehavioral functions were assessed using the Morris Water Maze Test (MWM). Enzyme-linked immunosorbent assay (ELISA) was used to quantify levels of Diamine Oxidase (DAO), D-lactate, IL-6, IL-1β, and TNF-a cytokines. Serum vitamin A levels were analyzed via LC-MS/MS analysis. Immunohistochemical analysis and morphometry were performed to evaluate the deposition of Aβ in brain tissue. The gut microbiota of APP/PS1 mice was analyzed using 16S rRNA sequencing analysis. Additionally, transcriptomic analysis was conducted on intestinal tissue from APP/PS1 mice. Results No significant changes in food intake and body weight were observed among the groups. However, the VAD and VAS groups showed reduced food intake compared to the VAN group at various time points. In terms of cognitive function, the VAN group performed better in the Morris Water Maze Test, indicating superior learning and memory abilities. The VAD and VAS groups exhibited impaired performance, with the VAS group performing relatively better than the VAD group. Serum vitamin A concentrations differed significantly among the groups, with the VAS group having the highest concentration. Aβ levels were significantly higher in the VAD group compared to both the VAN and VAS groups. Microbial analysis revealed that the VAS and VAN groups had higher microbial diversity than the VAD group, with specific taxa characterizing each group. The VAN group was characterized by taxa such as Actinohacteriota and Desulfovibrionaceae, while the VAD group was characterized by Parabacteroides and Tannerellaceae. The VAS group showed similarities with both VAN and VAD groups, with taxa like Desulfobacterota and Desulfovibrionaceae being present. The VAD vs. VAS, VAD vs. VAN, and VAS vs. VAN comparisons identified 571, 313, and 243 differentially expressed genes, respectively, which associated with cellular and metabolic processes, and pathway analysis revealed enrichment in pathways related to chemical carcinogenesis, drug metabolism, glutathione metabolism, and immune-related processes. The VAD group exhibited higher levels of D-lactate, diamine oxidase, and inflammatory cytokines (TNF-a, IL-1β, IL-6) compared to the VAN and VAS groups. Conclusion Dietary vitamin A supplementation modulates the gut microbiota, intestinal permeability, inflammatory factors, and Aβ protein formation, offering insights into the pathogenesis of AD and potential therapeutic avenues for further exploration. This research highlights the intricate interplay between diet, gut microbiota, and neurodegenerative processes, emphasizing the importance of dietary interventions in managing AD-related pathologies.
Collapse
Affiliation(s)
- Zhong-Li Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Jiaxing University, The Second Hospital of Jiaxing, Zhejiang, China
| | - Shao-Jie Pang
- Heilongjiang Feihe Dairy Co., Ltd. Feihe Research Institute, Beijing, China
| | - Kai-Wen Zhang
- School of Public Health, Capital Medical University, Beijing, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Peng-Yu Li
- School of Public Health, Capital Medical University, Beijing, China
| | - Peng-Gao Li
- School of Public Health, Capital Medical University, Beijing, China
| | - Chun Yang
- School of Public Health, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Azhar G, Verma A, Robeson MS, Patyal P, Nookaew I, Sharma S, Pangle A, Che Y, Wolfe RR, Wei JY. Short-Term Ingestion of Essential Amino Acid Based Nutritional Supplements or Whey Protein Improves the Physical Function of Older Adults Independently of Gut Microbiome. Mol Nutr Food Res 2024; 68:e2300716. [PMID: 38426663 DOI: 10.1002/mnfr.202300716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/02/2024] [Indexed: 03/02/2024]
Abstract
SCOPE Dietary proteins and essential amino acids (EAAs) are the major nutritional supplements that support the growth and activity of gut microbes contributing to the wellbeing of their host. This study hypothesizes that daily supplementation of the diet with either EAAs or whey protein for 12 weeks would improve the gut microbiome of older adults. METHODS AND RESULTS The stool samples are processed and subjected to Illumina-based 16S ribosomal ribonucleic acid (rRNA) gene amplicon sequencing. In both groups, the most abundant families are found in order of relative abundance included: Bacteroidaceae, Lachnospiraceae, Ruminococcaceae, Prevotellaceae, Rikenellaceae, Enterobacteriaceae, Oscillospiraceae, Tannerellaceae, and Akkermansiaceae, which indicate that these subjects are able to maintain a same healthy microbial diversity in their guts. A significant finding is a reduction of proinflammatory cytokine, interleukin-18 (IL-18) in the EAAs group. It also uses the standard 6-min walking test (6MWT) as a measure of cardiopulmonary fitness. At the end of the study, the subjects in the EAAs group perform significantly better in the 6MWT as compared to the whey group. CONCLUSION It seems plausible that the improved physical performance and reduced proinflammatory cytokine, IL-18 seen in the EAAs group, are independent of changes in gut microbiota.
