1
|
Dawson KLD, Seuberlich T, Pesavento PA. Neurotropic enteric viruses in animals: Comparative research, knowledge gaps, and the role of pathology. Vet Pathol 2025:3009858251334347. [PMID: 40259779 DOI: 10.1177/03009858251334347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Enteric viruses are commonly associated with gastrointestinal diseases but have the capacity, with mostly unknown triggers, to invade the central nervous system (CNS). Neuropathogenic enteric viruses (NEV) that are able to cross or bypass the blood-brain barrier cause debilitating neurological inflammation and disease. The most notorious example of an enteric virus with potential neurotropism is poliovirus, a member of the Picornaviridae family. While poliovirus has been largely eradicated due to extensive vaccination programs, other nonpolio picornaviruses, as well as enteric viruses of other families, are increasingly recognized as causative agents in cases of encephalitis of unknown origin. In the past decade, cutting-edge high-throughput sequencing and bioinformatics strategies have revealed an increasing number of NEV associated with neurological diseases in various animal species. Information, especially pathogenesis studies, on animal enteric viruses with neurotropism is relatively scarce. This review provides an overview of known enteric viruses that invade the CNS, which should support our awareness of the potential etiologic agents and encourage a diagnostic plan that includes NEV. The many knowledge gaps in host susceptibility and viral pathogenesis along the gut-brain axis would benefit from increased discovery efforts and a deeper understanding of the pathogenesis and potential of enteric viruses affecting the nervous system of animals. Crossing of species barriers is common among enteric viruses, so a one-health approach to increase awareness of animal and human NEV would contribute to effective strategies to monitor, manage, and contain emerging zoonotic outbreaks.
Collapse
|
2
|
Cabrera Ranaldi EDLRM, Bramlett HM, Umland O, Levine LI, Keane RW, de Rivero Vaccari JP, Dietrich WD, Kerr NA. Gasdermin-D Genetic Knockout Reduces Inflammasome-Induced Disruption of the Gut-Brain Axis After Traumatic Brain Injury. Int J Mol Sci 2025; 26:3512. [PMID: 40331993 PMCID: PMC12027180 DOI: 10.3390/ijms26083512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 05/08/2025] Open
Abstract
Traumatic brain injury (TBI) pathology is significantly mediated by an inflammatory response involving inflammasome activation, resulting in the release of interleukin (IL)-1β and pyroptotic cell death through gasdermin-D (GSDMD) cleavage. Inflammasome components are transported through extracellular vesicles (EVs) to mediate systemic inflammation in peripheral organs, including the gut. The purpose of this study was to determine the protective effect of GSDMD knockout (KO) on TBI-induced inflammasome activation, EV signaling, and gut function. GSDMD-KO and C57BL6 (WT) mice were subjected to the controlled cortical impact model of TBI. Cytokine expression was assessed with electrochemiluminescent immunoassay and immunoblotting of the cerebral cortex and gut. EVs were examined for pathology-associated markers using flow cytometry, and gut permeability was determined. GSDMD-KO attenuated IL-1β and IL-6 expression in the cerebral cortex and reduced IL-1β and IL-18 in the gut 3 days post-injury. GSDMD-KO mice had decreased neuronal- and gut-derived EVs compared to WT mice post-TBI. GSDMD-KO EVs also had decreased IL-1β and different surface marker expression post-TBI. GSDMD-KO mice had decreased gut permeability after TBI. These data demonstrate that GSDMD ablation improves post-TBI inflammation and gut pathology, suggesting that GSDMD may serve as a potential therapeutic target for the improvement of TBI-associated pathologies.
Collapse
Affiliation(s)
- Erika d. l. R. M. Cabrera Ranaldi
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.d.l.R.M.C.R.); (H.M.B.); (L.I.L.); (R.W.K.); (J.P.d.R.V.); (W.D.D.)
| | - Helen M. Bramlett
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.d.l.R.M.C.R.); (H.M.B.); (L.I.L.); (R.W.K.); (J.P.d.R.V.); (W.D.D.)
