1
|
Lin Y, Wang J, Bu F, Zhang R, Wang J, Wang Y, Huang M, Huang Y, Zheng L, Wang Q, Hu X. Bacterial extracellular vesicles in the initiation, progression and treatment of atherosclerosis. Gut Microbes 2025; 17:2452229. [PMID: 39840620 DOI: 10.1080/19490976.2025.2452229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/13/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
Atherosclerosis is the primary cause of cardiovascular and cerebrovascular diseases. However, current anti-atherosclerosis drugs have shown conflicting therapeutic outcomes, thereby spurring the search for novel and effective treatments. Recent research indicates the crucial involvement of oral and gastrointestinal microbiota in atherosclerosis. While gut microbiota metabolites, such as choline derivatives, have been extensively studied and reviewed, emerging evidence suggests that bacterial extracellular vesicles (BEVs), which are membrane-derived lipid bilayers secreted by bacteria, also play a significant role in this process. However, the role of BEVs in host-microbiota interactions remains insufficiently explored. This review aims to elucidate the complex communication mediated by BEVs along the gut-heart axis. In this review, we summarize current knowledge on BEVs, with a specific focus on how pathogen-derived BEVs contribute to the promotion of atherosclerosis, as well as how BEVs from gut symbionts and probiotics may mitigate its progression. We also explore the potential and challenges associated with engineered BEVs in the prevention and treatment of atherosclerosis. Finally, we discuss the benefits and challenges of using BEVs in atherosclerosis diagnosis and treatment, and propose future research directions to address these issues.
Collapse
Affiliation(s)
- Yuling Lin
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyu Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Bu
- Institute of Hematology, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang University, Hangzhou, China
| | - Ruyi Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junhui Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yubing Wang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Mei Huang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yiyi Huang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Bi X, Wang Z, He J. Recent advances in biomimetic nanodelivery systems for the treatment of myocardial ischemia reperfusion injury. Colloids Surf B Biointerfaces 2025; 247:114414. [PMID: 39626610 DOI: 10.1016/j.colsurfb.2024.114414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 01/22/2025]
Abstract
Myocardial ischemia/reperfusion injury (MIRI) is a significant challenge in the treatment of myocardial infarction, a leading cause of global mortality due to irreversible cardiac damage. Biomimetic nanodelivery systems offer promising therapeutic strategies to address MIRI. In this review, we comprehensively investigate the underlying pathophysiological mechanisms of MIRI and discuss recent advances in biomimetic nanodelivery systems including cell membrane-coated nanoparticles, exosomes, and nanoenzymes as innovative approaches for MIRI treatment. We emphasize the advantages and potential of biomimetic strategies in enhancing therapeutic efficacy, assess the preclinical effectiveness of these nanodelivery systems, and discuss the challenges associated with translating these approaches into clinical practice. This paper aims to provide new perspectives on biomimetic strategies for MIRI treatment, contributing to the development of effective drug delivery systems.
Collapse
Affiliation(s)
- Xiaojun Bi
- General Hospital of Northern Theater Command, Liaoning 110016, China
| | - Ze Wang
- Dalian Medical University, Liaoning 116044, China
| | - Jingteng He
- General Hospital of Northern Theater Command, Liaoning 110016, China.
| |
Collapse
|
3
|
Zhuge Y, Li G, Sun M, Zhang J, Zou J, Gao F, Wang F. Reactive oxygen species responsive double-locked liposome collaborative photodynamic therapy for reducing electrical conduction recurrence after radiofrequency catheter ablation. Int J Pharm X 2024; 8:100275. [PMID: 39252693 PMCID: PMC11382321 DOI: 10.1016/j.ijpx.2024.100275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
Radiofrequency catheter ablation (RFCA) is the preferred technique for the treatment of atrial fibrillation, but the recovery of electrical conduction after ablation seriously endangers the health of patients. This study aimed to develop reactive oxygen species (ROS) responsive double-locked liposome collaborative photodynamic therapy (PDT) to target the ablation area and reduce the recovery of electrical conduction after ablation. The successful synthesis of β-cyclodextrin modified with phenylboronic acid pinacol ester (OCD) was confirmed by 1H NMR and FT-IR. Furthermore, the successful synthesis of octadecylamine-modified indocyanine green (ICG-ODA) was confirmed by 1H NMR and mass spectrometry. The ICG-ODA was encapsulated in liposomes to generate a double-locked hybrid liposome (ICG-ODA@rNP), which was subsequently characterized. Several properties of ICG-ODA@rNP were evaluated, including the drug release, targeting ability and ability to inhibit electrical conduction recurrence. Moreover, a model was constructed for the blockage of electrical conduction after RFCA in rabbits to further evaluate ICG-ODA@rNP. The preliminary safety evaluation of ICG-ODA@rNP was also performed. The ICG-ODA@rNP with a uniform particle size showed excellent storage stability. The nanoparticle can sensitively release drugs under ROS environment, and exhibits excellent photothermal effects. Furthermore, ICG-ODA@rNP can circulate for a long time in vivo and accumulate significantly in the ablation area. In a pacing test with a left atrial appendage (LAA), these nanoparticles, combined with PDT, reduced the ratio of electrical conduction recovery, which was confirmed by a hematoxylin and eosin (H&E) test. Further molecular analysis revealed that ICG-ODA@rNP could increase RFCA-induced apoptosis and ROS levels. Specifically, ICG-ODA@rNP significantly increased the expression of Bax and cleaved caspase-3, and decreased the expression of Bcl-2. In addition, the excellent biosafety of the double-locked nanoparticle was verified. This study provides evidence that ICG-ODA@rNP, with the double lock characteristic and biosafety, which exhibits a targeting effect on RFCA-induced cardiac injury areas, which further reduce electrical conduction recovery in RFCA areas by collaborativing PDT.
Collapse
Affiliation(s)
- Ying Zhuge
- Department of Cardiology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200800, China
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200800, China
| | - Gonghao Li
- Department of Cardiology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200800, China
- Department of Cardiology, Lianyungang Clinical College of Nanjing Medical University, Lianyungang 222000, China
| | - Mingyue Sun
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiajia Zhang
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiafeng Zou
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Feng Gao
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fang Wang
- Department of Cardiology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200800, China
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200800, China
| |
Collapse
|
4
|
Jha G, Sharma RB, Sridhar S, Hayagreev D, Sinha T, Kaur H, Das A, Bollineni RL. Nanoparticle-Based Therapies for Cardiovascular Diseases: A Literature Review of Recent Advances and Clinical Potential. Cureus 2024; 16:e72808. [PMID: 39552990 PMCID: PMC11569831 DOI: 10.7759/cureus.72808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2024] [Indexed: 11/19/2024] Open
Abstract
Cardiovascular diseases (CVDs) present a significant global health burden and remain the leading cause of morbidity and mortality worldwide. Conventional pharmacological therapies have yielded limited success in addressing the underlying pathophysiology of these diseases, leading to the exploration of novel therapeutic approaches. Nanotechnology is transforming cardiovascular disease management by enabling the engineering of materials at the atomic and molecular levels. This has led to the development of advanced diagnostic tools with unparalleled accuracy and sensitivity in detecting these diseases. By enabling targeted drug delivery, enhancing imaging techniques, and facilitating personalized therapies, nanotechnology promises significant advancements in the diagnosis, treatment, and prevention of cardiovascular diseases. This narrative review provides a comprehensive outlook on the recent advancements in nanoparticle-based therapies for cardiovascular diseases. We delve into the diverse applications of various nanoparticle types, exploring their potential to surpass the limitations of conventional treatments and improve clinical outcomes. Additionally, we critically examine the challenges and future directions of this rapidly evolving field, emphasizing the need for rigorous clinical evaluation.
Collapse
Affiliation(s)
- Gaurav Jha
- Trauma and Orthopaedics, Leicester Royal Infirmary, Leicester, GBR
| | - Ritika B Sharma
- Geriatrics, Pinderfields General Hospital, MidYorkshire, GBR
| | - Sruthi Sridhar
- Emergency Department, Croydon Health Services NHS Trust, London, GBR
| | - Disha Hayagreev
- Emergency Department, Basingstoke and North Hampshire Hospital, Basingstoke, GBR
| | - Tanya Sinha
- Emergency Medicine, South Tyneside and Sunderland NHS Foundation Trust, South Sheilds, GBR
| | | | - Adrija Das
- Medicine, Newcastle University, Newcastle, GBR
| | | |
Collapse
|
5
|
Tang C, Zhou K, Wu D, Zhu H. Nanoparticles as a Novel Platform for Cardiovascular Disease Diagnosis and Therapy. Int J Nanomedicine 2024; 19:8831-8846. [PMID: 39220195 PMCID: PMC11365508 DOI: 10.2147/ijn.s474888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular disease (CVD) is a major global health issue with high mortality and morbidity rates. With the advances in nanotechnology, nanoparticles are receiving increasing attention in diagnosing and treating CVD. Previous studies have explored the use of nanoparticles in noninvasive diagnostic technologies, such as magnetic resonance imaging and computed tomography. Nanoparticles have been extensively studied as drug carriers and prognostic factors, demonstrating synergistic efficacy. This review summarized the current applications of nanoparticles in CVD and discussed their opportunities and challenges for further exploration.
Collapse
Affiliation(s)
- Chuanyun Tang
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Kexun Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Di Wu
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
6
|
Martínez-Orts M, Pujals S. Responsive Supramolecular Polymers for Diagnosis and Treatment. Int J Mol Sci 2024; 25:4077. [PMID: 38612886 PMCID: PMC11012635 DOI: 10.3390/ijms25074077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Stimuli-responsive supramolecular polymers are ordered nanosized materials that are held together by non-covalent interactions (hydrogen-bonding, metal-ligand coordination, π-stacking and, host-guest interactions) and can reversibly undergo self-assembly. Their non-covalent nature endows supramolecular polymers with the ability to respond to external stimuli (temperature, light, ultrasound, electric/magnetic field) or environmental changes (temperature, pH, redox potential, enzyme activity), making them attractive candidates for a variety of biomedical applications. To date, supramolecular research has largely evolved in the development of smart water-soluble self-assemblies with the aim of mimicking the biological function of natural supramolecular systems. Indeed, there is a wide variety of synthetic biomaterials formulated with responsiveness to control and trigger, or not to trigger, aqueous self-assembly. The design of responsive supramolecular polymers ranges from the use of hydrophobic cores (i.e., benzene-1,3,5-tricarboxamide) to the introduction of macrocyclic hosts (i.e., cyclodextrins). In this review, we summarize the most relevant advances achieved in the design of stimuli-responsive supramolecular systems used to control transport and release of both diagnosis agents and therapeutic drugs in order to prevent, diagnose, and treat human diseases.
