1
|
Depret L, Sueur C. Management of Coexistence and Conflicts Between Humans and Macaques in Japan. Animals (Basel) 2025; 15:888. [PMID: 40150417 PMCID: PMC11939813 DOI: 10.3390/ani15060888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/09/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Conflicts between humans and Japanese macaques (Macaca fuscata) have intensified due to urban and agricultural expansion, reducing natural habitats and pushing macaques into human settlements. This review examines strategies for managing human-macaque coexistence in Japan. Since the 1970s, urbanisation and deforestation have led to increased macaque migration into populated areas, resulting in property damage, crop loss, and, in some cases, aggressive encounters. The growing macaque population underscores the urgency of effective management programmes. Strategies include preventive measures, such as weeding to limit food sources, habitat modification, and community-based interventions to reduce attractants. Non-lethal deterrents, including visual and auditory scare tactics, trained guard animals, and electric fences, have been implemented to discourage macaques from entering human spaces. Physical barriers, such as fences and buffer zones, provide long-term mitigation but require maintenance and community cooperation. Fertility control, including sterilisation and hormonal contraception, offers a long-term population management solution but presents logistical challenges. Lethal control and capture-relocation, though controversial, remain options for particularly problematic individuals. Additionally, integrating One Health and One Conservation approaches into macaque management allows for a holistic strategy that considers disease risks, ecological balance, and ethical implications. A balanced management plan that incorporates multiple strategies, community participation, and continuous monitoring is crucial for mitigating conflicts and fostering sustainable coexistence between humans and macaques.
Collapse
Affiliation(s)
- Léane Depret
- ANTHROPO-LAB, ETHICS EA 7446, Université Catholique de Lille, 59000 Lille, France;
| | - Cédric Sueur
- Universite de Strasbourg, IPHC, CNRS, UMR 7178, 67087 Strasbourg, France
- Institut Universitaire de France, 75231 Paris, France
| |
Collapse
|
2
|
Rainho A, Ferreira DF, Makori B, Bartonjo M, Repas-Gonçalves M, Kirakou S, Maghuwa F, Webala PW, Tomé R. Guild Vertical Stratification and Drivers of Bat Foraging in a Semi-Arid Tropical Region, Kenya. BIOLOGY 2023; 12:1116. [PMID: 37627000 PMCID: PMC10452385 DOI: 10.3390/biology12081116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
Africa faces significant challenges in reconciling economic and social development while preserving its natural resources. Little is known about the diverse bat community on the continent, particularly in drier ecosystems. A better understanding of the bat community will help improve and inform the management of these ecosystems. Our study aimed to provide detailed information on the main drivers of bat richness and activity at three different heights above the ground in a semi-arid region of Kenya. We assessed how bat activity varied with space and height using acoustic sampling and complementary methods. We sampled 48 sites at ground level and two sites on meteorological masts at 20 m and 35 m above the ground. We recorded more than 20 bat species, including one species of concern for conservation. Our models showed that the use of space varies with bat guild, creating trade-offs in the variables that affect their activity. Low-flying bat species are mostly associated with habitat variables, whereas high-flying species are more dependent on weather conditions. Our study highlights the richness of bat assemblages in semi-arid environments and emphasizes the need for management measures to protect bat diversity in the face of habitat degradation caused by climate change, land management, and development projects.
Collapse
Affiliation(s)
- Ana Rainho
- cE3c—Centre for Ecology, Evolution and Environmental Changes & CHANGE—Global Change and Sustainability Institute, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Diogo F. Ferreira
- CIBIO-InBIO, Research Centre in Biodiversity and Genetic Resources, BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, University of Porto, 4485-661 Vairão, Portugal
| | - Beryl Makori
- The Pangolin Project, P.O. Box 15156, Langata 00509, Kenya
| | - Michael Bartonjo
- Mammalogy Section, National Museums of Kenya, P.O. Box 40658, Nairobi 00100, Kenya
| | | | - Stanley Kirakou
- Environment and Sustainable Development Department, Kenya Electricity Generating Company, P.O. Box 47936, Nairobi 00100, Kenya
| | - Florah Maghuwa
- Environment and Sustainable Development Department, Kenya Electricity Generating Company, P.O. Box 47936, Nairobi 00100, Kenya
| | - Paul W. Webala
- Department of Forestry and Wildlife Management, Maasai Mara University, P.O. Box 861, Narok 20500, Kenya
| | - Ricardo Tomé
- The Biodiversity Consultancy, 3E King’s Parade, Cambridge CB2 1SJ, UK
| |
Collapse
|
3
|
Boronyak L, Jacobs B. Pathways to coexistence with dingoes across Australian farming landscapes. FRONTIERS IN CONSERVATION SCIENCE 2023. [DOI: 10.3389/fcosc.2023.1126140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
IntroductionAgriculture and biodiversity conservation are both vitally important human activities that overlap geographically and are often in conflict. Animal agriculture has been implicated in species loss and the degradation of ecosystems due to land clearing, overgrazing, and conflicts with large carnivores such as dingoes (Canis dingo). This paper explores the potential for transformation in Australian commercial livestock production from human-dingo conflict towards social-ecological coexistence.MethodA qualitative model that depicts transformative change was developed from field observations and twenty-one in-depth interviews with livestock producers, conservation researchers, grazing industry representatives and policy makers across Australia. The model articulates the current state of dingo management and the drivers of system change.ResultsSeven pathways are described to catalyse transformation from routine lethal management of dingoes towards a future vision that embeds mutually beneficial coexistence. Central to transformation is the adoption by livestock producers of preventive non-lethal innovations supported by a new farming movement, Predator Smart Farming, that balances livestock grazing and wildlife conservation values to unlock the resilience of landscapes, animals (domesticated and wild) and livelihoods. Other key pathways include targeted research, capacity building, outreach and knowledge sharing networks; institutional (policy, legislation, and economic incentives) and cultural change; public awareness raising and advocacy to reduce lethal control; and greater involvement of Indigenous Australians in decisions relating to wildlife management.DiscussionThe seven transition pathways are discussed in relation to how they can collectively foster coexistence with dingoes in extensive rangelands grazing systems. International examples of interventions are used to illustrate the types of successful actions associated with each pathway that could inform action in Australia. The findings have implications for coexistence with large carnivores in rangeland ecosystems globally.