- Bruce W. Carter Department of Veteran Affairs Medical Center, Miami, FL 33136, USA
| | - Oliver Umland
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Leo I. Levine
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.d.l.R.M.C.R.); (H.M.B.); (L.I.L.); (R.W.K.); (J.P.d.R.V.); (W.D.D.)
| | - Robert W. Keane
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.d.l.R.M.C.R.); (H.M.B.); (L.I.L.); (R.W.K.); (J.P.d.R.V.); (W.D.D.)
- Department of Cellular Physiology and Molecular Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.d.l.R.M.C.R.); (H.M.B.); (L.I.L.); (R.W.K.); (J.P.d.R.V.); (W.D.D.)
- Department of Cellular Physiology and Molecular Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - W. Dalton Dietrich
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.d.l.R.M.C.R.); (H.M.B.); (L.I.L.); (R.W.K.); (J.P.d.R.V.); (W.D.D.)
| | - Nadine A. Kerr
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.d.l.R.M.C.R.); (H.M.B.); (L.I.L.); (R.W.K.); (J.P.d.R.V.); (W.D.D.)
| |
Collapse
|
3
|
Gualtieri P, Frank G, Cianci R, Ciancarella L, Romano L, Ortoman M, Bigioni G, Nicoletti F, Falco MI, La Placa G, Di Renzo L. Exploring the Efficacy and Safety of Nutritional Supplements in Alzheimer's Disease. Nutrients 2025; 17:922. [PMID: 40077790 PMCID: PMC11901643 DOI: 10.3390/nu17050922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Background: Alzheimer's disease (AD) represents one of the major challenges of modern medicine, with a growing impact on public health and healthcare systems. In recent years, dietary supplements use has been the subject of increasing interest as a complementary strategy for the prevention and treatment of the disease. Materials and Methods: A Review of reviews was conducted following PRISMA guidelines and REAPPRAISED checklist to evaluate the efficacy and safety of supplement use in AD. The search, performed across major scientific databases, identified 54 relevant articles, including 53 reviews and one mini-review, after applying specific inclusion criteria and removing duplicates. Results: The growing body of evidence suggests that some supplements may help reduce cognitive decline, inflammation, and target mechanisms behind AD. However, many of these supplements are still under investigation, with mixed results highlighting the need for high-quality research. A key challenge is the lack of data on optimal dosages, administration duration, and long-term safety, which limits clinical guidelines. Some studies have reported positive effects from specific regimens, such as curcumin (800 mg/day), omega-3 fatty acids (2 g/day), and resveratrol (600 mg/day). Other supplements, like phosphatidylserine (300 mg/day), multinutrient formulations, probiotics, vitamin E (2000 IU/day), and melatonin (3-10 mg/day), also show benefits, though study variability makes conclusions uncertain. Conclusions: While certain supplements show potential in mitigating cognitive decline in AD, inconsistent findings and gaps in dosage and safety data highlight the need for rigorous, large-scale trials. Future research should focus on personalized, multimodal strategies integrating targeted supplementation, dietary patterns, and microbiota-gut-brain interactions for enhanced neuroprotection.
Collapse
Affiliation(s)
- Paola Gualtieri
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Giulia Frank
- School of Specialization in Food Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.F.); (L.C.); (L.R.); (G.L.P.)
- PhD School of Applied Medical-Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Lucilla Ciancarella
- School of Specialization in Food Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.F.); (L.C.); (L.R.); (G.L.P.)
| | - Leonardo Romano
- School of Specialization in Food Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.F.); (L.C.); (L.R.); (G.L.P.)
| | - Moreno Ortoman
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Giulia Bigioni
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Francesco Nicoletti
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Mario Isidoro Falco
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Giada La Placa
- School of Specialization in Food Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.F.); (L.C.); (L.R.); (G.L.P.)
