1
|
Xia Y, Chen L, Lu J, Ma J, Zhang Y. The comprehensive study on the role of POSTN in fetal congenital heart disease and clinical applications. J Transl Med 2023; 21:901. [PMID: 38082393 PMCID: PMC10714640 DOI: 10.1186/s12967-023-04529-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/15/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Congenital heart defect (CHD) is the most common congenital abnormality, and it has long been a clinical and public health concern. Our previous findings have found Periostin (POSTN) and Pappalysin-1 (PAPPA) as potential biomarkers for fetal CHD. We aim to further elucidate POSTN's role in fetal heart development and explore the clinical applicability of POSTN and PAPPA as diagnostic marker for fetal CHD. This study is poised to establish a theoretical framework for mitigating the incidence of CHD and advance a novel approach for prenatal screening of fetal CHD. METHODS We verified differential expression of POSTN and PAPPA in gravida serum and fetal amniotic fluid based on our previous research. We established the Postn knockout mouse by CRISPR/Cas9 to investigate whether Postn deletion leads to cardiac abnormalities in mice. Besides, we explored the mechanism of POSTN on heart development through Postn knockout mouse model and cell experiments. Finally, we established the logistic regression model and decision curve analysis to evaluate the clinical utility of POSTN and PAPPA in fetal CHD. RESULTS We observed a significant decrease in POSTN and increase in PAPPA in the CHD group. Atrial septal defects occurred in Postn-/- and Postn± C57BL/6 fetal heart, while ventricular septal defects with aortic saddle were observed in Postn± C57BL/6 fetal heart. Disruption of the extracellular matrix (ECM) in cardiomyocytes and multiple abnormalities in cellular sub-organelles were observed in Postn knockout mice. POSTN may positively regulate cell behaviors and unsettle ECM via the TGFβ-Smad2/3 signaling pathway. The combination of serum biomarkers POSTN and PAPPA with Echocardiogram can enhance the diagnostic accuracy of CHD. Furthermore, the comprehensive model including POSTN, PAPPA, and two clinical indicators (NT and age) exhibits significantly higher predictive ability than the diagnosis group without the use of serum biomarkers or clinical indicators. CONCLUSIONS It is the first evidence that Postn deletion leads to cardiac developmental abnormalities in fetal mice. This may involve the regulation of the TGFβ signaling pathway. Importantly, POSTN and PAPPA possess clinical utility as noninvasive prenatal promising screening indicators of CHD.
Collapse
Affiliation(s)
- Yi Xia
- Department of Obstetrics, Women's and Children's Hospital, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei, China
| | - Liang Chen
- Department of Obstetrics, Women's and Children's Hospital, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei, China
| | - JinWen Lu
- Department of Ultrasound, Wuhan University Zhongnan Hospital, Wuhan, 430071, Hubei, China
| | - Jianhong Ma
- Department of Obstetrics, Women's and Children's Hospital, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei, China
- Clinical Research Center for Prenatal Diagnosis and Birth Health of Hubei Province, Wuhan, Hubei, China
- Clinical Research Center for Reproductive Science and Birth Health of Wuhan, Wuhan, Hubei, China
| | - Yuanzhen Zhang
- Department of Obstetrics, Women's and Children's Hospital, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei, China.
- Clinical Research Center for Prenatal Diagnosis and Birth Health of Hubei Province, Wuhan, Hubei, China.