Collapse
|
4
|
Morris CD. How Biodiversity-Friendly Is Regenerative Grazing? Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.816374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Regenerative grazing management (ReGM) seeks to mimic natural grazing dynamics to restore degraded soils and the ecological processes underpinning sustainable livestock production while enhancing biodiversity. Regenerative grazing, including holistic planned grazing and related methods, is an adaptive, rotational stocking approach in which dense livestock herds are rotated rapidly through multiple paddocks in short bouts of grazing to defoliate plants evenly and infrequently, interspersed with long recovery periods to boost regrowth. The concentrated “hoof action” of herds in ReGM is regarded vital for regenerating soils and ecosystem services. Evidence (from 58 studies) that ReGM benefits biodiversity is reviewed. Soils enriched by ReGM have increased microbial bioactivity, higher fungal:bacteria biomass, greater functional diversity, and richer microarthropods and macrofauna communities. Vegetation responds inconsistently, with increased, neutral, or decreased total plant diversity, richness of forage grasses and invasive species under ReGM: grasses tend to be favored but shrubs and forbs can be depleted by the mechanical action of hooves. Trampling also reduces numerous arthropods by altering vegetation structure, but creates favorable habitat and food for a few taxa, such as dung beetles. Similarly, grazing-induced structural changes benefit some birds (for foraging, nest sites) while heavy stocking during winter and droughts reduces food for seedeaters and songbirds. With herding and no fences, wildlife (herbivores and predators) thrives on nutritious regrowth while having access to large undisturbed areas. It is concluded that ReGM does not universally promote biodiversity but can be adapted to provide greater landscape habitat heterogeneity suitable to a wider range of biota.
Collapse
|
5
|
Hasselerharm CD, Yanco E, McManus JS, Smuts BH, Ramp D. Wildlife-friendly farming recouples grazing regimes to stimulate recovery in semi-arid rangelands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147602. [PMID: 34029808 DOI: 10.1016/j.scitotenv.2021.147602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
While rangeland ecosystems are globally important for livestock production, they also support diverse wildlife assemblages and are crucial for biodiversity conservation. As rangelands around the world have become increasingly degraded and fragmented, rethinking farming practice in these landscapes is vital for achieving conservation goals, rangeland recovery, and food security. An example is reinstating livestock shepherding, which aims to recouple grazing regimes to vegetation conditioned to semi-arid climates and improve productivity by reducing overgrazing and rewiring past ecological functions. Tracking the large-scale ecosystem responses to shifts in land management in such sparsely vegetated environments have so far proven elusive. Therefore, our goal was to develop a remote tracking method capable of detecting vegetation changes and environmental responses on rangeland farms engaging in contrasting farming practices in South Africa: wildlife friendly farming (WFF) implementing livestock shepherding with wildlife protection, or rotational grazing livestock farming with wildlife removal. To do so, we ground-truthed Sentinel-2 satellite imagery using drone imagery and machine learning methods to trace historical vegetation change on four farms over a four-year period. First, we successfully classified land cover maps cover using drone footage and modelled vegetation cover using satellite vegetation indices, achieving 93.4% accuracy (к = 0.901) and an r-squared of 0.862 (RMSE = 0.058) respectively. We then used this model to compare the WFF farm to three neighbouring rotational grazing farms, finding that satellite-derived vegetation productivity was greater and responded more strongly to rainfall events on the WFF farm. Furthermore, vegetation cover and grass cover, patch size, and aggregation were greater on the WFF farm when classified using drone data. Overall, we found that remotely assessing regional environmental benefits from contrasting farming practices in rangeland ecosystems could aid further adoption of wildlife-friendly practices and help to assess the generality of this case study.
Collapse
Affiliation(s)
- Chris D Hasselerharm
- Centre for Compassionate Conservation, School of Life Sciences, University of Technology Sydney, Ultimo 2007, NSW, Australia.
| | - Esty Yanco
- Centre for Compassionate Conservation, School of Life Sciences, University of Technology Sydney, Ultimo 2007, NSW, Australia.
| | - Jeannine S McManus
- Research Department, Landmark Foundation, Riversdale, South Africa; Department of Biodiversity and Conservation Biology, University of the Western Cape, Robert Sobukwe Road, Cape Town 7535, South Africa.
| | - Bool H Smuts
- Research Department, Landmark Foundation, Riversdale, South Africa; Department of Biodiversity and Conservation Biology, University of the Western Cape, Robert Sobukwe Road, Cape Town 7535, South Africa.
| | - Daniel Ramp
- Centre for Compassionate Conservation, School of Life Sciences, University of Technology Sydney, Ultimo 2007, NSW, Australia.
| |
Collapse
|