Collapse
Affiliation(s)
| | - Silvia Pujals
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain;
| |
Collapse
|
7
|
Arshad I, Kanwal A, Zafar I, Unar A, Mouada H, Razia IT, Arif S, Ahsan M, Kamal MA, Rashid S, Khan KA, Sharma R. Multifunctional role of nanoparticles for the diagnosis and therapeutics of cardiovascular diseases. ENVIRONMENTAL RESEARCH 2024; 242:117795. [PMID: 38043894 DOI: 10.1016/j.envres.2023.117795] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 10/26/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
The increasing burden of cardiovascular disease (CVD) remains responsible for morbidity and mortality worldwide; their effective diagnostic or treatment methods are of great interest to researchers. The use of NPs and nanocarriers in cardiology has drawn much interest. The present comprehensive review provides deep insights into the use of current and innovative approaches in CVD diagnostics to offer practical ways to utilize nanotechnological interventions and the critical elements in the CVD diagnosis, associated risk factors, and management strategies of patients with chronic CVDs. We proposed a decision tree-based solution by discussing the emerging applications of NPs for the higher number of rules to increase efficiency in treating CVDs. This review-based study explores the screening methods, tests, and toxicity to provide a unique way of creating a multi-parametric feature that includes cutting-edge techniques for identifying cardiovascular problems and their treatments. We discussed the benefits and drawbacks of various NPs in the context of cost, space, time and complexity that have been previously suggested in the literature for the diagnosis of CVDs risk factors. Also, we highlighted the advances in using NPs for targeted and improved drug delivery and discussed the evolution toward the nano-cardiovascular potential for medical science. Finally, we also examined the mixed-based diagnostic approaches crucial for treating cardiovascular disorders, broad applications and the potential future applications of nanotechnology in medical sciences.
Collapse
Affiliation(s)
- Ihtesham Arshad
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, 56300, Pakistan.
| | - Ayesha Kanwal
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, 56300, Pakistan.
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University, Punjab, 54700, Pakistan.
| | - Ahsanullah Unar
- Department of Precision Medicine, University of Campania 'L. Vanvitelli', Naples, Italy.
| | - Hanane Mouada
- Department of Process Engineering, Institute of science University Center of Tipaza, Tipaza, Algeria.
| | | | - Safina Arif
- Medical Lab Technology, University of Lahore, Lahore, 54590, Pakistan.
| | - Muhammad Ahsan
- Institute of Environmental and Agricultural Sciences, University of Okara, Okara, 56300, Pakistan.
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China; King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Bangladesh; Enzymoics, 7 Peterlee place, Hebersham, NSW, 2770, Australia; Novel Global Community Educational Foundation, Australia.
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam BinAbdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia.
| | - Khalid Ali Khan
- Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Applied College, King Khalid University, P. O. Box 9004, Abha, 61413, Saudi Arabia.
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
8
|
Ioannou P, Baliou S, Samonis G. Nanotechnology in the Diagnosis and Treatment of Antibiotic-Resistant Infections. Antibiotics (Basel) 2024; 13:121. [PMID: 38391507 PMCID: PMC10886108 DOI: 10.3390/antibiotics13020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
The development of antimicrobial resistance (AMR), along with the relative reduction in the production of new antimicrobials, significantly limits the therapeutic options in infectious diseases. Thus, novel treatments, especially in the current era, where AMR is increasing, are urgently needed. There are several ongoing studies on non-classical therapies for infectious diseases, such as bacteriophages, antimicrobial peptides, and nanotechnology, among others. Nanomaterials involve materials on the nanoscale that could be used in the diagnosis, treatment, and prevention of infectious diseases. This review provides an overview of the applications of nanotechnology in the diagnosis and treatment of infectious diseases from a clinician's perspective, with a focus on pathogens with AMR. Applications of nanomaterials in diagnosis, by taking advantage of their electrochemical, optic, magnetic, and fluorescent properties, are described. Moreover, the potential of metallic or organic nanoparticles (NPs) in the treatment of infections is also addressed. Finally, the potential use of NPs in the development of safe and efficient vaccines is also reviewed. Further studies are needed to prove the safety and efficacy of NPs that would facilitate their approval by regulatory authorities for clinical use.
Collapse
Affiliation(s)
- Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Stella Baliou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - George Samonis
- School of Medicine, University of Crete, 71003 Heraklion, Greece
- First Department of Medical Oncology, Metropolitan Hospital of Neon Faliron, 18547 Athens, Greece
| |
Collapse
|
9
|
Zhou Y, Yue T, Ding Y, Tan H, Weng J, Luo S, Zheng X. Nanotechnology translation in vascular diseases: From design to the bench. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1919. [PMID: 37548140 DOI: 10.1002/wnan.1919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Atherosclerosis is a systemic pathophysiological condition contributing to the development of majority of polyvascular diseases. Nanomedicine is a novel and rapidly developing science. Due to their small size, nanoparticles are freely transported in vasculature, and have been widely employed as tools in analytical imaging techniques. Furthermore, the application of nanoparticles also allows target intervention, such as drug delivery and tissue engineering regenerative methods, in the management of major vascular diseases. Therefore, by summarizing the physical and chemical characteristics of common nanoparticles used in diagnosis and treatment of vascular diseases, we discuss the details of these applications from cellular, molecular, and in vivo perspectives in this review. Furthermore, we also summarize the status and challenges of the application of nanoparticles in clinical translation. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Yongwen Zhou
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tong Yue
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yu Ding
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huiling Tan
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sihui Luo
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xueying Zheng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
10
|
Silva DF, Melo ALP, Uchôa AFC, Pereira GMA, Alves AEF, Vasconcellos MC, Xavier-Júnior FH, Passos MF. Biomedical Approach of Nanotechnology and Biological Risks: A Mini-Review. Int J Mol Sci 2023; 24:16719. [PMID: 38069043 PMCID: PMC10706257 DOI: 10.3390/ijms242316719] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Nanotechnology has played a prominent role in biomedical engineering, offering innovative approaches to numerous treatments. Notable advances have been observed in the development of medical devices, contributing to the advancement of modern medicine. This article briefly discusses key applications of nanotechnology in tissue engineering, controlled drug release systems, biosensors and monitoring, and imaging and diagnosis. The particular emphasis on this theme will result in a better understanding, selection, and technical approach to nanomaterials for biomedical purposes, including biological risks, security, and biocompatibility criteria.
Collapse
Affiliation(s)
- Debora F. Silva
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Materials Science and Engineering, Federal University of Para, Ananindeua 67130-660, Brazil;
| | - Ailime L. P. Melo
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Biotechnology, Federal University of Para, Belem 66075-110, Brazil
| | - Ana F. C. Uchôa
- Pharmaceutical Biotechnology Laboratory (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (A.F.C.U.); (F.H.X.-J.)
| | - Graziela M. A. Pereira
- Pharmaceutical Biotechnology Laboratory (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (A.F.C.U.); (F.H.X.-J.)
| | - Alisson E. F. Alves
- Post-Graduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | | | - Francisco H. Xavier-Júnior
- Pharmaceutical Biotechnology Laboratory (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (A.F.C.U.); (F.H.X.-J.)
- Post-Graduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | - Marcele F. Passos
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Materials Science and Engineering, Federal University of Para, Ananindeua 67130-660, Brazil;
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Biotechnology, Federal University of Para, Belem 66075-110, Brazil
| |
Collapse
|
11
|
Kar A, Gupta S, Matilal A, Kumar D, Sarkar S. Nanotherapeutics for the Myocardium: A Potential Alternative for Treating Cardiac Diseases. J Cardiovasc Pharmacol 2023; 82:180-188. [PMID: 37341530 DOI: 10.1097/fjc.0000000000001444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/03/2023] [Indexed: 06/22/2023]
Abstract
ABSTRACT Cardiovascular diseases (CVDs) are the foremost cause of morbidity and mortality worldwide. Current clinical interventions include invasive approaches for progressed conditions and pharmacological assistance for initial stages, which has systemic side effects. Preventive, curative, diagnostic, and theranostic (therapeutic + diagnostic) approaches till date are not very useful in combating the ongoing CVD epidemic, which demands a promising efficient alternative approach. To combat the growing CVD outbreak globally, the ideal strategy is to make the therapeutic intervention least invasive and direct to the heart to reduce the bystander effects on other organs and increase the bioavailability of the therapeutics to the myocardium. The application of nanoscience and nanoparticle-mediated approaches have gained a lot of momentum because of their efficient passive and active myocardium targeting capability owing to their improved specificity and controlled release. This review provides extensive insight into the various types of nanoparticles available for CVDs, their mechanisms of targeting (eg, direct or indirect), and the utmost need for further development of bench-to-bedside cardiac tissue-based nanomedicines. Furthermore, the review aims to summarize the different ideas and methods of nanoparticle-mediated therapeutic approaches to the myocardium till date with present clinical trials and future perspectives. This review also reflects the potential of such nanoparticle-mediated tissue-targeted therapies to contribute to the sustainable development goals of good health and well-being.
Collapse
Affiliation(s)
- Abhik Kar
- Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | | | | | | | | |
Collapse
|
12
|
Wei J, Mu J, Tang Y, Qin D, Duan J, Wu A. Next-generation nanomaterials: advancing ocular anti-inflammatory drug therapy. J Nanobiotechnology 2023; 21:282. [PMID: 37598148 PMCID: PMC10440041 DOI: 10.1186/s12951-023-01974-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/29/2023] [Indexed: 08/21/2023] Open
Abstract
Ophthalmic inflammatory diseases, including conjunctivitis, keratitis, uveitis, scleritis, and related conditions, pose considerable challenges to effective management and treatment. This review article investigates the potential of advanced nanomaterials in revolutionizing ocular anti-inflammatory drug interventions. By conducting an exhaustive analysis of recent advancements and assessing the potential benefits and limitations, this review aims to identify promising avenues for future research and clinical applications. The review commences with a detailed exploration of various nanomaterial categories, such as liposomes, dendrimers, nanoparticles (NPs), and hydrogels, emphasizing their unique properties and capabilities for accurate drug delivery. Subsequently, we explore the etiology and pathophysiology of ophthalmic inflammatory disorders, highlighting the urgent necessity for innovative therapeutic strategies and examining recent preclinical and clinical investigations employing nanomaterial-based drug delivery systems. We discuss the advantages of these cutting-edge systems, such as biocompatibility, bioavailability, controlled release, and targeted delivery, alongside potential challenges, which encompass immunogenicity, toxicity, and regulatory hurdles. Furthermore, we emphasize the significance of interdisciplinary collaborations among material scientists, pharmacologists, and clinicians in expediting the translation of these breakthroughs from laboratory environments to clinical practice. In summary, this review accentuates the remarkable potential of advanced nanomaterials in redefining ocular anti-inflammatory drug therapy. We fervently support continued research and development in this rapidly evolving field to overcome existing barriers and improve patient outcomes for ophthalmic inflammatory disorders.