- PhD School of Applied Medical-Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
4
|
Sheffield Z, Paul P, Krishnakumar S, Pan D. Current Strategies and Future Directions of Wearable Biosensors for Measuring Stress Biochemical Markers for Neuropsychiatric Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411339. [PMID: 39688117 PMCID: PMC11791988 DOI: 10.1002/advs.202411339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/21/2024] [Indexed: 12/18/2024]
Abstract
Most wearable biosensors aimed at capturing psychological state target stress biomarkers in the form of physical symptoms that can correlate with dysfunction in the central nervous system (CNS). However, such markers lack the specificity needed for diagnostic or preventative applications. Wearable biochemical sensors (WBSs) have the potential to fill this gap, however, the technology is still in its infancy. Most WBSs proposed thus far target cortisol. Although cortisol detection is demonstrated as a viable method for approximating the extent and severity of psychological stress, the hormone also lacks specificity. Multiplex WBSs that simultaneously target cortisol alongside other viable stress-related biochemical markers (SBMs) can prove to be indispensable for understanding how psychological stress contributes to the pathophysiology of neuropsychiatric illnesses (NPIs) and, thus, lead to the discovery of new biomarkers and more objective clinical tools. However, none target more than one SBM implicated in NPIs. Till this review, cortisol's connection to dysfunctions in the CNS, to other SBMs, and their implication in various NPIs has not been discussed in the context of developing WBS technology. As such, this review is meant to inform the biosensing and neuropsychiatric communities of viable future directions and possible challenges for WBS technology for neuropsychiatric applications.
Collapse
Affiliation(s)
- Zach Sheffield
- Huck Institutes of the Life SciencesThe Pennsylvania State UniversityState CollegePA16802USA
- Department of Nuclear EngineeringThe Pennsylvania State UniversityState CollegePA16802USA
- The Center for Advanced Sensing TechnologyUniversity of Maryland – Baltimore CountyBaltimoreMD21250USA
- Chemical, Biochemicaland Environmental Engineering DepartmentUniversity of Maryland – Baltimore CountyBaltimoreMD21250USA
| | - Priyanka Paul
- Department of PediatricsUniversity of Maryland Baltimore School of MedicineBaltimoreMD21201USA
| | - Shraddha Krishnakumar
- Huck Institutes of the Life SciencesThe Pennsylvania State UniversityState CollegePA16802USA
| | - Dipanjan Pan
- Huck Institutes of the Life SciencesThe Pennsylvania State UniversityState CollegePA16802USA
- Department of Nuclear EngineeringThe Pennsylvania State UniversityState CollegePA16802USA
| |
Collapse
|
5
|
Faraji N, Payami B, Ebadpour N, Gorji A. Vagus nerve stimulation and gut microbiota interactions: A novel therapeutic avenue for neuropsychiatric disorders. Neurosci Biobehav Rev 2025; 169:105990. [PMID: 39716559 DOI: 10.1016/j.neubiorev.2024.105990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024]
Abstract
The rising prevalence of treatment-resistant neuropsychiatric disorders underscores the need for innovative and effective treatment strategies. The gut microbiota (GM) plays a pivotal role in the progression of these diseases, influencing the brain and mental health through the gut-brain axis (GBA). The vagus nerve plays a significant role in the GBA, making it a key area of focus for potential novel therapeutic interventions. Vagus nerve stimulation (VNS) was introduced and approved as a treatment for refractory forms of some neuropsychological disorders, such as depression and epilepsy. Considering its impact on several brain regions that play a vital part in mood, motivation, affection, and cognitive function, the VNS has shown significant therapeutic potential for treating a variety of neuropsychiatric disorders. Using VNS to target the bidirectional communication pathways linking the GM and the VN could present an exciting and novel approach to treating neuropsychological disorders. Imbalances in the GM, such as dysbiosis, can impair the communication pathways between the gut and the brain, contributing to the development of neuropsychological disorders. VNS shows potential for modulating these interconnected systems, helping to restore balance. Interestingly, the composition of the GM may also influence the effectiveness of VNS, as it has the potential to modify the brain's response to this therapeutic approach. This study provides a comprehensive analysis of a relatively unexplored but noteworthy interaction between VNS and GM in the treatment of neuropsychiatric disorders. In addition, we discussed the mechanisms, therapeutic potential, and clinical implications of VNS on the GBA across neuropsychiatric disorders.