- Clinical Research Center for Reproductive Science and Birth Health of Wuhan, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Watson MC, Williams C, Wang RM, Perreault LR, Sullivan KE, Stoppel WL, Black LD. Extracellular matrix and cyclic stretch alter fetal cardiomyocyte proliferation and maturation in a rodent model of heart hypoplasia. Front Cardiovasc Med 2022; 9:993310. [PMID: 36518682 PMCID: PMC9744115 DOI: 10.3389/fcvm.2022.993310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/10/2022] [Indexed: 01/22/2024] Open
Abstract
Introduction Birth defects, particularly those that affect development of the heart, are a leading cause of morbidity and mortality in infants and young children. Babies born with heart hypoplasia (heart hypoplasia) disorders often have a poor prognosis. It remains unclear whether cardiomyocytes from hypoplastic hearts retain the potential to recover growth, although this knowledge would be beneficial for developing therapies for heart hypoplasia disorders. The objective of this study was to determine the proliferation and maturation potential of cardiomyocytes from hypoplastic hearts and whether these behaviors are influenced by biochemical signaling from the extracellular matrix (ECM) and cyclic mechanical stretch. Method Congenital diaphragmatic hernia (CDH)-associated heart hypoplasia was induced in rat fetuses by maternal exposure to nitrofen. Hearts were isolated from embryonic day 21 nitrofen-treated fetuses positive for CDH (CDH+) and from fetuses without nitrofen administration during gestation. Results and discussion CDH+ hearts were smaller and had decreased myocardial proliferation, along with evidence of decreased maturity compared to healthy hearts. In culture, CDH+ cardiomyocytes remained immature and demonstrated increased proliferative capacity compared to their healthy counterparts. Culture on ECM derived from CDH+ hearts led to a significant reduction in proliferation for both CDH+ and healthy cardiomyocytes. Healthy cardiomyocytes were dosed with exogenous nitrofen to examine whether nitrofen may have an aberrant effect on the proliferative ability of cardiomyocyte, yet no significant change in proliferation was observed. When subjected to stretch, CDH+ cardiomyocytes underwent lengthening of sarcomeres while healthy cardiomyocyte sarcomeres were unaffected. Taken together, our results suggest that alterations to environmental cues such as ECM and stretch may be important factors in the pathological progression of heart hypoplasia.
Collapse
Affiliation(s)
- Matthew C. Watson
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
- Department of Mechanical Engineering, Tufts University, Medford, MA, United States
| | - Corin Williams
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Raymond M. Wang
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Luke R. Perreault
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Kelly E. Sullivan
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Whitney L. Stoppel
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Lauren D. Black
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
- Cellular, Molecular, and Developmental Biology Program, Sackler School for Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
3
|
Insights into the use of genetically modified decellularized biomaterials for tissue engineering and regenerative medicine. Adv Drug Deliv Rev 2022; 188:114413. [PMID: 35777666 DOI: 10.1016/j.addr.2022.114413] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/25/2022] [Accepted: 06/25/2022] [Indexed: 11/24/2022]
Abstract
Various modifications have been performed on biomaterials to improve their applications in tissue engineering and regenerative medicine. However, the challenges of immunogenicity and biocompatibility existed since the application of biomaterials. As a method to solve this problem, the decellularization process removes most living cells from biomaterials to minimize their immunogenicity; and preserves the native structures and compositions that favour cell growth and the subsequent construction of functional tissue. On the other hand, genetic modification of biomaterials aims to achieve specific functions (low immunogenicity, osteogenesis, etc.) or analyse the genetic mechanisms underlying some diseases (cardiac dysfunction, liver fibrosis, etc.). The combination of decellularization and gene modification is highly superior to biomaterials; thus, we must obtain a deeper understanding of these novel biomaterials. In this review, we summarize the fabrication approaches and current applications of genetically modified decellularized biomaterials and then discuss their disadvantages and corresponding future perspectives.
Collapse
|
4
|
Li X, Lu Y. Effect of hyaluronic acid and laminin in coronary heart disease patients complicated with myocardial infarction. Am J Transl Res 2021; 13:9032-9039. [PMID: 34540015 PMCID: PMC8430096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To investigate the expression and significance of serum hyaluronic acid (HA) and laminin (LN) in patients with coronary heart disease (CHD) complicated with myocardial infarction (MI). METHODS From July 2016 to July 2019, 280 CHD patients without MI admitted to the department of cardiology in our hospital were enrolled into a CHD group, and another 280 CHD patients complicated with MI into an infarction group. The expressions of serum LN and HA were compared between the two groups to analyze its correlation with blood lipid and blood glucose levels, and the results of serum protein electrophoresis (SPE) as well as the levels of mean platelet volume (MPV), high-sensitivity C-reactive protein (hs-CRP), cardiac troponin I (cTnI) and left ventricular ejection fraction (LVEF) were compared between the two groups. RESULT The infarction group showed significantly higher expressions of serum LN and HA than the CHD group (P < 0.01), and their expressions increased with the elevation of the number of lesions (P < 0.05). Compared with patients with combined anterior and inferior wall infarction, LN and HA showed remarkably lower levels in patients with anterior wall infarction or inferior wall infarction (P < 0.05). Additionally, the infarction group obtained higher expressions of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglyceride (TG), and fasting plasma glucose (FPG), but a lower level of high-density lipoprotein cholesterol (HDL-C) than the CHD group (all P < 0.01), which demonstrated that LN and HA were positively correlated with TC, TG, hs-CRP, FPG, and LDL-C (all P < 0.05), but negatively correlated with HDL-C (P < 0.05). Moreover, the infarction group presented a notably higher level of β1-globulin than the CHD group, and the increase in β1-globulin level may have increased the readmission rate and mortality of patients with CHD complicated with MI. MPV was negatively correlated with LVEF (P < 0.05), but positively correlated with the serum hs-CRP and cTnI levels (both P < 0.05). CONCLUSION The expressions of serum HA and LN in patients with CHD complicated with MI witnessed an elevation, which indicated a positive correlation between their expression and the levels of blood lipid and blood glucose. A higher readmission rate and mortality of patients with CHD complicated with MI may be triggered by the elevation of β1-globulin, and MPV can be used as an objective index to evaluate the condition of patients with MI.