Collapse
Affiliation(s)
- Jing Wei
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jinyu Mu
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Education Ministry Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Education Ministry Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Junguo Duan
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Education Ministry Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
13
|
Soni SS, D'Elia AM, Rodell CB. Control of the post-infarct immune microenvironment through biotherapeutic and biomaterial-based approaches. Drug Deliv Transl Res 2023; 13:1983-2014. [PMID: 36763330 PMCID: PMC9913034 DOI: 10.1007/s13346-023-01290-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 02/11/2023]
Abstract
Ischemic heart failure (IHF) is a leading cause of morbidity and mortality worldwide, for which heart transplantation remains the only definitive treatment. IHF manifests from myocardial infarction (MI) that initiates tissue remodeling processes, mediated by mechanical changes in the tissue (loss of contractility, softening of the myocardium) that are interdependent with cellular mechanisms (cardiomyocyte death, inflammatory response). The early remodeling phase is characterized by robust inflammation that is necessary for tissue debridement and the initiation of repair processes. While later transition toward an immunoregenerative function is desirable, functional reorientation from an inflammatory to reparatory environment is often lacking, trapping the heart in a chronically inflamed state that perpetuates cardiomyocyte death, ventricular dilatation, excess fibrosis, and progressive IHF. Therapies can redirect the immune microenvironment, including biotherapeutic and biomaterial-based approaches. In this review, we outline these existing approaches, with a particular focus on the immunomodulatory effects of therapeutics (small molecule drugs, biomolecules, and cell or cell-derived products). Cardioprotective strategies, often focusing on immunosuppression, have shown promise in pre-clinical and clinical trials. However, immunoregenerative therapies are emerging that often benefit from exacerbating early inflammation. Biomaterials can be used to enhance these therapies as a result of their intrinsic immunomodulatory properties, parallel mechanisms of action (e.g., mechanical restraint), or by enabling cell or tissue-targeted delivery. We further discuss translatability and the continued progress of technologies and procedures that contribute to the bench-to-bedside development of these critically needed treatments.
Collapse
Affiliation(s)
- Shreya S Soni
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Arielle M D'Elia
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Christopher B Rodell
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA.
| |
Collapse
|
14
|
Wu Y, Zhu R, Zhou M, Liu J, Dong K, Zhao S, Cao J, Wang W, Sun C, Wu S, Wang F, Shi Y, Sun Y. Homologous cancer cell membrane-camouflaged nanoparticles target drug delivery and enhance the chemotherapy efficacy of hepatocellular carcinoma. Cancer Lett 2023; 558:216106. [PMID: 36841418 DOI: 10.1016/j.canlet.2023.216106] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common digestive tract malignancy that seriously threatens human life and health. Early HCC may be treated by intervention, surgery, and internal radiotherapy, while the choice for late HCC is primarily chemotherapy to prolong patient survival. Lenvatinib (LT) is a Food and Drug Administration (FDA)-approved frontline drug for the treatment of advanced liver cancer and has achieved excellent clinical efficacy. However, its poor solubility and severe side effects cannot be ignored. In this study, a bionic nanodrug delivery platform was successfully constructed. The platform consists of a core of Lenvatinib wrapped with a pH-sensitive polymer, namely, poly(β-amino ester)-polyethylene glycol-amine (PAE-PEG-NH2), and a shell formed by a cancer cell membrane (CCM). The prepared nanodrugs have high drug loading capacity, long-term stability, good biocompatibility, and a long retention time. In addition, the targeting effect of tumor cell membranes and the pH-responsive characteristics of the polymer materials enable them to precisely target tumor cells and achieve responsive release in the tumor microenvironment, which makes them suitable for effective drug delivery. In vivo experiments revealed that the nanodrug showed superior tumor accumulation and therapeutic effects in subcutaneous tumor mice model and could effectively eliminate tumors within 21 days. As a result, it opens up a new way to reduce side effects and improve the specific therapeutic effect of first-line clinical medications to treat tumors.
Collapse
Affiliation(s)
- Yahui Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China; Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Rongtao Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China; Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Mengyang Zhou
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jingjing Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Kai Dong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China; Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Senfeng Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China; Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Jiahui Cao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China; Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Weijie Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China; Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Chenguang Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China; Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Shitao Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China; Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China
| | - Fan Wang
- Experimental Animal Platform in Academy of Medical Sciences of Zhengzhou University, Zhengzhou, 450052, China
| | - Yupeng Shi
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yuling Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, 450052, China; Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, 450052, China.
| |
Collapse
|
15
|
Montelione N, Loreni F, Nenna A, Catanese V, Scurto L, Ferrisi C, Jawabra M, Gabellini T, Codispoti FA, Spinelli F, Chello M, Stilo F. Tissue Engineering and Targeted Drug Delivery in Cardiovascular Disease: The Role of Polymer Nanocarrier for Statin Therapy. Biomedicines 2023; 11:798. [PMID: 36979777 PMCID: PMC10045667 DOI: 10.3390/biomedicines11030798] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Atherosclerosis-related coronary artery disease (CAD) is the leading cause of mortality and morbidity worldwide. This requires effective primary and secondary prevention in reducing the complications related to CAD; the regression or stabilization of the pathology remains the mainstay of treatment. Statins have proved to be the most effective treatment in reducing adverse effects, but there are limitations related to the administration and achievement of effective doses as well as side effects due to the lack of target-related molecular specificity. The implemented technological steps are polymers and nanoparticles for the administration of statins, as it has been seen how the conjugation of drug delivery systems (DDSs) with statins increases bioavailability by circumventing the hepatic-renal filter and increases the related target specificity, enhancing their action and decreasing side effects. Reduction of endothelial dysfunction, reduced intimal hyperplasia, reduced ischemia-reperfusion injury, cardiac regeneration, positive remodeling in the extracellular matrix, reduced neointimal growth, and increased reendothelialization are all drug-related effects of statins enhanced by binding with DDSs. Recent preclinical studies demonstrate how the effect of statins stimulates the differentiation of endogenous cardiac stem cells. Poly-lactic-co-glycolic acid (PLGA) seems to be the most promising DDS as it succeeds more than the others in enhancing the effect of the bound drug. This review intends to summarize the current evidence on polymers and nanoparticles for statin delivery in the field of cardiovascular disease, trying to shed light on this topic and identify new avenues for future studies.
Collapse
Affiliation(s)
- Nunzio Montelione
- Unit of Vascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Francesco Loreni
- Unit of Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Antonio Nenna
- Unit of Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Vincenzo Catanese
- Unit of Vascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Lucia Scurto
- Unit of Vascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Chiara Ferrisi
- Unit of Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Mohamad Jawabra
- Unit of Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Teresa Gabellini
- Residency Program of Vascular and Endovascular Surgery, University of Ferrara, 44121 Ferrara, Italy
| | | | - Francesco Spinelli
- Unit of Vascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Massimo Chello
- Unit of Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Francesco Stilo
- Unit of Vascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
- Head of Research Unit of Vascular Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| |
Collapse
|
16
|
Qiu J, Liu XJ, You BA, Ren N, Liu H. Application of Nanomaterials in Stem Cell-Based Therapeutics for Cardiac Repair and Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206487. [PMID: 36642861 DOI: 10.1002/smll.202206487] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Cardiovascular disease is a leading cause of disability and death worldwide. Although the survival rate of patients with heart diseases can be improved with contemporary pharmacological treatments and surgical procedures, none of these therapies provide a significant improvement in cardiac repair and regeneration. Stem cell-based therapies are a promising approach for functional recovery of damaged myocardium. However, the available stem cells are difficult to differentiate into cardiomyocytes, which result in the extremely low transplantation efficiency. Nanomaterials are widely used to regulate the myocardial differentiation of stem cells, and play a very important role in cardiac tissue engineering. This study discusses the current status and limitations of stem cells and cell-derived exosomes/micro RNAs based cardiac therapy, describes the cardiac repair mechanism of nanomaterials, summarizes the recent advances in nanomaterials used in cardiac repair and regeneration, and evaluates the advantages and disadvantages of the relevant nanomaterials. Besides discussing the potential clinical applications of nanomaterials in cardiac therapy, the perspectives and challenges of nanomaterials used in stem cell-based cardiac repair and regeneration are also considered. Finally, new research directions in this field are proposed, and future research trends are highlighted.
Collapse
Affiliation(s)
- Jie Qiu
- Medical Research Institute, Jinan Nanjiao Hospital, Jinan, 250002, P. R. China
| | - Xiang-Ju Liu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, 250012, P. R. China
| | - Bei-An You
- Department of Cardiovascular Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Jinan, 266035, P. R. China
| | - Na Ren
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
17
|
Saeed S, Ud Din SR, Khan SU, Gul R, Kiani FA, Wahab A, Zhong M. Nanoparticle: A Promising Player in Nanomedicine and its Theranostic Applications for the Treatment of Cardiovascular Diseases. Curr Probl Cardiol 2023; 48:101599. [PMID: 36681209 DOI: 10.1016/j.cpcardiol.2023.101599] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death around the world, a trend that will progressively grow over the next decade. Recently, with the advancement of nanotechnology, innovative nanoparticles (NPs) have been efficiently utilized in disease diagnosis and theranostic applications. In this review, we highlighted the benchmark summary of the recently synthesized NPs that are handy for imaging, diagnosis, and treatment of CVDs. NPs are the carrier of drug-delivery payloads actively reaching more areas of the heart and arteries, allowing them novel therapeutic agents for CVDs. Herein, due to the limited availability of literature, we only focused on NPs mechanism in the cardiovascular system and various treatment-based approaches that opens a new window for future research and versatile approach in the field of medical and clinical applications. Moreover, current challenges and limitations for the detection of CVDs has also discussed.
Collapse
Affiliation(s)
- Sumbul Saeed
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Syed Riaz Ud Din
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, P.R China.
| | - Shahid Ullah Khan
- Women Medical and Dental College, Khyber Medical University, Khyber Pakhtunkhwa, Pakistan
| | - Rukhsana Gul
- Department of Chemistry, Kohat University of Science and Technology, Khyber Pakhtunkhwa, Pakistan
| | - Faisal Ayub Kiani
- Department of Clinical Sciences, Faculty of Veterinary Sciences, Bahauddin Zakariyah University, Multan, 60800, Pakistan.
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan.
| | - Mintao Zhong
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, P.R China.
| |
Collapse
|
18
|
Li D, Son Y, Jang M, Wang S, Zhu W. Nanoparticle Based Cardiac Specific Drug Delivery. BIOLOGY 2023; 12:biology12010082. [PMID: 36671774 PMCID: PMC9856055 DOI: 10.3390/biology12010082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Heart failure secondary to myocardial injuries is a leading cause of death worldwide. Recently, a growing number of novel therapies have emerged for injured myocardium repairment. However, delivering therapeutic agents specifically to the injured heart remains a significant challenge. Nanoparticles are the most commonly used vehicles for targeted drug delivery. Various nanoparticles have been synthesized to deliver drugs and other therapeutic molecules to the injured heart via passive or active targeting approaches, and their targeting specificity and therapeutic efficacies have been investigated. Here, we summarized nanoparticle-based, cardiac-specific drug delivery systems, their potency for treating heart diseases, and the mechanisms underlying these cardiac-targeting strategies. We also discussed the clinical studies that have employed nanoparticle-based cardiac-specific drug delivery.