Collapse
Affiliation(s)
- Navid Faraji
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahareh Payami
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Epilepsy Research Center, Department of Neurosurgery, Münster University, Germany; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
| |
Collapse
|
6
|
Patel RA, Panche AN, Harke SN. Gut microbiome-gut brain axis-depression: interconnection. World J Biol Psychiatry 2025; 26:1-36. [PMID: 39713871 DOI: 10.1080/15622975.2024.2436854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/24/2024]
Abstract
OBJECTIVES The relationship between the gut microbiome and mental health, particularly depression, has gained significant attention. This review explores the connection between microbial metabolites, dysbiosis, and depression. The gut microbiome, comprising diverse microorganisms, maintains physiological balance and influences health through the gut-brain axis, a communication pathway between the gut and the central nervous system. METHODS Dysbiosis, an imbalance in the gut microbiome, disrupts this axis and worsens depressive symptoms. Factors like diet, antibiotics, and lifestyle can cause this imbalance, leading to changes in microbial composition, metabolism, and immune responses. This imbalance can induce inflammation, disrupt neurotransmitter regulation, and affect hormonal and epigenetic processes, all linked to depression. RESULTS Microbial metabolites, such as short-chain fatty acids and neurotransmitters, are key to gut-brain communication, influencing immune regulation and mood. The altered production of these metabolites is associated with depression. While progress has been made in understanding the gut-brain axis, more research is needed to clarify causative relationships and develop new treatments. The emerging field of psychobiotics and microbiome-targeted therapies shows promise for innovative depression treatments by harnessing the gut microbiome's potential. CONCLUSIONS Epigenetic mechanisms, including DNA methylation and histone modifications, are crucial in how the gut microbiota impacts mental health. Understanding these mechanisms offers new prospects for preventing and treating depression through the gut-brain axis.
Collapse
Affiliation(s)
- Ruhina Afroz Patel
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| | - Archana N Panche
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| | - Sanjay N Harke
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| |
Collapse
|
7
|
Yan Y, Deng W, Shi C, Xie J, Sui D. Helicobacter pylori infection and its impact on psoriasis: a systematic review and meta-analysis. Front Med (Lausanne) 2024; 11:1500670. [PMID: 39712183 PMCID: PMC11659017 DOI: 10.3389/fmed.2024.1500670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
Introduction Psoriasis is a chronic skin condition characterized by immune-mediated inflammation. Recent research suggests a possible interaction between Helicobacter pylori infection and the immunopathogenesis of psoriasis. However, over the past 5 years, no significant new evidence has clarified the relationship between H. pylori and skin diseases. This study aimed to determine the relationship between H. pylori infection and psoriasis through a systematic review and meta-analysis. Methods We searched for articles published in databases including PubMed, Embase, the China National Knowledge Infrastructure, and Web of Science up to January 1, 2024. Statistical analyses were conducted using Review Manager 5.3 and Stata 12.0 software. Results Our search yielded 271 papers. After rigorous screening by multiple reviewers, 15 studies involving 2,427 individuals were included. The odds ratio for H. pylori infection was significantly higher in the psoriasis group than in the control group (odds ratio = 1.94, 95% confidence interval: 1.40-2.68, p < 0.0001). Subgroup analysis revealed no significant differences in H. pylori infection rates between Asia and Europe. The type of study also did not significantly affect infection rates. The enzyme-linked immunosorbent assay detected H. pylori infection at a significantly higher rate than the breath test. Furthermore, the prevalence of H. pylori infection differed significantly between patients with moderate-to-severe psoriasis and those with mild psoriasis. Conclusion Our findings suggest a relationship between psoriasis and H. pylori infection, with variations observed based on geography, testing methods, and disease severity. These findings hold significant potential for guiding clinical practice. Systematic review registration http://www.crd.york.ac.uk/, identifier CRD42022359427.