Collapse
Affiliation(s)
- Gohar Azhar
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Ambika Verma
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Michael S Robeson
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Pankaj Patyal
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Shakshi Sharma
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Amanda Pangle
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Yingni Che
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Robert R Wolfe
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Jeanne Y Wei
- Donald W. Reynolds Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| |
Collapse
|
19
|
Wang X, Wang C, Liu K, Wan Q, Wu W, Liu C. Association between sleep-related phenotypes and gut microbiota: a two-sample bidirectional Mendelian randomization study. Front Microbiol 2024; 15:1341643. [PMID: 38371937 PMCID: PMC10869596 DOI: 10.3389/fmicb.2024.1341643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
Background An increasing body of evidence suggests a profound interrelation between the microbiome and sleep-related concerns. Nevertheless, current observational studies can merely establish their correlation, leaving causality unexplored. Study objectives To ascertain whether specific gut microbiota are causally linked to seven sleep-related characteristics and propose potential strategies for insomnia prevention. Methods The study employed an extensive dataset of gut microbiota genetic variations from the MiBioGen alliance, encompassing 18,340 individuals. Taxonomic classification was conducted, identifying 131 genera and 196 bacterial taxa for analysis. Sleep-related phenotype (SRP) data were sourced from the IEU OpenGWAS project, covering traits such as insomnia, chronotype, and snoring. Instrumental variables (IVs) were selected based on specific criteria, including locus-wide significance, linkage disequilibrium calculations, and allele frequency thresholds. Statistical methods were employed to explore causal relationships, including inverse variance weighted (IVW), MR-Egger, weighted median, and weighted Mode. Sensitivity analyses, pleiotropy assessments, and Bonferroni corrections ensured result validity. Reverse causality analysis and adherence to STROBE-MR guidelines were conducted to bolster the study's rigor. Results Bidirectional Mendelian randomization (MR) analysis reveals a causative interplay between selected gut microbiota and sleep-related phenotypes. Notably, outcomes from the rigorously Bonferroni-corrected examination illuminate profound correlations amid precise compositions of the intestinal microbiome and slumber-associated parameters. Elevated abundance within the taxonomic ranks of class Negativicutes and order Selenomonadales was markedly associated with heightened susceptibility to severe insomnia (OR = 1.03, 95% CI: 1.02-1.05, p = 0.0001). Conversely, the augmented representation of the phylum Lentisphaerae stands in concord with protracted sleep duration (OR = 1.02, 95% CI: 1.01-1.04, p = 0.0005). Furthermore, heightened exposure to the genus Senegalimassilia exhibits the potential to ameliorate the manifestation of snoring symptoms (OR = 0.98, 95% CI: 0.96-0.99, p = 0.0001). Conclusion This study has unveiled the causal relationship between gut microbiota and SRPs, bestowing significant latent value upon future endeavors in both foundational research and clinical therapy.
Collapse
Affiliation(s)
| | | | | | | | - Wenzhong Wu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chengyong Liu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
20
|
Priori EC, Ratto D, De Luca F, Sandionigi A, Savino E, Giammello F, Romeo M, Brandalise F, Roda E, Rossi P. Hericium erinaceus Extract Exerts Beneficial Effects on Gut-Neuroinflammaging-Cognitive Axis in Elderly Mice. BIOLOGY 2023; 13:18. [PMID: 38248449 PMCID: PMC10813749 DOI: 10.3390/biology13010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024]
Abstract
Ageing is a biological phenomenon that determines the impairment of cognitive performances, in particular, affecting memory. Inflammation and cellular senescence are known to be involved in the pathogenesis of cognitive decline. The gut microbiota-brain axis could exert a critical role in influencing brain homeostasis during ageing, modulating neuroinflammation, and possibly leading to inflammaging. Due to their anti-ageing properties, medicinal mushrooms can be utilised as a resource for developing pharmaceuticals and functional foods. Specifically, Hericium erinaceus (He), thanks to its bioactive metabolites, exerts numerous healthy beneficial effects, such as reinforcing the immune system, counteracting ageing, and improving cognitive performance. Our previous works demonstrated the capabilities of two months of He1 standardised extract oral supplementation in preventing cognitive decline in elderly frail mice. Herein, we showed that this treatment did not change the overall gut microbiome composition but significantly modified the relative abundance of genera specifically involved in cognition and inflammation. Parallelly, a significant decrease in crucial markers of inflammation and cellular senescence, i.e., CD45, GFAP, IL6, p62, and γH2AX, was demonstrated in the dentate gyrus and Cornus Ammonis hippocampal areas through immunohistochemical experiments. In summary, we suggested beneficial and anti-inflammatory properties of He1 in mouse hippocampus through the gut microbiome-brain axis modulation.
Collapse
Affiliation(s)
- Erica Cecilia Priori
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (F.G.); (M.R.)
| | - Daniela Ratto
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (F.G.); (M.R.)
| | - Fabrizio De Luca
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (F.G.); (M.R.)
| | - Anna Sandionigi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy;
- Quantia Consulting S.r.l., Via Petrarca 20, 22066 Mariano Comense, Italy
| | - Elena Savino
- Department of Earth and Environmental Science, University of Pavia, 27100 Pavia, Italy;
| | - Francesca Giammello
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (F.G.); (M.R.)
| | - Marcello Romeo
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (F.G.); (M.R.)
| | | | - Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Paola Rossi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (F.G.); (M.R.)
| |
Collapse
|