Collapse
Affiliation(s)
- Xiaojing Li
- Department of General Practice, Shanxi Bethune Hospital (Shanxi Academy of Medical Sciences)Taiyuan 030032, Shanxi, China
| | - Yan Lu
- Department of Cardiology, The First Hospital of Shanxi Medical UniversityTaiyuan 030032, Shanxi, China
| |
Collapse
|
5
|
Yonebayashi S, Tajiri K, Hara M, Saito H, Suzuki N, Sakai S, Kimura T, Sato A, Sekimoto A, Fujita S, Okamoto R, Schwartz RJ, Yoshida T, Imanaka-Yoshida K. Generation of Transgenic Mice that Conditionally Overexpress Tenascin-C. Front Immunol 2021; 12:620541. [PMID: 33763067 PMCID: PMC7982461 DOI: 10.3389/fimmu.2021.620541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/10/2021] [Indexed: 02/05/2023] Open
Abstract
Tenascin-C (TNC) is an extracellular matrix glycoprotein that is expressed during embryogenesis. It is not expressed in normal adults, but is up-regulated under pathological conditions. Although TNC knockout mice do not show a distinct phenotype, analyses of disease models using TNC knockout mice combined with in vitro experiments revealed the diverse functions of TNC. Since high TNC levels often predict a poor prognosis in various clinical settings, we developed a transgenic mouse that overexpresses TNC through Cre recombinase-mediated activation. Genomic walking showed that the transgene was integrated into and truncated the Atp8a2 gene. While homozygous transgenic mice showed a severe neurological phenotype, heterozygous mice were viable, fertile, and did not exhibit any distinct abnormalities. Breeding hemizygous mice with Nkx2.5 promoter-Cre or α-myosin heavy chain promoter Cre mice induced the heart-specific overexpression of TNC in embryos and adults. TNC-overexpressing mouse hearts did not have distinct histological or functional abnormalities. However, the expression of proinflammatory cytokines/chemokines was significantly up-regulated and mortality rates during the acute stage after myocardial infarction were significantly higher than those of the controls. Our novel transgenic mouse may be applied to investigations on the role of TNC overexpression in vivo in various tissue/organ pathologies using different Cre donors.
Collapse
Affiliation(s)
- Saori Yonebayashi
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazuko Tajiri
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Mari Hara
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, Tsu, Japan.,Research Center for Matrix Biology, Mie University, Tsu, Japan
| | - Hiromitsu Saito
- Department of Animal Genomics, Functional Genomics Institute, Mie University Life Science Research Center, Tsu, Japan
| | - Noboru Suzuki
- Department of Animal Genomics, Functional Genomics Institute, Mie University Life Science Research Center, Tsu, Japan
| | - Satoshi Sakai
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Taizo Kimura
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akira Sato
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akiyo Sekimoto
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Satoshi Fujita
- Department of Cardiology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Ryuji Okamoto
- Department of Cardiology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Robert J Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Toshimichi Yoshida
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, Tsu, Japan.,Research Center for Matrix Biology, Mie University, Tsu, Japan
| | - Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, Tsu, Japan.,Research Center for Matrix Biology, Mie University, Tsu, Japan
| |
Collapse
|