Collapse
Affiliation(s)
- Yijiao Yan
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhui Deng
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chengzhi Shi
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaxin Xie
- First Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Daoshun Sui
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
- First Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
8
|
Huang Z, Lin J, Ding Q, Li X, Lin L, Lu T. Causal relationship between gut microbiota, structural connectivity, and psoriasis: a mendelian randomization. Arch Dermatol Res 2024; 317:74. [PMID: 39636338 DOI: 10.1007/s00403-024-03614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/13/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Affiliation(s)
- Zirui Huang
- Department of Dermatology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jiahua Lin
- Department of Dermatology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Qike Ding
- Department of Dermatology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaoting Li
- Department of Dermatology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Lihong Lin
- Department of Dermatology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Tao Lu
- Department of Dermatology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
9
|
Acton S, O'Donnell MM, Periyasamy K, Dixit B, Eishingdrelo H, Hill C, Paul Ross R, Chesnel L. LPA3 agonist-producing Bacillus velezensis ADS024 is efficacious in multiple neuroinflammatory disease models. Brain Behav Immun 2024; 121:384-402. [PMID: 39147172 DOI: 10.1016/j.bbi.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024] Open
Abstract
Neuroinflammation is a common component of neurological disorders. In the gut-brain-immune axis, bacteria and their metabolites are now thought to play a role in the modulation of the nervous and immune systems which may impact neuroinflammation. In this respect, commensal bacteria of humans have recently been shown to produce metabolites that mimic endogenous G-protein coupled receptor (GPCR) ligands. To date, it has not been established whether plant commensal bacteria, which may be ingested by animals including humans, can impact the gut-brain-immune axis via GPCR agonism. We screened an isopropanol (IPA) extract of the plant commensal Bacillus velezensis ADS024, a non-engrafting live biotherapeutic product (LBP) with anti-inflammatory properties isolated from human feces, against a panel of 168 GPCRs and identified strong agonism of the lysophosphatidic acid (LPA) receptor LPA3. The ADS024 IPA extracted material (ADS024-IPA) did not agonize LPA2, and only very weakly agonized LPA1. The agonism of LPA3 was inhibited by the reversible LPA1/3 antagonist Ki16425. ADS024-IPA signaled downstream of LPA3 through G-protein-induced calcium release, recruitment of β-arrestin, and recruitment of the neurodegeneration-associated proteins 14-3-3γ, ε and ζ but did not recruit the β isoform. Since LPA3 agonism was previously indirectly implicated in the reduction of pathology in models of Parkinson's disease (PD) and multiple sclerosis (MS) by use of the nonselective antagonist Ki16425, and since we identified an LPA3-specific agonist within ADS024, we sought to examine whether LPA3 might indeed be part of a broad underlying mechanism to control neuroinflammation. We tested oral treatment of ADS024 in multiple models of neuroinflammatory diseases using three models of PD, two models of MS, and a model each of amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and chemo-induced peripheral neuropathy (CIPN). ADS024 treatment improved model-specific functional effects including improvements in motor movement, breathing and swallowing, and allodynia suggesting that ADS024 treatment impacted a universal underlying neuroinflammatory mechanism regardless of the initiating cause of disease. We used the MOG-EAE mouse model to examine early events after disease initiation and found that ADS024 attenuated the increase in circulating lymphocytes and changes in neutrophil subtypes, and ADS024 attenuated the early loss of cell-surface LPA3 receptor expression on circulating white blood cells. ADS024 efficacy was partially inhibited by Ki16425 in vivo suggesting LPA3 may be part of its mechanism. Altogether, these data suggest that ADS024 and its LPA3 agonism activity should be investigated further as a possible treatment for diseases with a neuroinflammatory component.