Collapse
Affiliation(s)
- Dong Li
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
- Department of Cardiology, Dongfang Hospital, The Second Affiliated Hospital of Beijing University of Chinese Medicine, Beijing 100078, China
| | - Yura Son
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Michelle Jang
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
- Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Shu Wang
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Correspondence: (S.W.); (W.Z.)
| | - Wuqiang Zhu
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
- Correspondence: (S.W.); (W.Z.)
| |
Collapse
|
19
|
Sharma R, Borah SJ, Bhawna, Kumar S, Gupta A, Kumari V, Kumar R, Dubey KK, Kumar V. Emerging trends in nano-based antidiabetic therapeutics: a path to effective diabetes management. MATERIALS ADVANCES 2023; 4:3091-3113. [DOI: 10.1039/d3ma00159h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
This review aims to provide an overview of nanoparticles for diabetes mellitus therapy. It explores the properties, synthesis and/or functionalization, mechanistic aspects, and therapeutics for diabetes and its complications.
Collapse
Affiliation(s)
- Ritika Sharma
- Department of Biochemistry, University of Delhi, Delhi, India
| | - Shikha Jyoti Borah
- Special Centre for Nano Science, Jawaharlal Nehru University, Delhi, India
| | - Bhawna
- Department of Chemistry, University of Delhi, Delhi, India
| | - Sanjeev Kumar
- Department of Chemistry, University of Delhi, Delhi, India
| | | | - Vandana Kumari
- Department of Biosciences, Himachal Pradesh University, Shimla, India
| | - Ravinder Kumar
- Department of Chemistry, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | | | - Vinod Kumar
- Special Centre for Nano Science, Jawaharlal Nehru University, Delhi, India
| |
Collapse
|
20
|
Choi KA, Kim JH, Ryu K, Kaushik N. Current Nanomedicine for Targeted Vascular Disease Treatment: Trends and Perspectives. Int J Mol Sci 2022; 23:12397. [PMID: 36293254 PMCID: PMC9604340 DOI: 10.3390/ijms232012397] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/04/2022] [Accepted: 10/14/2022] [Indexed: 12/19/2022] Open
Abstract
Nanotechnology has been developed to deliver cargos effectively to the vascular system. Nanomedicine is a novel and effective approach for targeted vascular disease treatment including atherosclerosis, coronary artery disease, strokes, peripheral arterial disease, and cancer. It has been well known for some time that vascular disease patients have a higher cancer risk than the general population. During atherogenesis, the endothelial cells are activated to increase the expression of adhesion molecules such as Intercellular Adhesion Molecule 1 (ICAM-1), Vascular cell adhesion protein 1 (VCAM-1), E-selectin, and P-selectin. This biological activation of endothelial cells gives a targetability clue for nanoparticle strategies. Nanoparticle formation has a passive targeting pathway due to the increased adhesion molecule expression on the cell surface as well as increased cell activation. In addition, the VCAM-1-targeting peptide has been widely used to target the inflamed endothelial cells. Biomimetic nanoparticles using platelet and leukocyte membrane fragment strategies have been promising techniques for targeted vascular disease treatment. Cyclodextrin, a natural oligosaccharide with a hydrophobic cavity, increase the solubility of cholesterol crystals at the atherosclerotic plaque site and has been used to deliver the hydrophobic drug statin as a therapeutic in a targeted manner. In summary, nanoparticles decorated with various targeting molecules will be an effective and promising strategy for targeted vascular disease treatment.
Collapse
Affiliation(s)
- Kyung-A Choi
- National Institute of Medical Welfare, Kangnam University, Yongin 16979, Korea
| | - June Hyun Kim
- Department of Biotechnology, The University of Suwon, Suwon 18323, Korea
| | - Kitae Ryu
- Department of Biotechnology, The University of Suwon, Suwon 18323, Korea
| | - Neha Kaushik
- Department of Biotechnology, The University of Suwon, Suwon 18323, Korea
| |
Collapse
|
21
|
Sarma H, Kashyap P, Zothantluanga JH, Devi R. Nanotherapeutics of Phytoantioxidants for Cardiovascular Diseases. PHYTOANTIOXIDANTS AND NANOTHERAPEUTICS 2022:405-431. [DOI: 10.1002/9781119811794.ch18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
22
|
Ai Y, He M, Wan C, Luo H, Xin H, Wang Y, Liang Q. Nanoplatform‐Based Reactive Oxygen Species Scavengers for Therapy of Ischemia‐Reperfusion Injury. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yongjian Ai
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University‐Peking University Joint Centre for Life Sciences Beijing Key Lab of Microanalytical Methods & Instrumentation Department of Chemistry Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 P. R. China
| | - Meng‐Qi He
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University‐Peking University Joint Centre for Life Sciences Beijing Key Lab of Microanalytical Methods & Instrumentation Department of Chemistry Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 P. R. China
| | - Chengxian Wan
- Jiangxi Provincial People's Hospital The First Affiliated Hospital of Nanchang Medical College The Affiliated People's Hospital of Nanchang University Nanchang Jiangxi 330006 P. R. China
| | - Hua Luo
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Macau SAR 999078 China
| | - Hongbo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies Institute of Translational Medicine Nanchang University Nanchang Jiangxi 330088 P. R. China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Macau SAR 999078 China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University‐Peking University Joint Centre for Life Sciences Beijing Key Lab of Microanalytical Methods & Instrumentation Department of Chemistry Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
23
|
Song Y, Jing H, Vong LB, Wang J, Li N. Recent advances in targeted stimuli-responsive nano-based drug delivery systems combating atherosclerosis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Saghebasl S, Akbarzadeh A, Gorabi AM, Nikzamir N, SeyedSadjadi M, Mostafavi E. Biodegradable functional macromolecules as promising scaffolds for cardiac tissue engineering. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Solmaz Saghebasl
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Abolfazl Akbarzadeh
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Universal Scientific Education and Research Network (USERN) Tabriz Iran
| | - Armita Mahdavi Gorabi
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | - Nasrin Nikzamir
- Department of Chemistry, Science and Research Branch Islamic Azad University Tehran Iran
| | | | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute Stanford University School of Medicine Stanford California USA
- Department of Medicine Stanford University School of Medicine Stanford California USA
| |
Collapse
|
25
|
Chemically engineered mesoporous silica nanoparticles-based intelligent delivery systems for theranostic applications in multiple cancerous/non-cancerous diseases. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214309] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Mohamed NA, Marei I, Crovella S, Abou-Saleh H. Recent Developments in Nanomaterials-Based Drug Delivery and Upgrading Treatment of Cardiovascular Diseases. Int J Mol Sci 2022; 23:1404. [PMID: 35163328 PMCID: PMC8836006 DOI: 10.3390/ijms23031404] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 01/27/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading causes of morbidity and mortality worldwide. However, despite the recent developments in the management of CVDs, the early and long outcomes vary considerably in patients, especially with the current challenges facing the detection and treatment of CVDs. This disparity is due to a lack of advanced diagnostic tools and targeted therapies, requiring innovative and alternative methods. Nanotechnology offers the opportunity to use nanomaterials in improving health and controlling diseases. Notably, nanotechnologies have recognized potential applicability in managing chronic diseases in the past few years, especially cancer and CVDs. Of particular interest is the use of nanoparticles as drug carriers to increase the pharmaco-efficacy and safety of conventional therapies. Different strategies have been proposed to use nanoparticles as drug carriers in CVDs; however, controversies regarding the selection of nanomaterials and nanoformulation are slowing their clinical translation. Therefore, this review focuses on nanotechnology for drug delivery and the application of nanomedicine in CVDs.
Collapse
Affiliation(s)
- Nura A. Mohamed
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Isra Marei
- Department of Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London SW7 2AZ, UK;
- Department of Pharmacology, Weill Cornell Medicine in Qatar, Doha P.O. Box 24144, Qatar
| | - Sergio Crovella
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Haissam Abou-Saleh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
- Biomedical Research Center (BRC), Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
27
|
Leal BH, Velasco B, Cambón A, Pardo A, Fernandez-Vega J, Arellano L, Al-Modlej A, Mosquera VX, Bouzas A, Prieto G, Barbosa S, Taboada P. Combined Therapeutics for Atherosclerosis Treatment Using Polymeric Nanovectors. Pharmaceutics 2022; 14:pharmaceutics14020258. [PMID: 35213991 PMCID: PMC8879452 DOI: 10.3390/pharmaceutics14020258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023] Open
Abstract
Atherosclerosis is an underlying risk factor in cardiovascular diseases (CVDs). The combination of drugs with microRNAs (miRNA) inside a single nanocarrier has emerged as a promising anti-atherosclerosis strategy to achieve the exploitation of their complementary mechanisms of action to achieve synergistic therapeutic effects while avoiding some of the drawbacks associated with current systemic statin therapies. We report the development of nanometer-sized polymeric PLGA nanoparticles (NPs) capable of simultaneously encapsulating and delivering miRNA-124a and the statin atorvastatin (ATOR). The polymeric NPs were functionalized with an antibody able to bind to the vascular adhesion molecule-1 (VCAM1) overexpressed in the inflamed arterial endothelium. The dual-loaded NPs were non-toxic to cells in a large range of concentrations, successfully attached overexpressed VCAM receptors and released the cargoes in a sustainable manner inside cells. The combination of both ATOR and miRNA drastically reduced the levels of proinflammatory cytokines such as IL-6 and TNF-α and of reactive oxygen species (ROS) in LPS-activated macrophages and vessel endothelial cells. In addition, dual-loaded NPs precluded the accumulation of low-density lipoproteins (LdL) inside macrophages as well as morphology changes to a greater extent than in single-loaded NPs. The reported findings validate the present NPs as suitable delivery vectors capable of simultaneously targeting inflamed cells in atherosclerosis and providing an efficient approach to combination nanomedicines.
Collapse
Affiliation(s)
- Baltazar Hiram Leal
- Colloids and Polymers Physics Group, Department of Particle Physics, Faculty of Physics and Health Research Institute, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (B.H.L.); (B.V.); (A.P.); (J.F.-V.); (L.A.)
| | - Brenda Velasco
- Colloids and Polymers Physics Group, Department of Particle Physics, Faculty of Physics and Health Research Institute, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (B.H.L.); (B.V.); (A.P.); (J.F.-V.); (L.A.)
- Institute of Materials, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Adriana Cambón
- Colloids and Polymers Physics Group, Department of Particle Physics, Faculty of Physics and Health Research Institute, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (B.H.L.); (B.V.); (A.P.); (J.F.-V.); (L.A.)
- Institute of Materials, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Correspondence: (A.C.); (S.B.); (P.T.); Tel.: +34-881814056 (A.C.); +34-881814115 (S.B.); +34-881814111 (P.T.)
| | - Alberto Pardo
- Colloids and Polymers Physics Group, Department of Particle Physics, Faculty of Physics and Health Research Institute, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (B.H.L.); (B.V.); (A.P.); (J.F.-V.); (L.A.)
- Institute of Materials, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Javier Fernandez-Vega
- Colloids and Polymers Physics Group, Department of Particle Physics, Faculty of Physics and Health Research Institute, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (B.H.L.); (B.V.); (A.P.); (J.F.-V.); (L.A.)