Collapse
Affiliation(s)
| | | | | | | | | | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | |
Collapse
|
10
|
Zou X, Zou X, Gao L, Zhao H. Gut microbiota and psoriasis: pathogenesis, targeted therapy, and future directions. Front Cell Infect Microbiol 2024; 14:1430586. [PMID: 39170985 PMCID: PMC11335719 DOI: 10.3389/fcimb.2024.1430586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Background Psoriasis is one of the most common autoimmune skin diseases. Increasing evidence shows that alterations in the diversity and function of microbiota can participate in the pathogenesis of psoriasis through various pathways and mechanisms. Objective To review the connection between microbial changes and psoriasis, how microbial-targeted therapy can be used to treat psoriasis, as well as the potential of prebiotics, probiotics, synbiotics, fecal microbiota transplantation, diet, and Traditional Chinese Medicine as supplementary and adjunctive therapies. Methods Literature related to the relationship between psoriasis and gut microbiota was searched in PubMed and CNKI. Results Adjunct therapies such as dietary interventions, traditional Chinese medicine, and probiotics can enhance gut microbiota abundance and diversity in patients with psoriasis. These therapies stimulate immune mediators including IL-23, IL-17, IL-22, and modulate gamma interferon (IFN-γ) along with the NF-kB pathway, thereby suppressing the release of pro-inflammatory cytokines and ameliorating systemic inflammatory conditions. Conclusion This article discusses the direction of future research and clinical treatment of psoriasis from the perspective of intestinal microbiota and the mechanism of traditional Chinese medicine, so as to provide clinicians with more comprehensive diagnosis and treatment options and bring greater hope to patients with psoriasis.
Collapse
Affiliation(s)
- Xinyan Zou
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, China
| | - Xinfu Zou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Longxia Gao
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, China
| | - Hanqing Zhao
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, China
| |
Collapse
|
11
|
Caldarelli M, Rio P, Marrone A, Ocarino F, Chiantore M, Candelli M, Gasbarrini A, Gambassi G, Cianci R. Gut-Brain Axis: Focus on Sex Differences in Neuroinflammation. Int J Mol Sci 2024; 25:5377. [PMID: 38791415 PMCID: PMC11120930 DOI: 10.3390/ijms25105377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, there has been a growing interest in the concept of the "gut-brain axis". In addition to well-studied diseases associated with an imbalance in gut microbiota, such as cancer, chronic inflammation, and cardiovascular diseases, research is now exploring the potential role of gut microbial dysbiosis in the onset and development of brain-related diseases. When the function of the intestinal barrier is altered by dysbiosis, the aberrant immune system response interacts with the nervous system, leading to a state of "neuroinflammation". The gut microbiota-brain axis is mediated by inflammatory and immunological mechanisms, neurotransmitters, and neuroendocrine pathways. This narrative review aims to illustrate the molecular basis of neuroinflammation and elaborate on the concept of the gut-brain axis by virtue of analyzing the various metabolites produced by the gut microbiome and how they might impact the nervous system. Additionally, the current review will highlight how sex influences these molecular mechanisms. In fact, sex hormones impact the brain-gut microbiota axis at different levels, such as the central nervous system, the enteric nervous one, and enteroendocrine cells. A deeper understanding of the gut-brain axis in human health and disease is crucial to guide diagnoses, treatments, and preventive interventions.
Collapse
Affiliation(s)
- Mario Caldarelli
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Pierluigi Rio
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Andrea Marrone
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Francesca Ocarino
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Monica Chiantore
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Marcello Candelli
- Department of Emergency, Anesthesiological and Reanimation Sciences, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| |
Collapse
|
12
|
Louka E, Koumandou VL. The Emerging Role of Human Gut Bacteria Extracellular Vesicles in Mental Disorders and Developing New Pharmaceuticals. Curr Issues Mol Biol 2024; 46:4751-4767. [PMID: 38785554 PMCID: PMC11120620 DOI: 10.3390/cimb46050286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
In recent years, further evidence has emerged regarding the involvement of extracellular vesicles in various human physiopathological conditions such as Alzheimer's disease, Parkinson's disease, irritable bowel syndrome, and mental disorders. The biogenesis and cargo of such vesicles may reveal their impact on human health nd disease and set the underpinnings for the development of novel chemical compounds and pharmaceuticals. In this review, we examine the link between bacteria-derived exosomes in the gastrointestinal tract and mental disorders, such as depression and anxiety disorders. Crucially, we focus on whether changes in the gut environment affect the human mental state or the other way around. Furthermore, the possibility of handling bacteria-derived exosomes as vectors of chemicals to treat such conditions is examined.
Collapse
Affiliation(s)
- Effrosyni Louka
- Genetics Laboratory, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Vassiliki Lila Koumandou
- Genetics Laboratory, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
13
|
Iwaniak P, Owe-Larsson M, Urbańska EM. Microbiota, Tryptophan and Aryl Hydrocarbon Receptors as the Target Triad in Parkinson's Disease-A Narrative Review. Int J Mol Sci 2024; 25:2915. [PMID: 38474162 DOI: 10.3390/ijms25052915] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
In the era of a steadily increasing lifespan, neurodegenerative diseases among the elderly present a significant therapeutic and socio-economic challenge. A properly balanced diet and microbiome diversity have been receiving increasing attention as targets for therapeutic interventions in neurodegeneration. Microbiota may affect cognitive function, neuronal survival and death, and gut dysbiosis was identified in Parkinson's disease (PD). Tryptophan (Trp), an essential amino acid, is degraded by microbiota and hosts numerous compounds with immune- and neuromodulating properties. This broad narrative review presents data supporting the concept that microbiota, the Trp-kynurenine (KYN) pathway and aryl hydrocarbon receptors (AhRs) form a triad involved in PD. A disturbed gut-brain axis allows the bidirectional spread of pro-inflammatory molecules and α-synuclein, which may contribute to the development/progression of the disease. We suggest that the peripheral levels of kynurenines and AhR ligands are strongly linked to the Trp metabolism in the gut and should be studied together with the composition of the microbiota. Such an approach can clearly delineate the sub-populations of PD patients manifesting with a disturbed microbiota-Trp-KYN-brain triad, who would benefit from modifications in the Trp metabolism. Analyses of the microbiome, Trp-KYN pathway metabolites and AhR signaling may shed light on the mechanisms of intestinal distress and identify new targets for the diagnosis and treatment in early-stage PD. Therapeutic interventions based on the combination of a well-defined food regimen, Trp and probiotics seem of potential benefit and require further experimental and clinical research.
Collapse
Affiliation(s)
- Paulina Iwaniak
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Maja Owe-Larsson
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland
- Laboratory of Center for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Ewa M Urbańska
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
14
|
Kamel M, Aleya S, Alsubih M, Aleya L. Microbiome Dynamics: A Paradigm Shift in Combatting Infectious Diseases. J Pers Med 2024; 14:217. [PMID: 38392650 PMCID: PMC10890469 DOI: 10.3390/jpm14020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
Infectious diseases have long posed a significant threat to global health and require constant innovation in treatment approaches. However, recent groundbreaking research has shed light on a previously overlooked player in the pathogenesis of disease-the human microbiome. This review article addresses the intricate relationship between the microbiome and infectious diseases and unravels its role as a crucial mediator of host-pathogen interactions. We explore the remarkable potential of harnessing this dynamic ecosystem to develop innovative treatment strategies that could revolutionize the management of infectious diseases. By exploring the latest advances and emerging trends, this review aims to provide a new perspective on combating infectious diseases by targeting the microbiome.