- Institute of Materials, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Lilia Arellano
- Colloids and Polymers Physics Group, Department of Particle Physics, Faculty of Physics and Health Research Institute, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (B.H.L.); (B.V.); (A.P.); (J.F.-V.); (L.A.)
- Institute of Materials, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Abeer Al-Modlej
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Víctor X. Mosquera
- Cardiac Surgery Department, University Hospital of A Coruña, Biomedical Research Institute of A Coruña (INIBIC), 15006 A Coruña, Spain; (V.X.M.); (A.B.)
| | - Alberto Bouzas
- Cardiac Surgery Department, University Hospital of A Coruña, Biomedical Research Institute of A Coruña (INIBIC), 15006 A Coruña, Spain; (V.X.M.); (A.B.)
| | - Gerardo Prieto
- Institute of Materials, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Biophysics and Interfaces Group, Department of Applied Physics, Faculty of Physics, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Silvia Barbosa
- Colloids and Polymers Physics Group, Department of Particle Physics, Faculty of Physics and Health Research Institute, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (B.H.L.); (B.V.); (A.P.); (J.F.-V.); (L.A.)
- Institute of Materials, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Correspondence: (A.C.); (S.B.); (P.T.); Tel.: +34-881814056 (A.C.); +34-881814115 (S.B.); +34-881814111 (P.T.)
| | - Pablo Taboada
- Colloids and Polymers Physics Group, Department of Particle Physics, Faculty of Physics and Health Research Institute, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (B.H.L.); (B.V.); (A.P.); (J.F.-V.); (L.A.)
- Institute of Materials, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Correspondence: (A.C.); (S.B.); (P.T.); Tel.: +34-881814056 (A.C.); +34-881814115 (S.B.); +34-881814111 (P.T.)
| |
Collapse
|
28
|
Chopra H, Bibi S, Mishra AK, Tirth V, Yerramsetty SV, Murali SV, Ahmad SU, Mohanta YK, Attia MS, Algahtani A, Islam F, Hayee A, Islam S, Baig AA, Emran TB. Nanomaterials: A Promising Therapeutic Approach for Cardiovascular Diseases. JOURNAL OF NANOMATERIALS 2022; 2022. [DOI: 10.1155/2022/4155729] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/05/2022] [Indexed: 09/01/2023]
Abstract
Cardiovascular diseases (CVDs) are a primary cause of death globally. A few classic and hybrid treatments exist to treat CVDs. However, they lack in both safety and effectiveness. Thus, innovative nanomaterials for disease diagnosis and treatment are urgently required. The tiny size of nanomaterials allows them to reach more areas of the heart and arteries, making them ideal for CVDs. Atherosclerosis causes arterial stenosis and reduced blood flow. The most common treatment is medication and surgery to stabilize the disease. Nanotechnologies are crucial in treating vascular disease. Nanomaterials may be able to deliver medications to lesion sites after being infused into the circulation. Newer point‐of‐care devices have also been considered together with nanomaterials. For example, this study will look at the use of nanomaterials in imaging, diagnosing, and treating CVDs.
Collapse
|
29
|
Morozkina SN, Snetkov PP, Olekhnovich RO, Uspenskaya MV. Modern Approaches To Cardiovascular Amyloidosis Treatment. RUSSIAN OPEN MEDICAL JOURNAL 2021. [DOI: 10.15275/rusomj.2021.0416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Cardiovascular (cardiac) amyloidosis (CA) is a clinical pathology, usually of a geneticallymediated nature, initiated by the precipitation process of the insoluble fibrous protein with β-pleated sheet secondary structure. Such anomalous changes lead to the formation of amyloid fibrils, which may give rise to various forms of amyloidosis. Amyloid formation can be found in various organs and systems, such as cardiovascular system, central and peripheral nervous systems, liver, urinary tract, etc. CA is a rare degenerative disease resulting in congestive cardiac failure and heart arrhythmia with subsequent untimely death. Unfortunately, up to date, the choice of medications for treating amyloidosis is very limited. In this paper, we review clinically used pharmaceutical drugs for CA treatment, along with some delivery systems for such compounds.
Collapse
|
30
|
Freitas de Lima F, da Silva BB, Oliveira JD, de Moura LD, Rodrigues da Silva GH, Fernandes PCL, Souza RIC, Dos Santos AC, de Paula E. Prolonged anesthesia and decreased toxicity of enantiomeric-excess bupivacaine loaded in ionic gradient liposomes. Int J Pharm 2021; 606:120944. [PMID: 34324985 DOI: 10.1016/j.ijpharm.2021.120944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/26/2022]
Abstract
Bupivacaine is the most employed local anesthetic in surgical procedures, worldwide. Its systemic toxicity has directed the synthesis of the less toxic, S(-) enantiomer. This work describes a formulation of ionic gradient liposomes (IGL) containing S75BVC, an enantiomeric excess mixture of 75% S(-) and 25% R(+) bupivacaine. IGL prepared with 250 mM (NH4)2SO4 in the inner aqueous core of phosphatidylcholine and cholesterol (3:2 mol%) vesicles plus 0.5% S75BVC showed average sizes of 312.5 ± 4.5 nm, low polydispersity (PDI < 0.18), negative zeta potentials (-14.2 ± 0.2 mV) and were stable for 360 days. The encapsulation efficiency achieved with IGLS75BVC (%EE = 38.6%) was higher than with IGL prepared with racemic bupivacaine (IGLRBVC, %EE = 28.3%). TEM images revealed spherical vesicles and µDSC analysis provided evidence on the interaction of the anesthetic with the lipid bilayer. Then, in vitro - release kinetics and cytotoxicity- and in vivo - toxic effects in Zebrafish and biochemical/histopathological analysis plus analgesia in Wistar rats - tests were performed. IGLS75BVC exhibited negligible toxicity against Schwann cells and Zebrafish larvae, and it did not affect biochemical markers or the morphology of rat tissues (heart, brain, cerebellum, sciatic nerve). The in vitro release of S75BVC from IGL was extended from 4 to 24 h, justifying the prolonged anesthetic effect measured in rats (~9 h). The advantages of IGLS75BVC formulation over IGLRBVC and plain bupivacaine formulations (prolonged anesthesia, preferential sensorial blockade, and no toxicity) confirm its potential for clinical use in surgical anesthesia.
Collapse
Affiliation(s)
- Fernando Freitas de Lima
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, Brazil
| | - Bianca Brandão da Silva
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, Brazil
| | - Juliana Damasceno Oliveira
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, Brazil
| | - Ludmilla David de Moura
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, Brazil
| | | | | | | | | | - Eneida de Paula
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, Brazil.
| |
Collapse
|
31
|
Li J, Ding F, Qian X, Sun J, Ge Z, Yang L, Cheng Z. Anti-inflammatory cytokine IL10 loaded cRGD liposomes for the targeted treatment of atherosclerosis. J Microencapsul 2021; 38:357-364. [PMID: 33048003 DOI: 10.1080/02652048.2020.1836058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AIM Atherosclerosis (AS) is one of the main causes of cardiovascular disease which might lead to myocardial infarction or stroke and further leads to fatality. METHOD In this study, we have designed an anti-inflammatory cytokine interleukin-10 (IL10) delivery system to effectively alleviate the inflammation of atherosclerosis plaque. The targeted delivery of IL10 to the atherosclerotic plaques was achieved by cRGD conjugated liposomes (IL10-cRGD-Lip). RESULTS The IL10-cRGD-Lip of size 179.4 ± 10.91 nm having PDI 0.14 ± 0.04 with a surface charge of +18.34 ± 1.36 mV was prepared. The in-vitro analysis clearly suggests that IL10-cRGD-Lip sustains the release of IL10 and could significantly reduce ROS and NO. The immuno-staining results revealed that IL-1β and TNF-α were down-regulated after the treatment with IL10-cRGD-Lip in Lipopolysaccharide (LPS) stimulated RAW 264.7 cells. CONCLUSION the in-vitro results clearly suggest that anti-inflammatory cytokine IL10 could be used for the cure of inflammatory maladies including atherosclerosis.
Collapse
Affiliation(s)
- Jianchao Li
- Department of Cardiopulmonary Bypass, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Fuyan Ding
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoliang Qian
- Department of Cardiopulmonary Bypass, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Junjie Sun
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenwei Ge
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Leiyi Yang
- Department of Cardiopulmonary Bypass, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhaoyun Cheng
- Department of Cardiovascular Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
32
|
Motawea A, Ahmed DAM, El-Mansy AA, Saleh NM. Crucial Role of PLGA Nanoparticles in Mitigating the Amiodarone-Induced Pulmonary Toxicity. Int J Nanomedicine 2021; 16:4713-4737. [PMID: 34267519 PMCID: PMC8276877 DOI: 10.2147/ijn.s314074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Amiodarone (AMD) is a widely used anti-arrhythmic drug, but its administration could be associated with varying degrees of pulmonary toxicity. In attempting to circumvent this issue, AMD-loaded polymeric nanoparticles (AMD-loaded NPs) had been designed. MATERIALS AND METHODS AMD was loaded in NPs by the nanoprecipitation method using two stabilizers: bovine serum albumin and Kolliphor® P 188. The physicochemical properties of the AMD-loaded NPs were determined. Among the prepared NPs, two ones were selected for further investigation of spectral and thermal analysis as well as morphological properties. Additionally, in vitro release patterns were studied and kinetically analyzed at different pH values. In vitro cytotoxicity of an optimized formula (NP4) was quantified using A549 and Hep-2 cell lines. In vivo assessment of the pulmonary toxicity on Sprague Dawley rats via histopathological and immunohistochemical evaluations was applied. RESULTS The developed NPs achieved a size not more than 190 nm with an encapsulation efficiency of more than 88%. Satisfactory values of loading capacity and yield were also attained. The spectral and thermal analysis demonstrated homogeneous entrapment of AMD inside the polymeric matrix of NPs. Morphology revealed uniform, core-shell structured, and sphere-shaped particles with a smooth surface. Furthermore, the AMD-loaded NPs exhibited a pH-dependent and diffusion-controlled release over a significant period without an initial burst effect. NP4 demonstrated a superior cytoprotective efficiency by diminishing cell death and significantly increasing the IC50 by more than threefold above the pure AMD. Also, NP4 ameliorated AMD-induced pulmonary damage in rats. Significant downregulation of inflammatory mediators and free radicle production were noticed in the NP4-treated rats. CONCLUSION The AMD-loaded NPs could ameliorate the pulmonary injury induced by the pure drug moieties. Cytoprotective, anti-fibrotic, anti-inflammatory, and antioxidant properties were presented by the optimized NPs (NP4). Future studies may be built on these findings for diminishing AMD-induced off-target toxicities.
Collapse
Affiliation(s)
- Amira Motawea
- Pharmaceutics Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | | | - Ahmed A El-Mansy
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Histology, Horus University, Dumyat al Jadidah, Egypt
| | - Noha Mohamed Saleh
- Pharmaceutics Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
33
|
Matsumoto S, Nakata K, Sagara A, Guan W, Ikenaga N, Ohuchida K, Nakamura M. Efficient pre-treatment for pancreatic cancer using chloroquine-loaded nanoparticles targeting pancreatic stellate cells. Oncol Lett 2021; 22:633. [PMID: 34267825 PMCID: PMC8258615 DOI: 10.3892/ol.2021.12894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic stellate cells (PSCs) play a key role in desmoplastic stroma, which is a characteristic of pancreatic ductal adenocarcinoma (PDAC), and they also enhance the malignancy of pancreatic cancer cells. Our previous study reported chloroquine's mitigating effects on PSC activation; however, the drug is known to induce adverse effects in clinical practice. The present study aimed to reduce chloroquine doses and develop a useful pre-treatment that targets PSCs using nanoparticles. Poly lactic-co-glycolic acid (PLGA) nanoparticles were used as carriers and loaded with indocyanine green (Nano-ICG) or chloroquine (Nano-CQ). Tumor accumulation of Nano-ICG was evaluated using an in vivo imaging system. The effects of chloroquine, Nano-CQ and/or chemotherapy drug gemcitabine were investigated in an orthotopic xenograft mouse model. Nano-ICG selectively accumulated in pancreatic tumors and persisted therein for over 7 days after administration. Additionally, Nano-ICG accumulated in the peritoneal metastasized regions, but not in the liver, kidney and normal pancreatic tissues. Nano-CQ reduced the density of activated PSCs at lower chloroquine doses and significantly restrained tumor progression in combination with gemcitabine. In conclusion, the PLGA nanosystem successfully delivered the drug to pancreatic tumors. Nano-CQ efficiently reduced PSC activation and may be a promising novel pre-treatment strategy for PDAC.
Collapse
Affiliation(s)
- Sokichi Matsumoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Akiko Sagara
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Weiyu Guan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Naoki Ikenaga
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
34
|
Metal-based nanoparticles: Promising tools for the management of cardiovascular diseases. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 36:102433. [PMID: 34171467 DOI: 10.1016/j.nano.2021.102433] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/05/2021] [Accepted: 06/03/2021] [Indexed: 12/29/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. A search for more effective treatments of CVD is increasingly needed. Major advances in nanotechnology opened new avenues in CVD therapeutics. Owing to their special properties, iron oxide, gold and silver nanoparticles (NPs) could exert various effects in the management and treatment of CVD. The role of iron oxide NPs in the detection and identification of atherosclerotic plaques is receiving increased attention. Moreover, these NPs enhance targeted stem cell delivery, thereby potentiating the regenerative capacity at the injured sites. In addition to their antioxidative and antihypertrophic capacities, gold NPs have also been shown to be useful in the identification of plaques and recognition of inflammatory markers. Contrary to first reports suggestive of their cardio-vasculoprotective role, silver NPs now appear to exert negative effects on the cardiovascular system. Indeed, these NPs appear to negatively modulate inflammation and cholesterol uptake, both of which exacerbate atherosclerosis. Moreover, silver NPs may precipitate bradycardia, conduction block and sudden cardiac death. In this review, we dissect the cellular responses and toxicity profiles of these NPs from various perspectives including cellular and molecular ones.
Collapse
|
35
|
Onyeje C, Lavik E. Highlighting the usage of polymeric nanoparticles for the treatment of traumatic brain injury: A review study. Neurochem Int 2021; 147:105048. [PMID: 33901586 DOI: 10.1016/j.neuint.2021.105048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/30/2022]
Abstract
There are very limited options for treating traumatic brain injury (TBI). Nanoparticles offer the potential of targeting specific cell types, and, potentially, crossing the BBB under the right conditions making them an area of active research for treating TBI. This review focuses on polymeric nanoparticles and the impact of their chemistry, size, and surface groups on their interactions with the vasculature and cells of the brain following injury. The vast majority of the work in the field focuses on acute injury, and when the work is looked at closely, it suggests that nanoparticles rely on interactions with vascular and immune cells to alter the environment of the brain. Nonetheless, there are promising results from a number of approaches that lead to behavioral improvements coupled with neuroprotection that offer promise for therapeutic outcomes. The majority of approaches have been tested immediately following injury. It is not entirely clear what impact these approaches will have in chronic TBI, but being able to modulate inflammation specifically may have a role both during and after the acute phase of injury.
Collapse
Affiliation(s)
- Chiad Onyeje
- University of Maryland, Baltimore County, Piscataway Territories, Baltimore, MD 21250, USA
| | - Erin Lavik
- University of Maryland, Baltimore County, Piscataway Territories, Baltimore, MD 21250, USA.
| |
Collapse
|
36
|
Groner J, Goepferich A, Breunig M. Atherosclerosis: Conventional intake of cardiovascular drugs versus delivery using nanotechnology - A new chance for causative therapy? J Control Release 2021; 333:536-559. [PMID: 33794270 DOI: 10.1016/j.jconrel.2021.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Atherosclerosis is the leading cause of death in developed countries. The pathogenetic mechanism relies on a macrophage-based immune reaction to low density lipoprotein (LDL) deposition in blood vessels with dysfunctional endothelia. Thus, atherosclerosis is defined as a chronic inflammatory disease. A plethora of cardiovascular drugs have been developed and are on the market, but the major shortcoming of standard medications is that they do not address the root cause of the disease. Statins and thiazolidinediones that have recently been recognized to exert specific anti-atherosclerotic effects represent a potential breakthrough on the horizon. But their whole potential cannot be realized due to insufficient availability at the pathological site and severe off-target effects. The focus of this review will be to elaborate how both groups of drugs could immensely profit from nanoparticulate carriers. This delivery principle would allow for their accumulation in target macrophages and endothelial cells of the atherosclerotic plaque, increasing bioavailability where it is needed most. Based on the analyzed literature we conclude design criteria for the delivery of statins and thiazolidinediones with nanoparticles for anti-atherosclerotic therapy. Nanoparticles need to be below a diameter of 100 nm to accumulate in the atherosclerotic plaque and should be fabricated using biodegradable materials. Further, the thiazolidinediones or statins must be encapsulated into the particle core, because especially for thiazolidindiones the uptake into cells is prerequisite for their mechanism of action. For optimal uptake into targeted macrophages and endothelial cells, the ideal particle should present ligands on its surface which bind specifically to scavenger receptors. The impact of statins on the lectin-type oxidized LDL receptor 1 (LOX1) seems particularly promising because of its outstanding role in the inflammatory process. Using this pioneering concept, it will be possible to promote the impact of statins and thiazolidinediones on macrophages and endothelial cells and significantly enhance their anti-atherosclerotic therapeutic potential.
Collapse
Affiliation(s)
- Jonas Groner
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Miriam Breunig
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| |
Collapse
|
37
|
Motawea A, Ahmed DAM, Eladl AS, El-Mansy AAER, Saleh NM. Appraisal of amiodarone-loaded PLGA nanoparticles for prospective safety and toxicity in a rat model. Life Sci 2021; 274:119344. [PMID: 33716062 DOI: 10.1016/j.lfs.2021.119344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 12/15/2022]
Abstract
AIMS Amiodarone (AM) is a highly efficient drug for arrhythmias treatment, but its extra-cardiac adverse effects offset its therapeutic efficacy. Nanoparticles (NPs)-based delivery system could provide a strategy to allow sustained delivery of AM to the myocardium and reduction of adverse effects. The primary purpose was to develop AM-loaded NPs and explore their ameliorative effects versus off-target toxicities. MATERIALS AND METHODS Polymeric NPs were prepared using poly lactic-co-glycolic acid and their physicochemical properties were characterized. Animal studies were conducted using a rat model to compare exposure to AM versus that of the AM-loaded NPs. Biochemical evaluation of liver enzymes, lipid profile, and thyroid hormones was achieved. Besides, histopathological changes in liver and lung were studied. KEY FINDINGS Under optimal experimental conditions, the AM-loaded NPs had a size of 186.90 nm and a negative zeta potential (-14.67 mV). Biochemical evaluation of AM-treated animal group showed a significant increase in cholesterol, TG, LDL, T4, and TSH levels (ρ < 0.05). Remarkably, the AM-treated group exhibited a significant increase of liver enzymes (ρ < 0.05) coupled with an obvious change in liver architecture. The AM-loaded NPs displayed a reduction of liver damage and enzyme levels. Lung sections of the AM-treated group demonstrated thickening of interalveolar septa, mononuclear cellular infiltration with congested blood vessels, and heavy collagenous fibers deposition. Conversely, less cellular infiltration and septal thickening were observed in the animal lungs treated with the AM-loaded NPs-treated. SIGNIFICANCE Our findings demonstrate the competence of the AM-loaded NPs to open several exciting avenues for evading the AM-induced off-target toxicities.
Collapse
Affiliation(s)
- Amira Motawea
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt.
| | | | - Amira Sobhy Eladl
- Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed Abd El-Rahman El-Mansy
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Egypt; Department of Histology, Horus University, Egypt
| | - Noha Mohamed Saleh
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt
| |
Collapse
|
38
|
Wang H, Zhou Y, Sun Q, Zhou C, Hu S, Lenahan C, Xu W, Deng Y, Li G, Tao S. Update on Nanoparticle-Based Drug Delivery System for Anti-inflammatory Treatment. Front Bioeng Biotechnol 2021; 9:630352. [PMID: 33681167 PMCID: PMC7925417 DOI: 10.3389/fbioe.2021.630352] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/29/2021] [Indexed: 12/17/2022] Open
Abstract
Nanobiotechnology plays an important role in drug delivery, and various kinds of nanoparticles have demonstrated new properties, which may provide opportunities in clinical treatment. Nanoparticle-mediated drug delivery systems have been used in anti-inflammatory therapies. Diseases, such as inflammatory bowel disease, rheumatoid arthritis, and osteoarthritis have been widely impacted by the pathogenesis of inflammation. Efficient delivery of anti-inflammatory drugs can reduce medical dosage and improve therapeutic effect. In this review, we discuss nanoparticles with potential anti-inflammatory activity, and we present a future perspective regarding the application of nanomedicine in inflammatory diseases.
Collapse
Affiliation(s)
- Huailan Wang
- Department of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qunan Sun
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chenghao Zhou
- Department of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shiyao Hu
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Cameron Lenahan
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Weilin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sifeng Tao
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
39
|
Sim S, Wong NK. Nanotechnology and its use in imaging and drug delivery (Review). Biomed Rep 2021; 14:42. [PMID: 33728048 DOI: 10.3892/br.2021.1418] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/09/2021] [Indexed: 01/07/2023] Open
Abstract
Nanotechnology is the exploitation of the unique properties of materials at the nanoscale. Nanotechnology has gained popularity in several industries, as it offers better built and smarter products. The application of nanotechnology in medicine and healthcare is referred to as nanomedicine, and it has been used to combat some of the most common diseases, including cardiovascular diseases and cancer. The present review provides an overview of the recent advances of nanotechnology in the aspects of imaging and drug delivery.