Collapse
Affiliation(s)
- Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 11221, Egypt
| | - Sami Aleya
- Faculty of Medecine, Université de Bourgogne Franche-Comté, Hauts-du-Chazal, 25030 Besançon, France;
| | - Majed Alsubih
- Department of Civil Engineering, King Khalid University, Guraiger, Abha 62529, Saudi Arabia;
| | - Lotfi Aleya
- Laboratoire de Chrono-Environnement, Université de Bourgogne Franche-Comté, UMR CNRS 6249, La Bouloie, 25030 Besançon, France;
| |
Collapse
|
15
|
Vidal-Gallardo A, Méndez Benítez JE, Flores Rios L, Ochoa Meza LF, Mata Pérez RA, Martínez Romero E, Vargas Beltran AM, Beltran Hernandez JL, Banegas D, Perez B, Martinez Ramirez M. The Role of Gut Microbiome in the Pathogenesis and the Treatment of Inflammatory Bowel Diseases. Cureus 2024; 16:e54569. [PMID: 38516478 PMCID: PMC10957260 DOI: 10.7759/cureus.54569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
Inflammatory bowel disease (IBD), which includes ulcerative colitis and Crohn's disease, is a chronic condition characterized by inflammation of the gastrointestinal tract. Its exact cause is unknown, but it's thought to result from a dysregulated immune response influenced by various factors, including changes in the intestinal microbiota, diet, lifestyle, and genetics. The gut microbiome, consisting of diverse microorganisms, plays a crucial role in maintaining physiological balance, with its disruption leading to inflammatory responses typical of IBD. Treatments primarily aim at symptom control, employing immunomodulators, corticosteroids, and newer approaches like probiotics, prebiotics, fecal transplants, and dietary modifications, all focusing on leveraging the microbiota's potential in disease management. These strategies aim to restore the delicate balance of the gut microbiome, typically altered in IBD, marked by a decrease in beneficial bacteria and an increase in harmful pathogens. This review underscores the importance of the gut microbiome in the pathogenesis and treatment of IBD, highlighting the shift towards personalized medicine and the necessity for further research in understanding the complex interactions between the gut microbiota, immune system, and genetics in IBD. It points to the potential of emerging treatments and the importance of a multifaceted approach in managing this complex and challenging disease.
Collapse
Affiliation(s)
| | | | | | - Luis F Ochoa Meza
- General Surgery, Hospital General ISSSTE Presidente General Lázaro Cárdenas, Chihuahua, MEX
| | - Rodrigo A Mata Pérez
- General Practice, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Ciudad de México, MEX
| | | | | | | | - Douglas Banegas
- General Medicine, Universidad Nacional Autonoma de Honduras, San Pedro Sula, HND
| | - Brenda Perez
- Nutrition, Universidad ICEL, Ciudad de México, MEX
| | | |
Collapse
|
16
|
Lerner A, Benzvi C, Vojdani A. The Potential Harmful Effects of Genetically Engineered Microorganisms (GEMs) on the Intestinal Microbiome and Public Health. Microorganisms 2024; 12:238. [PMID: 38399642 PMCID: PMC10892181 DOI: 10.3390/microorganisms12020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Gut luminal dysbiosis and pathobiosis result in compositional and biodiversified alterations in the microbial and host co-metabolites. The primary mechanism of bacterial evolution is horizontal gene transfer (HGT), and the acquisition of new traits can be achieved through the exchange of mobile genetic elements (MGEs). Introducing genetically engineered microbes (GEMs) might break the harmonized balance in the intestinal compartment. The present objectives are: 1. To reveal the role played by the GEMs' horizontal gene transfers in changing the landscape of the enteric microbiome eubiosis 2. To expand on the potential detrimental effects of those changes on the human genome and health. A search of articles published in PubMed/MEDLINE, EMBASE, and Scielo from 2000 to August 2023 using appropriate MeSH entry terms was performed. The GEMs' horizontal gene exchanges might induce multiple human diseases. The new GEMs can change the long-term natural evolution of the enteric pro- or eukaryotic cell inhabitants. The worldwide regulatory authority's safety control of GEMs is not enough to protect public health. Viability, biocontainment, and many other aspects are only partially controlled and harmful consequences for public health should be avoided. It is important to remember that prevention is the most cost-effective strategy and primum non nocere should be the focus.
Collapse
Affiliation(s)
- Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Center for Autoimmune Diseases, Ramat Gan 52621, Israel;
- Ariel Campus, Ariel University, Ariel 40700, Israel
| | - Carina Benzvi
- Chaim Sheba Medical Center, The Zabludowicz Center for Autoimmune Diseases, Ramat Gan 52621, Israel;
| | | |
Collapse
|