Collapse
Affiliation(s)
- Serjay Sim
- School of Health Sciences, Division of Applied Biomedical Sciences and Biotechnology, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Nyet Kui Wong
- School of Health Sciences, Division of Applied Biomedical Sciences and Biotechnology, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
40
|
Polymers and Nanoparticles for Statin Delivery: Current Use and Future Perspectives in Cardiovascular Disease. Polymers (Basel) 2021; 13:polym13050711. [PMID: 33652927 PMCID: PMC7956757 DOI: 10.3390/polym13050711] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis-related coronary artery disease (CAD) is one of the leading sources of mortality and morbidity in the world. Primary and secondary prevention appear crucial to reduce CAD-related complications. In this scenario, statin treatment was shown to be clinically effective in the reduction of adverse events, but systemic administration provides suboptimal results. As an attempt to improve bioavailability and effectiveness, polymers and nanoparticles for statin delivery were recently investigated. Polymers and nanoparticles can help statin delivery and their effects by increasing oral bioavailability or enhancing target-specific interaction, leading to reduced vascular endothelial dysfunction, reduced intimal hyperplasia, reduced ischemia-reperfusion injury, increased cardiac regeneration, positive remodeling in the extracellular matrix, reduced neointimal growth and increased re-endothelization. Moreover, some innovative aspects described in other cardiovascular fields could be translated into the CAD scenario. Recent preclinical studies are underlining the effect of statins in the stimulation and differentiation of endogenous cardiac stem cells, as well as in targeting of local adverse conditions implicated in atherosclerosis, and statin delivery through poly-lactic-co-glycolic acid (PLGA) appears the most promising aspect of current research to enhance drug activity. The present review intends to summarize the current evidence about polymers and nanoparticles for statin delivery in the field of cardiovascular disease, trying to shed light on this topic and identify new avenues for future studies.
Collapse
|
41
|
Katsuki S, Koga JI, Matoba T, Umezu R, Nakashiro S, Nakano K, Tsutsui H, Egashira K. Nanoparticle-Mediated Delivery of Pitavastatin to Monocytes/Macrophages Inhibits Angiotensin II-Induced Abdominal Aortic Aneurysm Formation in Apoe -/- Mice. J Atheroscler Thromb 2021; 29:111-125. [PMID: 33455994 PMCID: PMC8737070 DOI: 10.5551/jat.54379] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Aim:
Abdominal aortic aneurysm (AAA) is a lethal and multifactorial disease. To prevent a rupture and dissection of enlarged AAA, prophylactic surgery and stenting are currently available. There are, however, no medical therapies preventing these complications of AAA. Statin is one of the candidates, but its efficacy on AAA formation/progression remains controversial. We have previously demonstrated that nanoparticles (NPs) incorporating pitavastatin (Pitava-NPs)—clinical trials using these nanoparticles have been already conducted—suppressed progression of atherosclerosis in apolipoprotein E-deficient (
Apoe−/−
) mice. Therefore, we have tested a hypothesis that monocytes/macrophages-targeting delivery of pitavastatin prevents the progression of AAA.
Methods:
Angiotensin II was intraperitoneally injected by osmotic mini-pumps to induce AAA formation in
Apoe−/−
mice. NPs consisting of poly(lactic-co-glycolic acid) were used for
in vivo
delivery of pitavastatin to monocytes/macrophages.
Results:
Intravenously administered Pitava-NPs (containing 0.012 mg/kg/week pitavastatin) inhibited AAA formation accompanied with reduction of macrophage accumulation and monocyte chemoattractant protein-1 (MCP-1) expression.
Ex vivo
molecular imaging revealed that Pitava-NPs not only reduced macrophage accumulation but also attenuated matrix metalloproteinase activity in the abdominal aorta, which was underpinned by attenuated elastin degradation.
Conclusion:
These results suggest that Pitava-NPs inhibit AAA formation associated with reduced macrophage accumulation and MCP-1 expression. This clinically feasible nanomedicine could be an innovative therapeutic strategy that prevents devastating complications of AAA.
Collapse
Affiliation(s)
- Shunsuke Katsuki
- The Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University
| | - Jun-Ichiro Koga
- The Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University
| | - Tetsuya Matoba
- The Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University
| | - Ryuta Umezu
- The Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University
| | - Soichi Nakashiro
- The Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University
| | - Kaku Nakano
- The Department of Cardiovascular Research, Development, and Translational Medicine, Center for Disruptive Cardiovascular Innovation, Kyushu University
| | - Hiroyuki Tsutsui
- The Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University
| | - Kensuke Egashira
- The Department of Cardiovascular Research, Development, and Translational Medicine, Center for Disruptive Cardiovascular Innovation, Kyushu University.,The Department of Translational Medicine, Kyushu University Graduate School of Pharmaceutical Sciences
| |
Collapse
|
42
|
Andrian T, Riera R, Pujals S, Albertazzi L. Nanoscopy for endosomal escape quantification. NANOSCALE ADVANCES 2021; 3:10-23. [PMID: 36131870 PMCID: PMC9419860 DOI: 10.1039/d0na00454e] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/26/2020] [Indexed: 05/04/2023]
Abstract
The successful cytosolic delivery of nanoparticles is hampered by their endosomal entrapment and degradation. To push forward the smart development of nanoparticles we must reliably detect and quantify their endosomal escape process. However, the current methods employed are not quantitative enough at the nanoscale to achieve this. Nanoscopy is a rapidly evolving field that has developed a diverse set of powerful techniques in the last two decades, opening the door to explore nanomedicine with an unprecedented resolution and specificity. The understanding of key steps in the drug delivery process - such as endosomal escape - would benefit greatly from the implementation of the most recent advances in microscopy. In this review, we provide the latest insights into endosomal escape of nanoparticles obtained by nanoscopy, and we discuss the features that would allow these techniques to make a great impact in the field.
Collapse
Affiliation(s)
- Teodora Andrian
- Nanoscopy for Nanomedicine, Institute for Bioengineering of Catalonia Barcelona Spain
| | - Roger Riera
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology Eindhoven Netherlands
| | - Silvia Pujals
- Nanoscopy for Nanomedicine, Institute for Bioengineering of Catalonia Barcelona Spain
- Department of Electronics and Biomedical Engineering, Faculty of Physics, Universitat de Barcelona Av. Diagonal 647 08028 Barcelona Spain
| | - Lorenzo Albertazzi
- Nanoscopy for Nanomedicine, Institute for Bioengineering of Catalonia Barcelona Spain
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology Eindhoven Netherlands
| |
Collapse
|
43
|
Siafaka PI, Okur NÜ, Karantas ID, Okur ME, Gündoğdu EA. Current update on nanoplatforms as therapeutic and diagnostic tools: A review for the materials used as nanotheranostics and imaging modalities. Asian J Pharm Sci 2021; 16:24-46. [PMID: 33613728 PMCID: PMC7878458 DOI: 10.1016/j.ajps.2020.03.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/21/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
In the last decade, the use of nanotheranostics as emerging diagnostic and therapeutic tools for various diseases, especially cancer, is held great attention. Up to date, several approaches have been employed in order to develop smart nanotheranostics, which combine bioactive targeting on specific tissues as well as diagnostic properties. The nanotheranostics can deliver therapeutic agents by concomitantly monitor the therapy response in real-time. Consequently, the possibility of over- or under-dosing is decreased. Various non-invasive imaging techniques have been used to quantitatively monitor the drug delivery processes. Radiolabeling of nanomaterials is widely used as powerful diagnostic approach on nuclear medicine imaging. In fact, various radiolabeled nanomaterials have been designed and developed for imaging tumors and other lesions due to their efficient characteristics. Inorganic nanoparticles as gold, silver, silica based nanomaterials or organic nanoparticles as polymers, carbon based nanomaterials, liposomes have been reported as multifunctional nanotheranostics. In this review, the imaging modalities according to their use in various diseases are summarized, providing special details for radiolabeling. In further, the most current nanotheranostics categorized via the used nanomaterials are also summed up. To conclude, this review can be beneficial for medical and pharmaceutical society as well as material scientists who work in the field of nanotheranostics since they can use this research as guide for producing newer and more efficient nanotheranostics.
Collapse
Affiliation(s)
- Panoraia I. Siafaka
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Neslihan Üstündağ Okur
- Faculty of Pharmacy, Department of Pharmaceutical Technology, University of Health Sciences, Istanbul, Turkey
| | - Ioannis D. Karantas
- 2nd Clinic of Internal Medicine, Hippokration General Hospital, Thessaloniki, Greece
| | - Mehmet Evren Okur
- Faculty of Pharmacy, Department of Pharmacology, University of Health Sciences, Istanbul, Turkey
| | | |
Collapse
|
44
|
Fan C, Joshi J, Li F, Xu B, Khan M, Yang J, Zhu W. Nanoparticle-Mediated Drug Delivery for Treatment of Ischemic Heart Disease. Front Bioeng Biotechnol 2020; 8:687. [PMID: 32671049 PMCID: PMC7326780 DOI: 10.3389/fbioe.2020.00687] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/02/2020] [Indexed: 12/26/2022] Open
Abstract
The regenerative capacity of an adult cardiac tissue is insufficient to repair the massive loss of heart tissue, particularly cardiomyocytes (CMs), following ischemia or other catastrophic myocardial injuries. The delivery methods of therapeutics agents, such as small molecules, growth factors, exosomes, cells, and engineered tissues have significantly advanced in medical science. Furthermore, with the controlled release characteristics, nanoparticle (NP) systems carrying drugs are promising in enhancing the cardioprotective potential of drugs in patients with cardiac ischemic events. NPs can provide sustained exposure precisely to the infarcted heart via direct intramyocardial injection or intravenous injection with active targets. In this review, we present the recent advances and challenges of different types of NPs loaded with agents for the repair of myocardial infarcted heart tissue.
Collapse
Affiliation(s)
- Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jyotsna Joshi
- Department of Cardiovascular Diseases, Mayo Clinic, Scottsdale, AZ, United States
| | - Fan Li
- Department of Cardiovascular Diseases, Mayo Clinic, Scottsdale, AZ, United States
| | - Bing Xu
- Department of Cardiovascular Diseases, Mayo Clinic, Scottsdale, AZ, United States
| | - Mahmood Khan
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jinfu Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wuqiang Zhu
- Department of Cardiovascular Diseases, Mayo Clinic, Scottsdale, AZ, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
45
|
Kim H, Kumar S, Kang DW, Jo H, Park JH. Affinity-Driven Design of Cargo-Switching Nanoparticles to Leverage a Cholesterol-Rich Microenvironment for Atherosclerosis Therapy. ACS NANO 2020; 14:6519-6531. [PMID: 32343121 PMCID: PMC8543299 DOI: 10.1021/acsnano.9b08216] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Atherosclerotic plaques exhibit high deposition of cholesterol and macrophages. These are not only the main components of the plaques but also key inflammation-triggering sources. However, no existing therapeutics can achieve effective removal of both components within the plaques. Here, we report cargo-switching nanoparticles (CSNP) that are physicochemically designed to bind to cholesterol and release anti-inflammatory drug in the plaque microenvironment. CSNP have a core-shell structure with a core composed of an inclusion complex of methyl-β-cyclodextrin (cyclodextrin) and simvastatin (statin), and a shell of phospholipids. Upon interaction with cholesterol, which has higher affinity to cyclodextrin than statin, CSNP release statin and scavenge cholesterol instead through cargo-switching. CSNP exhibit cholesterol-sensitive multifaceted antiatherogenic functions attributed to statin release and cholesterol depletion in vitro. In mouse models of atherosclerosis, systemically injected CSNP target atherosclerotic plaques and reduce plaque content of cholesterol and macrophages, which synergistically leads to effective prevention of atherogenesis and regression of established plaques. These findings suggest that CSNP provide a therapeutic platform for interfacing with cholesterol-associated inflammatory diseases such as atherosclerosis.
Collapse
|
46
|
Yu ZP, Yu HQ, Li J, Li C, Hua X, Sheng XS. Troxerutin attenuates oxygen‑glucose deprivation and reoxygenation‑induced oxidative stress and inflammation by enhancing the PI3K/AKT/HIF‑1α signaling pathway in H9C2 cardiomyocytes. Mol Med Rep 2020; 22:1351-1361. [PMID: 32626962 PMCID: PMC7339651 DOI: 10.3892/mmr.2020.11207] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/16/2019] [Indexed: 01/04/2023] Open
Abstract
Myocardial ischemia-reperfusion (MI/R) injury is a complex pathological process that occurs when tissues are reperfused following a prolonged period of ischemia. Troxerutin has been reported to have cardioprotective functions. However, the underlying mechanism by which troxerutin protects against MI/R injury has not been fully elucidated. The aim of the present study was to explore whether troxerutin-mediated protection against oxygen-glucose deprivation/reoxygenation (OGD/R)-induced H9C2 cell injury was associated with the inhibition of oxidative stress and the inflammatory response by regulating the PI3K/AKT/hypoxia-inducible factor-1α (HIF-1α) signaling pathway. The results of the present study suggested that troxerutin pretreatment prevented the OGD/R-induced reduction in cell viability, and the increase in lactate dehydrogenase activity and apoptosis. Troxerutin reversed OGD/R-induced the inhibition of the PI3K/AKT/HIF-1α signaling pathway as demonstrated by the increased expression of PI3K and HIF-1α, and the increased ratio of phosphorylated AKT/AKT. LY294002, a selective PI3K inhibitor, inhibited the PI3K/AKT/HIF-1α signaling pathway and further attenuated the protective effect of troxerutin against OGD/R-induced H9C2 cell damage. Furthermore, small interfering (si)RNA-mediated knockdown of HIF-1α reduced troxerutin-induced protection against OGD/R injury. Troxerutin pretreatment alleviated OGD/R-induced oxidative stress, as demonstrated by the reduced generation of reactive oxygen species and malonaldehyde content, and the increased activities of superoxide dismutase and glutathione peroxidase, which were reduced by HIF-1α-siRNA. Troxerutin-induced decreases in the levels of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α in OGD/R conditions were also reduced by HIF-1α-siRNA. The results from the present study indicated that troxerutin aggravated OGD/R-induced H9C2 cell injury by inhibiting oxidative stress and the inflammatory response. The primary underlying protective mechanism of troxerutin was mediated by the activation of the PI3K/AKT/HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Zhang-Ping Yu
- Department of Cardiology, Jinhua People's Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Han-Qiao Yu
- Department of Cardiology, Jinhua People's Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Jun Li
- Department of Cardiology, Jinhua People's Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Chao Li
- Department of Cardiology, Jinhua People's Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Xian Hua
- Department of Cardiology, Jinhua People's Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Xiao-Sheng Sheng
- Department of Cardiology, Jinhua People's Hospital, Jinhua, Zhejiang 321000, P.R. China
| |
Collapse
|
47
|
Pala R, Anju VT, Dyavaiah M, Busi S, Nauli SM. Nanoparticle-Mediated Drug Delivery for the Treatment of Cardiovascular Diseases. Int J Nanomedicine 2020; 15:3741-3769. [PMID: 32547026 PMCID: PMC7266400 DOI: 10.2147/ijn.s250872] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are one of the foremost causes of high morbidity and mortality globally. Preventive, diagnostic, and treatment measures available for CVDs are not very useful, which demands promising alternative methods. Nanoscience and nanotechnology open a new window in the area of CVDs with an opportunity to achieve effective treatment, better prognosis, and less adverse effects on non-target tissues. The application of nanoparticles and nanocarriers in the area of cardiology has gathered much attention due to the properties such as passive and active targeting to the cardiac tissues, improved target specificity, and sensitivity. It has reported that more than 50% of CVDs can be treated effectively through the use of nanotechnology. The main goal of this review is to explore the recent advancements in nanoparticle-based cardiovascular drug carriers. This review also summarizes the difficulties associated with the conventional treatment modalities in comparison to the nanomedicine for CVDs.
Collapse
Affiliation(s)
- Rajasekharreddy Pala
- Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA92618, USA
- Department of Medicine, University of California Irvine, Irvine, CA92868, USA
| | - V T Anju
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Surya M Nauli
- Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA92618, USA
- Department of Medicine, University of California Irvine, Irvine, CA92868, USA
| |
Collapse
|
48
|
Al-Ansari DE, Mohamed NA, Marei I, Zekri A, Kameno Y, Davies RP, Lickiss PD, Rahman MM, Abou-Saleh H. Internalization of Metal-Organic Framework Nanoparticles in Human Vascular Cells: Implications for Cardiovascular Disease Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1028. [PMID: 32471187 PMCID: PMC7353612 DOI: 10.3390/nano10061028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 01/07/2023]
Abstract
Abstract: Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Alteration of endothelial cells and the underlying vasculature plays a central role in the pathogenesis of various CVDs. The application of nanoscale materials such as nanoparticles in biomedicine has opened new horizons in the treatment of CVDs. We have previously shown that the iron metal-organic framework nanoparticle, Materials Institut Lavoisier-89 (nanoMIL-89) represents a viable vehicle for future drug delivery of pulmonary arterial hypertension. In this study, we have assessed the cellular uptake of nanoMIL-89 in pulmonary artery endothelial and smooth muscle cells using microscopy imaging techniques. We also tested the cellular responses to nanoMIL-89 using molecular and cellular assays. Microscopic images showed cellular internalization of nanoMIL-89, packaging into endocytic vesicles, and passing to daughter cells during mitosis. Moreover, nanoMIL-89 showed anti-inflammatory activity without any significant cytotoxicity. Our results indicate that nanoMIL-89 formulation may offer promising therapeutic opportunities and set forth a new prototype for drug delivery not only in CVDs, but also for other diseases yet incurable, such as diabetes and cancer.
Collapse
Affiliation(s)
- Dana E. Al-Ansari
- Department of Biological and Environmental Sciences, Qatar University, Doha 2713, Qatar; (D.E.A.-A.); (N.A.M.); (M.M.R.)
| | - Nura A. Mohamed
- Department of Biological and Environmental Sciences, Qatar University, Doha 2713, Qatar; (D.E.A.-A.); (N.A.M.); (M.M.R.)
| | - Isra Marei
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha 24811, Qatar;
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Atef Zekri
- Qatar Energy and Environment Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar;
| | - Yu Kameno
- Department of Chemistry, Imperial College, London, White City Campus, 80 Wood Lane, London W12 0BZ, UK; (Y.K.); (R.P.D.); (P.D.L.)
| | - Robert P. Davies
- Department of Chemistry, Imperial College, London, White City Campus, 80 Wood Lane, London W12 0BZ, UK; (Y.K.); (R.P.D.); (P.D.L.)
| | - Paul D. Lickiss
- Department of Chemistry, Imperial College, London, White City Campus, 80 Wood Lane, London W12 0BZ, UK; (Y.K.); (R.P.D.); (P.D.L.)
| | - Md Mizanur Rahman
- Department of Biological and Environmental Sciences, Qatar University, Doha 2713, Qatar; (D.E.A.-A.); (N.A.M.); (M.M.R.)
| | - Haissam Abou-Saleh
- Department of Biological and Environmental Sciences, Qatar University, Doha 2713, Qatar; (D.E.A.-A.); (N.A.M.); (M.M.R.)
- Biomedical Research Center, QU Health, Qatar University, Doha 2713, Qatar
| |
Collapse
|
49
|
Su S, Kang PM. Systemic Review of Biodegradable Nanomaterials in Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E656. [PMID: 32244653 PMCID: PMC7221794 DOI: 10.3390/nano10040656] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Nanomedicine is a field of science that uses nanoscale materials for the diagnosis and treatment of human disease. It has emerged as an important aspect of the therapeutics, but at the same time, also raises concerns regarding the safety of the nanomaterials involved. Recent applications of functionalized biodegradable nanomaterials have significantly improved the safety profile of nanomedicine. OBJECTIVE Our goal is to evaluate different types of biodegradable nanomaterials that have been functionalized for their biomedical applications. METHOD In this review, we used PubMed as our literature source and selected recently published studies on biodegradable nanomaterials and their applications in nanomedicine. RESULTS We found that biodegradable polymers are commonly functionalized for various purposes. Their property of being naturally degraded under biological conditions allows these biodegradable nanomaterials to be used for many biomedical purposes, including bio-imaging, targeted drug delivery, implantation and tissue engineering. The degradability of these nanoparticles can be utilized to control cargo release, by allowing efficient degradation of the nanomaterials at the target site while maintaining nanoparticle integrity at off-target sites. CONCLUSION While each biodegradable nanomaterial has its advantages and disadvantages, with careful design and functionalization, biodegradable nanoparticles hold great future in nanomedicine.
Collapse
Affiliation(s)
| | - Peter M. Kang
- Cardiovascular Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, 3 Blackfan Circle, CLS 910, Boston, MA 02215, USA;
| |
Collapse
|
50
|
Qamar N, Arif A, Bhatti A, John P. Nanomedicine: an emerging era of theranostics and therapeutics for rheumatoid arthritis. Rheumatology (Oxford) 2020; 58:1715-1721. [PMID: 31377812 DOI: 10.1093/rheumatology/kez286] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/18/2019] [Indexed: 02/01/2023] Open
Abstract
RA is a multifactorial autoimmune inflammatory disease characterized by synovitis, bone destruction and joint dysfunction that leads to shortening of lifespan and increased mortality rates. Currently available treatments of RA, by controlling various symptoms, only delay disease progression and have their own side effects. Consequently, there is the need for a novel therapeutic strategy that offers a more sustainable and biocompatible solution. Nanomedicine is a modern branch of nanobiotechnology that provides targeted therapy to inflamed rheumatic joints and thus prevents unwanted off-target side effects. This review highlights various nanotheranostic and nanotherapeutic strategies that are currently being used for the treatment of RA.
Collapse
Affiliation(s)
- Naila Qamar
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ammara Arif
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Attya Bhatti
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Peter John
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|